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1 INTRODUCTION 

1.1 Background 

Efficiency analysis is ex-post tested with the use of a variety of 
quantitative methods.2 These sometimes rely on the estimation of a 
efficient frontier, with distance to it being an indicator of the 
observation performance. It is the purpose of this note to compare the 
results of three efficiency frontier estimators: straightforward least 
squares, adding the minimum or subtracting the maximum estimated 
error — according to whether the efficiency being measured is, say, cost 
or revenue - to the estimated model residuals, the method of order 
statistics towards a truncated error distribution and a replicated 
moment one. 

The analysis relies on simulation, departing from a simple regression 
model to both illustrate and compare the performance of the methods. 
Two environments are staged: in one, a truncated at zero normal, 
uniform, exponential, Cauchy and logistic error terms are then to a 
deterministic linear model, providing a simple linear regression 
departure. In a second attempt, an extra normal untruncated random 
error is additionally included. 

For all series, methods evaluate both a lower as an upper truncation 
hypothesis and none at all. We would hope that the true assumption 
would emerge with the best performance. 

In the order — interquantile — estimation we considered only three 
alternatives for the null hypothesis: the normal, the exponential, and 
the uniform itself. The method rely on a two step estimation 
procedure, departing from rankings of the (first step) OLS residual 
estimates.3 It suggests direct inference, and an indirect approach 
relying on inverting the direct form. The latter is also subject to 
estimation by the method of moments in a “replicated” version. 

Replicated moment estimation was previously forwarded in the 
literature.4 One can justify it in linear regression if we note that for a 
                                                 
2 See Koop (2003), p. 147 and 168-177, for references on stochastic frontier modelling; 
Murillo-Zamorano (2004), for a recent survey of both non-parametric — as Data 
Envelope Analysis — as parametric and stochastic — as in the present research; and 
Greene (1997). 
3 See Martins (2005). 
4 Martins (2003). 
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model with k parameters we have in fact nxk statistics — k, the 
dependent variable and k-1 independent variables, for each 
observation. We essayed with the straight-forward replication, with a 
weighted least squares and a generalised least squares one. 

For simplicity, efficiency is modelled additively and the simulations 
depart from a linear deterministic counterpart. The methods can easily 
be adapted to apply to nonlinear frontiers, the logarithm of which 
could be subject to the proposed procedures; inefficiency would then be 
multiplicative towards the deterministic optimum. 

The exposition proceeds as follows: section 1 describes the generated 
basic random series used in the simulations, summarising briefly 
theoretical foundations behind the data generating procedures under 
truncated assumptions. Section 2 applies the “method of order 
statistics”5 — in minimum distance versions — an inter-quantilic 
inference method. The inverse approach is forwarded in section 3. 
Section 4 illustrates results from replicated method of moments applied 
to the pillar equation the last procedure. Some concluding remarks end 
the research. 

1.2 Data and Data Generating Procedures 

The generation of random samples started by independent draws from 
the uniform distribution,6 Wi’s, inverted according to the required cdf 

— a procedure justified by a well-known: 

Theorem. For any random variable Z with uniform distribution in the 
(0, 1) interval — i.e., with cdf U(z) = z and pdf u(z) = U’(z) = 1, for 0 

< z < 1 -, X = F-1(Z) — where F(z) exhibits properties of a cdf in the 

appropriate domain of z and F-1(x) denotes the inverse function of 
F(x) - has pdf f(x) = F’(x), and cdf F(X).  

                                                 
5 Alternatively, we would name it rank regression… Yet, rank estimation seems a term 
more closely (and already) associated to robust — non-parametric — methods in the 
econometrics literature. 
6 Using the RAND(.) function of EXCEL. 
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Proof: Using variable transformation, the pdf of X = G(Z) = F-1(Z), 

which implies, Z = F(X) = G-1(X), is u[G-1(x)] 
1( )dG x

dx

−

, with z = G-

1(x) = F(x); then, it equals 1 (x)dF

dx
 = F’(x) = f(x). 

Corollary: If X is distributed according to a cdf F(X), W = H-1[F(X)] 
has cumulative distribution function H(w), provided that H(w) is an 
appropriate cdf.  

Then, testing the validity of a distribution function F(.), for a random 

iid sample, is equivalent to test if Wk = H-1(Zk) = H-1[F(Xk)] have 

distribution function H(.).  

For example, testing that Xk come from the cdf F(x) is equivalent to 

test — using the same sample…- if the transformed sample values Wk 

= 1[ ( )]
k

F X−Φ , where (.)Φ  denotes the cdf of the standard normal, come 
from the standard normal. 

Three uniform (0, 1) random series (of size 100 each) were created.7  

One was used to provide the exogenous variable X, with normal 
distribution of mean 7 and 3 standard deviations: Xi = 7 + 3 1( )iW−Φ , 

where ( )zΦ  denotes the cumulative standard normal and 1( )z−Φ  its 
inverse. 

One of the other series was (invariably) used to create the residuals, E, 
to form the dependent variable, Y, of our baseline (simple) regression 
model, always created as 

(1.1) Yi = 5 + 6 Xi + Ei  

The Ei’s are eventually generated by a truncated (at zero) distribution. 

Finally, we experimented adding an unrestricted standard normal 
residual, Vi, built by using the inverse normal of the third uniform 

random series that would appear as: 

                                                 
7 We use the same series as in Martins (2005). 
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(1.2) Yi = 5 + 6 Xi + Ei + Vi  

This is the formulation usually encountered in stochastic frontier 
modelling. 

Let a be the lower truncation point and b the upper truncation point 
of a given cdf F(e). We rely on the fact that being Wi, uniform, it 

should equal the truncated cdf according to the definition: 

(1.3)  F[e | a< e < b] = ( ) ( )

( ) ( )

F e F a

F b F a

−
−

, a < e < b 

Obviously, the problem could interchangeably have been defined in 
terms of the limiting probabilities, i.e., note that a = 1( )F α−  and b = 

1( )F β−  - i.e., for α  - the probability left-out to the left of the original 
F(e) - replaced by α  = F(a) and β  - with 1 - β  being the upper 
portion of the original distribution that was cut-off - by β  = F(b).  

(1.4)  F[e | 
1( )F α−

 < e < 
1( )F β−

] = ( )F e α
β α

−
−

, 
1( )F α−

 < e < 
1( )F β−

 

The pdf obeys 

(1.5) f[e | a< e < b] = 

( )

( ) ( )

f e

F b F a−  = 

( )f e

β α− , 1( )F α− = a < e < b = 
1( )F β−  

Say, an efficiency production frontier model would specify the addition 
to its deterministic — efficient - counterpart of an error e such that F[e 
| - ∞ < e < 0]; a minimum cost boundary model, F[e | 0 < e < ∞].  

We start from our uniform (0,1) series, Wi. We postulate that: 

(1.6) Wi = 
( ) ( )

( ) ( )
i

F E F a

F b F a

−

−
 = 

( )
i

F E α

β α

−

−
 

Therefore, after choosing F(.) and the truncation limits, we can 
generate a series of a truncated distribution considering:  

(1.7) Ei = F-1{Wi [F(b) — F(a)] + F(a)} = F-1[Wi ( β  — α ) + α ] 
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And of course a < Ei < b. We considered three cases, of general form 

Ei = 1{ ( ) [ ( ) ( )] }
i

F F a F b F a W− + − . 

For a standard distribution at b = ∞, b is replaced by ∞ and a by -∞: 

Ei = F-1(Wi).  

For a truncated above distribution at b = 0, b is replaced by 0 and a 

by -∞: Ei = F-1[Wi F(0)].  

For a truncated below distribution at b = ∞, a is replaced by 0 and a 

by 0: Ei = F-1{Wi [1 — F(0)] + F(0)}.  

We depart from several hypothesis concerning the error term 
distribution to be added to the deterministic part of the model: 
standard normal, uniform, exponential, Cauchy and logistic; the error 
terms other than the normal were further transformed so as to 
generate for the standard series a null expected value and unitary 
variance one; for the Cauchy the series were multiplied 0.67449037, the 
inverse standard deviation of the zero-mean normal with the same 
quartiles. Samples had always size n = 100. In the philosophy of the 
estimated regressions, these distributions are then a function of the 
regression residual divided by a standard error, also subject to 
estimation.8 

We report below, in I. — V., for each case the generic distribution used, 
the procedures taken to generate the truncated series, and tables with 
a summary of the descriptive statistics of the created input error series, 
Ei, of the output series, Yi, and the OLS results of the regression of Yi 

on Xi. â 1 and â 2 denote, respectively, the intercept and slope 

estimates of the linear model, ˆ
i
E , the estimated OLS residuals; SD 

refers standard deviation; as usual, a bar indicates a mean, except for 

the adjusted 2R , 
2

R . The first table in Martins (2010a) also contains 
information on Xi, and the “mother” uniform (0, 1) random series, Wi 

                                                 
8 In our case, 1 is always the expected value of the estimates of this parameter. But we 
could have multiply our theoretical error terms by some other factor before addition to 
the deterministic model. 
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— the cumulative distribution function - from which all error series 
were created. 

Two types of series were created in Martins (2010a). Tables 1.1.1 to 
1.1.5 correspond to the simple form (1.1); Tables 1.2.1 to 1.2.5 to form 
(1.2) — the previous Yi series are added of an extra standard normal 

error, Vi. 

I. Standard Normal, F(e) = ( )eΦ , -∞ < e < ∞. F(0) = 1
2

. 

The Ei’s come from the normal — ( )zΦ  denotes the standard normal. 

Then: 

1. Ei = μ  + σ  1( )
i
W−Φ , -∞ < Ei < ∞ (i.e., F(a) =α  = 0, F(b) = β  = 

1). 

2. a truncated above normal at 

1

2  (F(a) =α  = 0, F(a) = β  = 

1

2 ). 

Then Ei = μ  + σ  
1 1( )
2 i
W−Φ

 and -∞ < Ei < μ  + σ  
1 1( )
2

−Φ
. 

3. a truncated from below normal at 50% (F(a) =α  = 1
2

, F(a) = β  = 

1).9 Then Ei = μ  + σ  1 1 1
( )
2 2 i

W−Φ +  and μ  + σ  1 1( )
2

−Φ  < Ei < ∞. 

μ  and σ  were always fixed to 0 and 1 respectively (we rely on the 
standard normal). Other values for σ  could have been used instead: 
for our purposes, it is irrelevant - it is a parameter that will be subject 
to estimation inquiry. 

From our exercise, for example, we conclude that for standard normals, 

the results reported in Martins (2010a) in Table 1.1.1 for E  and 
E

SD  
are the approximations of the mean and standard deviation of the 
truncated distributions.10 The OLS estimate of the intercept, a1, varies 

                                                 
9 Notice that even if μ  = 0, we generate a different sample than the symmetric of the 
first median one. 
10 See, for example, Johnston, Kotz and Balakrishnan (1994), p. 159, Table 13.10 for 
comparable tabulations. 
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across the three columns — i.e., samples — capturing the bias induced 
by truncation — the truncated errors do not have a zero mean any 
longer. Also, a reduced estimated standard error is captured in the two 
truncated samples. This pattern is reproduced in all the 5 cases. 

With the doubled error structure, we confirm — see column 1 of Table 
1.2.1 in Martins (2010a) — an increase in the standard error: the 
variance of the error doubled and the standard error becomes 1.4. 

II. Uniform of mean 0 and 1 standard deviation. F(e) = 
2 3

z  + 1
2

, -

3  < e < 3 . F(0) = 1
2

. 

1. Ei = (Wi - 
1

2
) 2 3 , - 3  < Ei < 3  (i.e., F(a) =α  = 0, F(b) = β  

= 1). 

2. a truncated above error: Ei = (Wi 
1

2
 - 1
2

) 2 3 , - 3  < Ei < 0. 

((F(a) =α  = 0, F(a) = β  = 0.5.) 

3. a truncated from below uniform at 50% (F(a) =α  = 0.50, F(a) = β  

= 1).11 Then Ei = (Wi 
1

2
+ 1
2

- 1
2

) 2 3  and 0 < Ei < 3 . 

III. Exponential of mean 0 and 1 standard deviation. F(e) = 1 — exp[-
(e + 1)], - 1 < e < ∞. F(0) = 1 — exp(-1). 

1. Ei = - ln(1 — Wi) -1, -1< Ei < ∞ (i.e., F(a) =α  = 0, F(b) = β  = 

1). 

2. a truncated above distribution Ei = - ln{1 — Wi [1 — exp(-1)]} - 1, -1 

< Ei < 0. (F(a) =α  = 0, F(a) = β  = 1 - exp(-1).) 

3. a truncated from below at 50% (F(a) =α  = 1 - exp(-1), F(a) = β  = 
1).12 Then Ei = - ln{1 — Wi [exp(-1) + 1 — exp(-1)]} — 1 and 0 < Ei < 

∞. 

                                                 
11 Notice that even if μ  = 0, we generate a different sample than the symmetric of the 
first quartile one. 
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IV. Cauchy. F(e) = 

1

2  +

1

π  arctan( 0.67449037
e

), -∞ < e < ∞. F(0) = 

1

2  

1. Ei = 0.67449037 tan[π  (Wi - 
1

2
)], -∞ < Ei < ∞ (i.e., F(a) =α  = 0, 

F(b) = β  = 1). 

2. truncated above (F(a) =α  = 0, F(a) = β  = 0.5) Ei = 0.67449037 

tan[ π  (Wi 
1

2
 - 1
2

)] -∞ < Ei < 0.  

3. a truncated from below at 50% (F(a) =α  = 0.50, F(a) = β  = 1).13 

Then Ei = 0.67449037 tan{π  (Wi 
1

2
 + 1
2

- 1
2

)}, and 0 < Ei < ∞. 

V. Logistic F(e) = 
3

1

1

e

e

π
−

+

, -∞ < e < ∞. F(0) = 1
2

. 

1. Ei = - ln( 1

i
W

 - 1) 3

π
, -∞ < Ei < ∞ (i.e., F(a) =α  = 0, F(b) = β  

= 1). 

2. Ei = - ln(
1

1
2i

W
 - 1) 3

π
, -∞ < Ei < 0. (F(a) =α  = 0, F(a) = β  = 

0.5) 

3. Ei = - ln(
1

1 1
2 2i

W +
 - 1) 3

π
, and 0 < Ei < ∞. (F(a) =α  = 0.5, F(a) 

= β  = 1) 

Our main objective of the following sections will be to obtain estimates 
of the linear model: 

(1.8) Yi = a1 + a2 Xi + Ei, i = 1,2,..., 100 

                                                                                                                     
12 As above, even if μ  = 0, we generate a different sample than the symmetric of the 
first quartile one. 
13 Notice that even if μ  = 0, we generate a different sample than the symmetric of the 
first quartile one. 
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or 

(1.9) Yi = a1 + a2 Xi + Ei + Vi, i = 1,2,..., 100 

under the assumption that the Ei’s have a truncated (-∞, 0) or (0, ∞) 

distribution or unrestricted for each of the fifteen series Yi that were 

created.  

Notice also that (1.8) and (1.9) are equivalent to: 

(1.10) Yi = a1’ + a2 Xi + RESIi, i = 1,2,..., 100 

where E[RESIi] = 0, Var(RESIi) = Var(Ei), or VAR(Ei) + Var(Vi), 

with a1’ capturing bias of the estimation. 

For each of the (2 times) fifteen Y series, OLS residuals were thus 
generated, ˆ

i
E . The ascending rank of each residual series was recorded 

as a variable Ri — the ranking of the order statistics of the estimated 

residual series. In general, and relying on well-known results, whatever 

the distribution, F(.) of the Ei’s, we expect that F(
j
O ) = 

1

j

n +
 = 
101

j  

where Oj denotes the j-th order statistic. We create in accordance Si = 

1
i
R

n +
 = 

101
i
R

. Then, we hope to approach F(Ei) in inter-quantile or 

truncated estimation 

We used TSP 4.4 and EXCEL for computation.14 From the former, we 
relied more heavily on OLSQ LSQ (FRML, EQSUB) and matrix 
routines. 

2 ORDER ESTIMATION 

In section 1, we established the required principles to generate 
estimation strategies after a first-step OLS run:  

For a truncated distribution at known truncation points, inter-quantile 
inference would rely on the adjustment by NLS for example of: 

                                                 
14 Hall and Cummins (1997) and (1998). 
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(2.1) Si ≈  
1 2( ) ( )

( ) ( )

i i
Y a a X
F F a

F b F a
σ

− −
−

−
  

where Si = 
1
i
R

n +
 = 
101
i
R

 denotes the rank of estimated residual i over 

the sample size plus 1. a and b are fixed to reproduce the three cases: 
(-∞, ∞), (-∞, 0) or (0, ∞). Form (1.8) rather than (1.9) would appear to 
suggest (2.1) — with an error added to the right hand-side at the 
rankings approximation (2.1). 

The null hypothesis distributions F(.) considered were the standard 

normal, the uniform (- 3 , 3 ), and the transformed exponential (-1, 
∞). Given the way the series were built, we would hope to recover an 
estimate of 1 for σ  in all cases of simple error structure for thr true 
distribution and 5 and 6 for the linear parameters, intercept and slope, if we 
stage the appropriately – to the sample – truncated cdf. 

With respect to (2.1), “generalised” nonlinear least squares minimising 

e’W-1e, where e denote the difference of Si minus the inferred 

1 2( ) ( )

( ) ( )

i i
Y a a X
F F a

F b F a
σ

− −
−

−
, for a variance-covariance matrix W — inferring 

the variance-covariance matrix of the vector representing the right 
hand-side of (2.1) - given by  

(2.2) W = [ 

( , )[1 ( , )]

2
i j i j

Min S S Max S S

n

−

+  ]  

off it would also be a possibility — that would simply extend the GMM 
— generalised method of moments - estimation principle15 to a GMOS — 
general method of order statistics.16 

We present below only the minimum distance method of order-
statistics (MDMOS) estimators of equation (2.1). Let F( ,Xθ ) denote 
the vector of cdf functions for each observation j, F( ,

j
Xθ ), and S of the 

                                                 
15 See Greene (2003), ps. 543-544, for example. 
16 See Martins (2005). 
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ranks over n + 1 deducted from the first step OLS regression. Then, 
MDMOS estimators are obtained from  

(2.3) 
ˆ
MDMOS

Min
θ

 [S - F( ,Xθ )]’ [S - F( ,Xθ )]  

which just requires applying (nonlinear) least squares to S = F( ,Xθ ) + 
u, where u denotes a vector of residuals.  

Standard errors were obtained according to MM principles:17 letting  

G( θ ) = ( , )F Xθ
θ

∂
∂

, containing in the j-th row the derivative of F( ,
j
Xθ ) 

with respect to each of the parameters, Gj( θ ) = 
( , )

j
F Xθ

θ

∂

∂
: 

(2.4)  ˆˆ ( )
MDMOS

Cov θ  = [G( θ̂ )’ G( θ̂ )]-1 G( θ̂ )’ W G( θ̂ ) [G( θ̂ )’ G( θ̂ )]-1  

In general, for a truncated version of a “standard” (or fixed, specific) 

cdf F(.), i.e., F( ,
j
Xθ ) = 

1 2( )j j
Y a a X

F α
σ
β α

− −
−

−
, Gj( 1 2

, ,a a σ ) can be 

computed from. 

(2.5) Gj( 1 2
, ,a a σ ) = [ -

1 2( )

( )

j j
Y a a X
f

σ
σ β α

− −

−
 ; -

1 2( )

( )

j j

j

Y a a X
f X

σ
σ β α

− −

−
 ; 

  -

1 2 1 2

2
( )

( )

j j j j
Y a a X Y a a X
f

σ σ
β α

− − − −

−  ] 

f(.) denotes the density function associated to the (untruncated) cdf 
F(.). 

We expect that for any consistent estimator of θ , θ̂ , the identifying 
restriction test that relies on  

(2.6)  [S - F( ,Xθ )]’ W-1 [S - F( ,Xθ )]  

exhibits under the correct cdf an asymptotic distribution: 

                                                 
17 See Greene (2003), for example, p. 544. Hansen (1982) establishes large sample 
properties of GMM estimators. 



Ana Paula Martins  87

(2.7)  [S - F( ,̂Xθ )]’ W-1 [S - F( ,̂Xθ )] ~ Χ18 

where n is the number of observations and k is the number of 
estimated parameters (at — upper tail - 5%, Χ  = 120.9896; therefore, 
the order restrictions are not rejected at that significance level if the 
test statistic exhibits a lower value than the theoretical one). 

Minimum distance estimators for fixed α  and β  performed very well. 
Results are presented in Martins (2010a) in Tables 2.1.1 to 2.1.5. Each 
Table contains the results of the simulation for a particular set of the 
endogenous variables, assuming three particular — normal, uniform and 
exponential - error term distribution as the null hypothesis — each 
column has information for a particular sample and truncated 
hypothesis. We compute, by nonlinear least squares, the parameter 
estimates, use formulas (2.4) and (2.5) to generate the appropriate 
standard error, and (2.7) the identifying restricted test statistic. e’e are 
the reported some of square errors reported by the routine. 

We note that for the standard case (α  = 0, β  = 1, first row block for 
first column series), the s.e. are smaller than those obtained for OLS, 
reported in Martins (2010a) in Tables 1.1.1-1.1.3, which points to the 
quality of the MDMOS method — however, the latter requires 
knowledge of the adequate cdf, being fully parametric in spirit. 

From the restriction test, we conclude that the true normals are 
identified by the results of Table 2.1.1 (Martins 2010a). That uniform 
rather than the other alternatives applies to the error structure is 
patent in Table 2.1.2; but the method does not allow us to identify 
which truncated case. The exponential exhibits high test statistics but 
the true truncation appears with the best statistic value — Table 2.1.3 
(Martins 2010a). The logistic approaches a significance similar to the 
normal — Table 2.1.5. Cauchy disturbances lead to too large values of 
the restriction test statistic. 

The next Tables in Martins (2010a) apply to the double error 
structures. The complexification of the error structure led to the 
disapearance of the truncated effects: Under all series, the smaller test 
statistic always points to an untruncated distribution. Notice that the 
variance of the extra noise is always one — where the mother 
untruncated distribution has also the same variance. It is possible that 

                                                 
18 Which should also be useful as a rank test of a particular cdf form… 
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with a larger value for the variance of the latter would result in 
recogizable truncated effects. 

3 INVERSE ORDER — INTER-QUANTILE — REGRESSION 

In section 2, we established the required ordered principles to generate 
estimation strategies after a first-step OLS run. For the truncated 
normal, the order regression approach relies on the fact that: 

(3.1) 

1 2( )

1

i i
Y a a X

Rank

n
σ

− −

+  = 
2

( )

1
i i

Rank Y a X

n

−

+  ≈  
1 2( )i i

Y a a X
F α

σ
β α

− −
−

−
  

Observation rankings, Si, were inferred from the OLS errors. We can 

invert the approximation to obtain: 

(3.2) Yi ≈  a1 + a2 Xi + σ  1[ ( )]
i

F Sα β α− + −   

An inverse order approach would use those same rankings, to build, for 
given, fixed, α  and β : 

(3.3)  
ˆ
i
E  ≈  

1[ ( )]
i

F Sα β α− + −  = 
1{ ( ) [ ( ) ( )]}

i
F F a S F b F a− + −  

and regress by OLS, Yi on Xi and the “theoretical” error, ˆ
i
E : 

(3.4) Yi ≈  a1 + a2 Xi + σ  ˆ
i
E  + vi  

The quality of the fit would guide us to the true distribution. The 
variance of the estimates have to be scaled relative to the OLS formula 
— the standard errors of the parameter estimates multiplied by the 

square root of (the variance of ˆ
iE  times 99 times the OLS regression 

coeficient estimate squared, plus the sum of squares of the regression, 
and then the sum divided by 97), rather than multiplied by the 
standard error of the OLS regression as directly reported by the 
software. 

Also, emcompassing tests could easily be constructed relying on the 
inclusion of more than one transformation — say, use the inverse 
normal and the inverse exponential - in the right hand-side of the 
regression (3.4) performed. 
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At this stage we caution the reader to the fact that the expected value 
of Yi has a bias relative to a1 + a2 Xi that may not be well 

aproximated through the inverse structure (3.4) in the term σ  ˆ
i
E . Yet 

assyntotically, (3.4) should result in an adequate framing. 

Results depicted in Martins (2010a) in Tables 3.1.1 to 3.1.5 exhibit 
similar patterns to the previous section: the truncated normal is well 
approximated, exhibiting the smaller sum of squares residuals e’e — 
that includes the variance accounted by the last term of the regression) 
- as v’v. Uniform disturbances are identified as such but not the 
truncated case. Exponential case is correctly identified. Cauchy and 
Logistic appear as normal cases. 

In the next Table in Martins (2010a), we repeat the procedure for 
normal disturbances and hypothesis with the double error structure. 
Again the “best” results fall on the untruncated cases for each of the 
series. 

4 MOMENT REPLICATION 

The deterministic part of a linear model is added of an error which is 
range restricted, εi, and a conventional one, v0i. We can unfold k 

general equation blocks to the model by multiplying for each block 
each equation by the observations of one of the k + 1 (including the 
constant term) explanatory variables: 

(4.1) i
Y  = β0 + 1i

X β1 + 2i
X β2 + … + ki

X βk + εi + v0i  

1i i
X Y  = 1i

X  β0 + 
2
1i
X  β1 + 1 2i i

X X β2+…+ 1i ki
X X βk+ X2i εi + v1i  

2i i
X Y  = 2i

X  β0 + 2 1i i
X X  β1+

2
2i
X β2+…+ 2i ki

X X βk+ X2i εi + v2i 

  ... 

ki i
X Y  = ki

X  β0 + 1ki i
X X  β1 + 2ki i

X X  β2 + … + 
2
ki
X  βk+ Xki εi + vki 

   i = 1,2,…,n 
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We want to restrict εi > 0, or εi < 0, to denote the effective 

inefficiency. Then we could hope to parametrise our simple linear 
regression as a nonlinear one with 2n observations:19 

(4.2) i
Y  = 1 a1 + i

X  a2 + 1 2
i
ε  + v0i, i = 1,2,...,n 

i i
XY  = iX  a1 + 

2
i
X  a2 + Xi 

2
i
ε  + v1i, i = 1,2,...,n 

2
i
ε  would be n parameter to be estimated along with a and b. The 

variable that multiplies each of the 2
i
ε ’s has zeros all over with the 

exception of the ith observation — 1 — and the n+i-th observation — 
that contains Xi. The previous case contemplates minimum cost 

structures; for a production or revenue frontier we can use: 

(4.3)  i
Y  = 1 a + i

X  b - 1 2
i
ε  + v0i, i = 1,2,...,n 

i i
XY  = i

X  a + 
2
i
X  b - Xi 

2
i
ε  + v1i, i = 1,2,...,n 

To account for potential heteroscedasticity, the data of the second 
equation block was divided by the square root of the mean of 2

i
X 20 in 

a weighted least squares — WLS — version of the double equation 
model. We then considered a covariance matrix of the two equation 
system typical error that off of he diagonal has the mean of X divided 
be the square root of the mean of 2

i
X  and applied GLS in accordance 

to the previous system (WLS) — a GLS refinement of the procedure.  

The first comment one can make is that even if vki = 0, least squares 

procedures cannot solve for the k + 1 parameters and the εi’s — nor the 

2
i
ε  - directly as parameters of an equation system — we attain 

singularity. Therefore we present estimates of the model  

                                                 
19 Method accuracy should increase with k — and the number of observations. 
20 Alternativelly, restricted SUR could be preformed on the system of two equations. 
The covariance structure would then allow for the mean of X to factor the covariance 
between the same observations of the two blocks… 
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(4.4)  i
Y  = 1 a + i

X  b + i
X  b + σ  

ˆ
i
E  + v0i, i = 1,2,...,n 

i i
XY  = i

X  a + 
2
i
X  b + σ  

ˆ
i
E  i
X  + v1i, i = 1,2,...,n 

where 

(4.5)  
ˆ
i
E  ≈  

1[ ( )]
i

F Sα β α− + −   

and Si the frequency estimated from the rankings of the first step OLS 

regression. I.e., we apply the method of replicated moments to the first 
equation of form (4.4).  

We also present the results for the standard linear regression model — 
(1.10). We experimented adding the 98 quasi-dummies — we discarded 
the two (true) median observations — to the simple linear regression. 
We discard additionally the last observation error when ˆ

i
E  is included 

in the regression. 

We restricted the results to the normal case. Martins (2010a), Table 
4.1 refers to single error structure. The correct truncation is invariably 
identified. 

The second table used the the double-error series. As in previous 
sections, the correct truncation hypothesis does not exhibit the smaller 
sum of squares, classifying incorrectly the true truncation case. The 
added error dummies originated nonsensical parameters estimates, even 
for a2, the slope coefficient, that is always well captured by the 
different procedures. 

5 CONCLUSIONS 

Estimation procedures of a linear regression model under truncated 
residual distribution assumptions have been proposed, with illustration 
for different density families. We focussed on truncation at zero 
residuals, an assumption usually encountered in stochastic frontier 
models.  

1. Albeit the variety of procedures tested, the methods only give 
acceptable answer to a single residual environment — or with the 
majority of residual randomness coming from the truncated residuals. 

2. All the methods perform satisfactorilly in identifying whether 
(single) truncation exists or not and of which type for normal, 
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exponential and sometimes also the uniform residuals. Inverse order 
estimation performed as accurately as the direct method in model 
identification — but standard errors appear smaller for the former if one 
is willing to accept the standard ones.  

3. For the normal, the application of replicated moments to the inverse 
order method formulation outperformed — exhibits smaller standard 
errors of the parameter estimates — the (simple) inverse order 
regression procedure. 
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