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Abstract

We develop a novel theoretical framework for studying ecosystems in which

interacting state variables which are affected by management decisions dif-

fuse in space. We identify (i) mechanisms creating spatial patterns when

economic agents maximize profit at each site by ignoring the impact of their

actions on other sites and (ii) a diffusion induced externality. Pattern forma-

tion mechanisms and externalities create a divergence in the spatiotemporal

structures emerging under private or social objectives We develop optimal

regulation which internalize the spatiotemporal externalities. Our theory is

applied to the management and regulation of a semi-arid system. Support-

ing numerical simulations are also presented.

Keywords: Economic-Ecological Systems, Pattern Formation, Reaction-

Diffusion, Diffusion Instability, Spatial Externalities, Regulation.
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1 Introduction

The importance of ecosystems to human well-being has been directly related

to the provision of services such as food, fuel, fiber, climate regulation or dis-

ease control (e.g. Millennium Ecosystem Assessment 2005). An important

element of most ecological theories seeking to understand ecosystems is the

spatial and temporal structure of ecosystems. Spatial heterogeneity involv-

ing spatial structures such as patches or gradients seems to prevail in nature,

in contrast to spatial homogeneity, and has a central role in the analysis of

issues such as theories of competition, succession, evolution and adaptations,

maintenance of species diversity, parasitism, population genetics, population

growth, and predator-prey interactions (Legendre and Fortin 1989). Empir-

ical evidence suggests that disturbances in an ecosystem caused by human

actions can either increase or decrease landscape heterogeneity depending

on the parameter and spatial scale examined (e.g. Mladenoff et al. 1993).

This implies that the spatial and temporal structure of ecosystems which are

harvested for their services could be important for the human populations

benefited by these services.

Arid and semi-arid lands are regarded as a classic example of a sys-

tem with reaction/diffusion-activator/inhibitor characteristics where strik-

ing spatial heterogeneities regarding vegetation patterns emerge (e.g. Tong-

way and Ludwig 2007). Arid and semi-arid lands, or grazing lands, cover

nearly 30% of the earth’s land surface and they support both subsistence and

commercial grazing.1 Thus the efficient management of these ecosystems in

order to prevent collapse and secure long-term sustainable productivity is

an important management issue.

In this context the present paper develops a novel methodological frame-

work which could be helpful in analyzing the formation of spatiotemporal

patterns which result from the interactions between decisions taken by eco-

nomic agents about the management of an ecosystem’s resources which gen-

erate useful services, and the natural processes which govern the movements

of these resources in time and space.

The study of the emergence and the properties of regular spatial or spa-

1 In Africa and Asia herders use animals for own consumption and then the market.
In Africa herders compared to settled farmers produce between 50%-75% of all the milk,
beef and mutton produced in the continenet. In Australia, North America and Argentina
grazing lands are exploited by large commercial herders ( Reid et al. 2008).
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tiotemporal patterns which can be found in abundance in nature, such as

for example stripes or spots on animal coats, ripples in sandy desserts, veg-

etation patterns in arid grazing systems or spatial patterns of fish species,

has drawn much attention in natural sciences.2 Reaction-diffusion systems,

that is dynamical systems where the state variables interact among each

either and at the same time diffuse3 in space, have been among the main

analytical tools for analyzing pattern formation in this context. A classical

example is the so-called Turing mechanism (Turing 1952) which provides

a framework predicting the emergence of heterogeneous spatial patterns in

reaction-diffusion systems. The Turing mechanism explains pattern forma-

tion with reference to local instability of a stable spatially homogeneous

steady state to spatially heterogeneous perturbations. This mechanism is

referred to as diffusion induced instability.

In economics, pattern formation has been associated with the spatial

aspects of the economy and concentrates mainly on the study of economic

agglomerations at different spatial scales. The analysis of different types of

economic agglomerations includes issues such as North-South dualism, pat-

terns of regional growth, the emergence of cities, or the emergence of com-

mercial districts within cities.4 On the other hand, and given the arguments

put forward earlier, the study of the economic management of ecosystems

can also be regarded as an area where it seems natural to analyze mech-

anisms causing spatiotemporal patterns to arise. The analysis of pattern

formation in these cases might be useful for the introduction of regulatory

policies with spatial characteristics. Although spatial analysis in this con-

text has provided useful insights in areas such as fishery management, spatial

pollution, or water pricing, it seems that a unified and systematic analysis

of (a) the mechanisms governing the emergence of patterns in ecosystems

where spatial diffusion of interacting resources takes place and at the same

time resources are managed for economic objectives, and (b) the associated

implications for the design of regulatory policies, is still lacking.5

2See for example Okubo and Levin (2001), Murray (2003), and Hoyle (2006).
3 In this context diffusion is a proccess through which the microscopic irregular motion

of an assemplance of particles such as cells, chemicals, or animals results in a macroscopic
regular motion of the group. This classical approach to diffusion implies that diffusion
has local or short range effects.

4See for example Krugman (1996), Fujita, Krugman and Venables (2001), Fugita and
Thisse (2002).

5 In fisheries the main approach is through metapopulation models, (see for example
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Thus in this paper we study the general problem of pattern formation

emerging from the interaction of economic objectives, such as the maxi-

mization of benefits in a given spatial domain, with natural resources with

reaction-diffusion characteristics which evolve in the same spatial domain,

and provide (e.g. through harvesting) the benefits that the economic agents

seek to maximize. In pursuing this objective we provide what we believe is

a novel theoretical treatment for analyzing pattern formation for recursive

infinite horizon intertemporal optimization problems where the evolution of

state variables is described by a reaction-difusion system. 6

We structure the interactions between economic management and the

natural system in two levels. At the first level we assume that economic

agents located at different spatial points (or sites)7 harvest an ecosystem

with reaction-diffusion characteristics, by maximizing private benefits with-

out taking into account the reaction-diffusion characteristics of the natural

system. By doing so an externality is generated from agents at each site

onto agents at other sites. We call this type of management a private op-

timization management problem (POMP) and the associated externality a

diffusion induced spatial externality (DISE). The natural system’s response

to a harvesting rule which stems from the POMP could be the emergence

of a spatial pattern through the classic Turing mechanism. Alternatively,

behavior associated with the POMP could neutralize the Turing mechanism

and result in a spatially homogenous situation. Thus private optimizing be-

havior could create or break patterns. We identify sufficient conditions for

pattern formation through the classic Turing mechanism for the POMP. If,

in addition, the private agents do not take into account the dynamics of the

problem and they act myopically by maximizing current objectives then the

Sanchirico and Wilen, 2005). In pollution management the concept of a spatial distribution
of pollution is used and then a two stage optimal control problem is solved (see for example
Goetz and Zilberman 2000, Xabadia et al. 2004).

6The problem we analyze is a different and more general problem from the one studied
by Brock and Xepapadeas (2008) where optimization was constrained by only one state
variable. In problems with one state variable, reaction-diffusion features are not possible
and thus the uncontrolled single state variable system cannot generate patterns.As shown
in Brock and Xepapadeas (2008), patterns in this case are generated by economic forces
and are realized in the quantity-price (or state-costate) space-time domain. However, since
reaction-diffusion systems which are of dimension higher than one can generate patterns
even without the impact of economic forces, they are much more suitable not only for
analyzing real ecosystems but also for allowing the study of the interplay between natural
forces and economic forces in pattern formation.

7This is equivalent to identifying each site with an ‘agent’.
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usual temporal externality is also emerging since agents ignore the scarcity

costs of the harvested resources.8

At a second level we examine the problem of a social planner who seeks

to internalize both the difusion induced spatial externality and the temporal

externality by maximizing discounted benefits over all sites, subject to the

constraints imposed by the reaction-diffusion natural system. We call this

problem the social optimization management problem (SOMP). We identify

conditions for pattern formation associated with the SOMP. However, the

emergence of patterns in this case is not the result of the Turing mechanism

alone, but the result of interactions between the optimizing behavior and

reaction-diffusion. In our recursive optimal control problem which corre-

sponds to the SOMP, pattern formation is associated with the instability

to spatially heterogeneous perturbations of a flat optimal steady state with

the local saddle point property. We call this type of instability optimal

reaction-diffusion instability (ORDI). This instability is identified for a class

of problems with two state variables and we believe that it represents a new

result.

Comparison of the solutions at the POMP and the SOMP, which could

be spatially homogeneous or heterogenous, provides the information about

the size and the spatiotemporal structure of spatial and temporal external-

ities. This information can be used for the design of optimal spatiotempo-

ral regulation, in the sense of determining policy instruments such that a

decentralized solution of the POMP under these instruments converges to

the SOMP solution. In this context another contribution of our paper is

the identification of the reaction-diffusion spatially externality in resource

management, and the development of a conceptual framework for designing

optimal regulation of reaction-diffusion systems. Given the importance of

these systems (such as arid or semi-arid systems) in the real world, such a

result provides new insights to regulatory policies.

We apply our theory to a model with the structure of a semi-arid grazing

system where we study pattern formation for the POMP, the SOMP, and

the design of optimal spatiotemporal regulation.

8Private agents could take into account dynamics. However because of the well known
strategic effects the resulting open loop or feedback Nash equilibria do not take into
account the resources’ full scarcity costs. In this case the spatial externality will coexist
with a temporal-stategic externality.
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2 Pattern Formation and Private Optimization

We consider a reaction-diffusion system consisting of two state variables

which react among themselves and diffuse in space. Space is assumed to be a

circle of fixed length L. Diffusion is modelled by the classical approach which

implies that the concentration of the ‘material’ (e.g. resource biomass, stock

of water in an aquifer) represented by a state variable moves into the spatial

domain, from areas of high concentration to areas of low concentration.9 The

reaction diffusion system has activator-inhibitor characteristics. This means

that the state variable which is the activator promotes growth in the other

variable, while the state variable which is the inhibitor induces depletion

of the other state variable. We assume that the evolution of the reaction-

difusion system in space-time can be affected by the choice of paths for a

vector of control variables which belong to a fixed control set which is inde-

pendent of the state and control variables. Let x (t, z) = (x1 (t, z) , x2 (t, z))

and u (t, z) = (u1 (t, z) , ..., um (t, z)) , m ≥ 1, denote the vectors of state and
control variables respectively, at time t ∈ [0,∞) and spatial point z ∈ [0, L] .
The reaction-diffusion system can be written as:

∂x1 (t, z)

∂t
= f1 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx1

∂x21 (t, z)

∂z
(1)

∂x2 (t, z)

∂t
= f2 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx2

∂x22 (t, z)

∂z
(2)

with boundary conditions

x1 (0, z) , x2 (0, z) given (3)

x (t, 0) = x (t, L) = x̄ (t) , ∀t, the space is a circle (4)

The functions fi (x (t, z) ,u (t, z)) , i = 1, 2 are smooth functions of the state

and the control variables and describe the kinetics of the reaction-diffusion

system, while the diffusion of the state variables is modelled by the terms

Dx1
∂x21(t,z)

∂z ,Dx2
∂x22(t,z)

∂z , with (Dx1 ,Dx2) > 0 being the diffusion coefficients.

If ∂f1/∂x2 > 0 then x2 is an activator for x1, while if ∂f2/∂x1 < 0 then x1

is an inhibitor for x2.

Assume that an economic agent is located at each spatial point z. Each

agent has a benefit function U (x (t, z) ,u (t, z)) defined over the state and

the control variables. The benefit function is assumed to be increasing and

9In more technical terminology the flux of the ‘material’ at any spatial point is pro-
portional to the gradient of the concentration of the material at this point.
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strictly concave in the controls. Each economic agent considers herself/himself

to be small in relation to the spatiotemporal evolution of the state variables

and thus chooses controls to maximize an objective at each instant of time

for the given spatial site, by treating the values of the state variables as

exogenous parameters. Thus each agent ignores the impacts of his/her ac-

tions on other sites. However, these impacts emerge because of the diffusion

of the state variables and this is the source of a diffusion induced spatial

externality.

The private controls can be defined in terms of two assumptions which

are associated with the type of property rights prevailing in the spatial

domain.

If each agent owns enforceable property rights for her/his site the optimal

private controls are defined as:

u0j (z, t) = argmaxuj
U (x (t, z) ,u (t, z)) , j = 1, ...,m (PR)

Assume that the optimal private control is interior10 so u0j (z, t) is defined

implicitly by the first-order conditions ∂U(x(t,z),u(t,z))
∂uj

= 0 , j = 1, ...,m. Solu-

tion of the system of the first-order conditions defines the short-run private

optimal controls as feedback rules for given values of the state variables.

u0j (z, t) = h0j (x (t, z)) , j = 1, ...,m (5)

The derivatives ∂u0j (z, t) /∂xi can in principle be determined by using the

implicit function theorem as ∂u0

∂x = B−1uu · [−Uux] , where B−1uu is the inverse
of the Hessian matrix of the benefit function and [−Uux] the vector of the
second-order mixed partials of the benefit function.11 It is clear that the im-

pacts of the state variables on the optimal private choices are determined by

the assumptions regarding the impacts of the state variables on the benefit

function, the so called ‘stock effects’.

Under open access, controls are chosen so that rents are dissipated on

each site or

û (z, t) : U (x (t, z) , û (t, z)) = 0 for all s. (OA)
10 Interior solutions can be obtained by assuming Uuj (0) → +∞, Uuj (∞) → 0, j =

1, ...,m.
11To simplify notation we occasionally use subscripts to denote partial derivatives of a

function when this does not create confusion.
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The open access controls are determined from (OA) in a feedback form as:

ûj (z, t) = ĥj (x (t, z)) , j = 1, ...,m (6)

The derivatives ∂ûj (z, t) /∂xi can in principle be determined as in the (5)

case by using the implicit function theorem as: ∂û
∂x = B̂−1u · [−Ux] , where

B̂−1u is the inverse of the Jacobian matrix of the benefit function and −Ux
is the vector of the partial derivatives with respect to the state variables.

If the private feedback controls (5) or (6) are substituted into (1) and

(2), then the reaction-diffusion system determines the spatiotemporal paths

of the state variables at the POMP.

To analyze pattern formation we define first a spatially homogeneous or

flat steady state (FSS) which is defined from (1) and (2) for Dx1 = Dx2 = 0,

as:12

x0 =
¡
x01, x

0
2

¢
: f1

¡
x01, x

0
2,h

0
¡
x0
¢¢
= 0 (7)

f2
¡
x01, x

0
2,h

0
¡
x0
¢¢
= 0

h0 (x) =
¡
h01 (x) , ..., h

0
m (x)

¢
Let x̄ (t)=

¡
x1 (t)− x01, x2 (t)− x02

¢0
= (x̄1 (t) , x̄2 (t))

0
denote deviations around

this FSS and define the linearization

x̄t (t) = JP x̄ (t) , x̄t (t) =

Ã
dx̄1(t)
dt

dx̄2(t)
dt

!
, JP =

Ã
b11 b12

b21 b22

!
(8)

where the elements of the Jacobian matrix, evaluated at the FSS, are defined

as:

b11 =
∂f1
∂x1

+
mX
j=1

∂f1
∂uj

∂uj
∂x1

, b12 =
∂f1
∂x2

+
mX
j=1

∂f1
∂uj

∂uj
∂x2

(9)

b21 =
∂f2
∂x1

+
mX
j=1

∂f2
∂uj

∂uj
∂x1

, b22 =
∂f2
∂x2

+
mX
j=1

∂f2
∂uj

∂uj
∂x2

(10)

Assume that trJP = b11 + b22 < 0 and detJP = b11b22 − b12b21 > 0.
13 This

12We use the controls derived from the private optimization problem under full property
rights at each site. The approach would have been the same if we were to use the controls
derived under open access. The different implications between full property rights and
open access will be clarified more when we analyze the semi-arid systems.
13This means that both eigenvalues of JP have negative real parts.
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implies that the FSS is locally stable to spatially homogeneous perturba-

tions. To analyze pattern formations we proceed, as for example in Murray

(2003), by considering the linearization of the full reaction diffusion system,

which is:

x̄t (t, z) = JP x̄ (t, z)+Dx̄zz (t, z) , x̄zz (t, z) =

Ã
∂2x̄1(t,z)

∂z2
∂2x̄2(t,z)

∂z2

!
, D =

Ã
Dx1 0

0 Dx2

!
(11)

Spatial patterns emerge if the FSS is unstable to spatially heterogeneous

perturbations which take the form of spatially varying solutions of (11),

defined as:

x̄i (t, z) =
X
k

cike
σt cos (kz) , i = 1, 2 , k =

2nπ

L
, n = ±1,±2, ... (12)

where k = 2nπ/L, and 1/k = L/2nπ is a measure of the wave-like pattern.

k is called the wavenumber and 1/k is proportional to the wavelength ω :

ω = 2π/k = L/n, while σ is the eigenvalue which determines temporal

growth and cik, i = 1, 2 are constants determined by initial conditions and

the eigenspace of σ. Substituting (12) into (11) and noting that they satisfy

circle boundary conditions at z = 0 and z = L, we obtain the following

result:

Theorem 1 Private optimizing behavior, as implied by choosing controls
according to (5) or (6) in the management of a reaction-diffusion system,

generates spatial patterns if

b22Dx1 + b11Dx2

2Dx1Dx2

> 0 (13)

−(b22Dx1 + b11Dx2)
2

4Dx1Dx2

+ detJP < 0 (14)

For proof see Appendix 1.

If the above conditions are satisfied then, when the spatially heteroge-

neous perturbations are introduced one of the eigenvalues of the linearization

matrix of (11) is positive and therefore the steady state x0 is locally unstable.

This implies that a spatially heterogeneous, or patterned, solution emerges

and the paths of the state variables in the neighborhood of the FSS can be
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approximated as:

x̄ (t, z) ∼
n2X
n1

cn exp
£
σ
¡
k2
¢¤
cos (kz) , k =

2nπ

L
(15)

where the vector cn is determined by initial conditions at date t = 0 and

σ
¡
k2
¢
> 0 for k2 ∈

¡
k21, k

2
2

¢
. n1 is the smallest integer greater than or equal

to Lk1/2π and n2 is the largest integer less than or equal to Lk2/2π, and the

wavenumbers k1 and k2 are such that the so-called dispersion relationship

satisfies

φ
¡
k2
¢
= Dx1Dx2k

4 − (b22Dx1 + b11Dx2) k
2 + detJP < 0 (16)

for k2 ∈
¡
k21, k

2
2

¢
. The dispersion relationship is central to this type of analy-

sis. A negative dispersion relationship implies that when solutions (12) are

substituted into (11) then, as shown in Appendix 1, one of the eigenvalues

of the system’s Jacobian matrix becomes positive for given diffusion coeffi-

cients and all k2 ∈
¡
k21, k

2
2

¢
. As time t increases, the dominant contribution

to the spatiotemporal path x̄ (t, z) approximated by (15) will come from

unstable modes for which the eigenvalue σ
¡
k2
¢
of (11) that determines tem-

poral growth is positive. Modes with σ
¡
k2
¢
< 0 will fade away in influence

as t increases and thus a spatial pattern is generated, provided that the

length L of space allows the existence of these unstable modes. As noted in

Murray (2003) if the exponentially growing solution (15) were valid for all

time it would imply that x (t, z)→∞ as t→∞. It is hypothesized that the

kinetics of the system (1), (2) bound the solution x (t, z) which eventually

settles to a spatial pattern. A spatially heterogeneous steady state (HSS)

can be obtained as the solution of the second-order system in the spatial

variable z.

0 = f1
¡
x (z) ,h0 (z)

¢
+Dx1

∂2x1 (z)

∂z2
(17)

0 = f2
¡
x (z) ,h0 (z)

¢
+Dx2

∂2x2 (z)

∂z2
(18)

This second order system (17), (18) can be either solved numerically or be

transformed to a (4× 4) first-order system by the transformation X = ∂x
∂z

and then solved given appropriate boundary conditions.

It is important to note the impact of private optimizing decisions in the

9



creation or destruction of spatial patterns through the impact of terms ξij =Pm
j=1

∂fi
∂uj

∂uj
∂xi

, i = 1, 2 which embody the influence on the state variables

resulting from profit-maximizing choices of the controls, when diffusion of

the state variables and interdependences among them are ignored when these

controls are chosen. If patterns emerge in this set up, their creation is a result

of the Turing mechanism. Patterns can of course emerge through the same

mechanism when the system is uncontrolled. This is the case of ‘undisturbed

Nature’ where the conditions for the emergence of patterns are similar to

(13) and (14) but the terms bij do not contain the impacts ξij which come

from the private optimizing behavior. These arguments suggest that spatial

patterns formed by a reaction diffusion system in the state of undisturbed

Nature will be in general different from those emerging when the system is

controlled under private optimization objectives. Given this result it might

be of importance to analyze the type of spatiotemporal patterns emerging

from a behavior that seeks to attain the socially optimal management of the

reaction diffusion system. This is the problem examined in the next section.

3 Pattern Formation and Social Optimization

Using the same structure of the reaction diffusion systems described by (1)-

(4), we introduce a social planner who has as objective the maximization of

discounted benefits over the whole spatial domain subject to the constraints

imposed by (1)-(4). By explicitly taking into account these constraints the

social planner internalizes spatial and temporal externalities which were not

taken into account at the private optimum. The problem of the social plan-

ner can be stated as:

max
{u(z,t)}

Z ∞

0

Z L

0
e−ρt [U (x (t, z) ,u (t, z))] dzdt (19)

subject to (1)− (4)

To use the maximum principle under spatial diffusion for problem (19), we

follow Derzko et al. (1984, pp. 95-96) and Brock and Xepapadeas (2008),

and we introduce the Hamiltonian function:

H (x (t, z) ,u (t, z) ,p (t, z)) = U (x (t, z) ,u (t, z)) (20)

+
X
i=1,2

pi (t, z)

∙
fi (x (t, z) ,u (t, z)) +Dxi

∂x2i (t, z)

∂z2

¸
(21)

10



which is a generalization of the ‘flat’ Hamiltonian function

H = U (x,u) +
X
i=1,2

pifi (x,u) (22)

where p (t, z) = (p1 (t, z) , p2 (t, z)) is the vector of the costate variables. The

first-order conditions for the optimal control vector u∗ (t, z) imply u∗j (t, z) =

argmaxuj H (x (t, z) ,u (t, z) ,p (t, z)) . For interior solutions u∗j (t, z) is de-
fined by

∂H
∂uj

=
∂U (x (t, z) ,u (t, z))

∂uj
+
X
i=1,2

pi (t, z)
∂fi (x (t, z) ,u (t, z))

∂uj
= 0 , j = 1, ...m

(23)

Solving the above system,14 optimal short-run controls are defined in terms

of the state and the costate variable

u∗j (t, z) = g∗j (x (t, z) ,p (t, z)) , j = 1, ...m (24)

The costate variables need to satisfy:

∂pi (t, z)

∂t
= ρ−Hxi (x (t, z) ,p (t, z) ,g

∗x (t, z))−Dxi

∂2pi (t, z)

∂z2
, i = 1, 2 (25)

where g∗ (x (t, z) ,p (t, z)) is the vector of the optimal control functions de-

fined by (24). Finally the following temporal and spatial transversality con-

ditions should be satisfied at the optimum:

lim
T→∞

e−ρT
Z L

0
pi (T, z)xi (T, z) dz = 0 , i = 1, 2 (26)

pi (t, 0) = pi (t, L) , i = 1, 2 (27)

The system of (1) and (2) with u replaced by the optimal short-run controls

g∗ (x (t, z) ,p (t, z)) and the system of (25) constitute a system of four par-

tial differential equations. This is the modified Hamiltonian system (MHS),

which along with the initial conditions (3), (4) and the transversality con-

ditions (26), (27) determine the spatiotemporal evolution of the state and

costate variables along the socially optimal path.

To analyze pattern formation at the social optimum we again examine

14The Hamiltonian needs to be concave in the state and the control variables.
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the stability of the flat optimal steady state (FOSS) of the MHS to spatially

heterogeneous perturbations. The MHS can be written in a compact way,

using subscripts to denote derivatives in order to simplify notation, as:

x1t = Hp1 +Dx1x1zz (28)

x2t = Hp2 +Dx2x2zz (29)

p1t = ρp1 −Hx1 −Dx1p1zz (30)

p2t = ρp2 −Hx2 −Dx2p2zz (31)

A FOSS is defined, from the MHS (28)-(31), as a quadruple (x∗1, x
∗
2, p

∗
1, p

∗
2) :

x1t = x2t = p1t = p2t = 0 for Dx1 = Dx2 = 0. It is known from the work

of Kurz (1968) that such a FOSS will be either unstable or will have the

saddle point property. Furthermore as shown by Dockner (1985), by explicit

calculation of the eigenvalues of the (4× 4) Jacobian matrix (28)-(31) at the
FOSS, a FOSS could: (i) be complete unstable with all eigenvalues having

positive real parts, (ii) be unstable, except for a one-dimensional manifold,

with three eigenvalues with positive real parts and one with a negative real

part, or (iii) have the saddle point property with two eigenvalues with pos-

itive real parts and two eigenvalues with negative real parts. In the infinite

horizon optimal control problems with n state variables studied in economics

the saddle point property is of particular interest. The combination of the

saddle point property with a transversality condition at infinity, allows us

to set the n constants, which correspond to eigenvalues with positive real

parts of the solution of the 2n-dimensional MHS, equal to zero, and then

determine the remaining constants, so that for any initial state vector in the

neighborhood of the FOSS, there is an initial costate vector such that the

system converges on the n-dimensional stable manifold to the FOSS.

Thus to study pattern formation we will concentrate on the case of a

FOSS with the saddle point property. Let

x̄ (t, z) = (x1 (t, z)− x∗1, x2 (t, z)− x∗2)
0
= (x̄1 (t, z) , x̄2 (t, z))

0

p̄ (t, z) = (p1 (t, z)− p∗1, p2 (t, z)− p∗2)
0
= (p̄1 (t, z) , p̄2 (t, z))

0

denote deviations from this FOSS, and define the linearization of the MHS

12



(28)-(31) Ã
x̄t (t, z)

p̄t (t, z)

!
= J0

Ã
x̄ (t, z)

p̄ (t, z)

!
+D

Ã
x̄zz (t, z)

p̄zz (t, z)

!
(32)

J0 =

Ã
Hpx Hpp

−Hxx ρI2 −Hxp

!
, D =

Ã
Dx1 0

0 Dx2

!
(33)

where Hpp,Hxx,Hpx = Hxp are (2× 2) matrices of second derivatives of
the Hamiltonian calculated from (28)-(31) with u = g∗ (x,p), I2 is the

(2× 2) identity matrix, and J0 is the Jacobian of the MHS of the spatially

homogeneous, that is Dx1 = Dx2 = 0, system. All derivatives are evaluated

at the FOSS.

Consider spatially heterogeneous perturbations of the FOSS of the form

x̄i (t, z) =
X
k

cxike
σt cos (kz) , p̄i (t, z) =

X
k

cpike
σt cos (kz) , k =

2nπ

L
, n = ±1,±2, ...

(34)

which are substituted as trial solutions into the linearization (32) and define

the following:

Ki =

¯̄̄̄
¯ Hpixi −Dxik

2 Hpipi

−Hxixi ρ−Hxipi +Dxik
2

¯̄̄̄
¯ , i = 1, 2 (35)

K3

¯̄̄̄
¯= Hp1x2 Hp1p2

−Hx1x2 Hx1p2

¯̄̄̄
¯ , K ¡

k2
¢
= K1 +K2 + 2K3 (36)

K0 = K1 +K2 + 2K3 for Dx1 = Dx2 = 0 , i = 1, 2 (37)

K0 =
X
i=1,2

[(ρ−Hxipi)Hpixi +HxixiHpipi ] (38)

+ [−Hp1x2Hx1p2 +Hx1x2Hp1p2 ] (39)

K
¡
k2
¢
= −

¡
D2
x1 +D2

x2

¢
k4 +

⎡⎣X
i=1,2

Dxi(2Hxipi − ρ)

⎤⎦ k2 +K0(40)

JS =

Ã
Hpx −Dk2I2 Hpp

−Hxx ρI2 −Hxp +Dk2

!
= JS

¡
k2
¢

(41)

Then the following theorem can be stated.

Theorem 2 Assume that for problem (19) with Dx1 = Dx2 = 0, the FOSS

13



(x∗1, x
∗
2, p

∗
1, p

∗
2) associated with the Jacobian matrix J0 has the local saddle

point property with either two positive and two negative real roots, or with

complex roots with two of them having negative real parts. Then there is a

(Dx1 ,Dx2) > 0 and wave numbers k ∈ (k1, k2) > 0 such that, if: (a)hP
i=1,2Dxi(2Hxipi − ρ)

i
2
¡
D2
x1 +D2

x2

¢ > 0 (42)hP
i=1,2Dxi(2Hxipi − ρ)

i2
4
¡
D2
x1 +D2

x2

¢ +K0 > 0 (43)

0 < detJS
¡
k2
¢
≤ (K/2)2

then all the eigenvalues of the linearization matrix (41) of the system (32)

are real and positive. (b)

detJS
¡
k2
¢
< 0 (44)

then the linearization matrix (41) of the system (32) has one negative real

eigenvalue, while all the other eigenvalues have positive real parts. (c)

K2 − 4 detJS
¡
k2
¢
< 0 (45)

detJS
¡
k2
¢

< (K/2)2 + ρ2 (K/2)

then all the eigenvalues of the linearization matrix (41) of the system (32)

are complex with positive real parts. In all cases above the optimal dynamics

associated with the reaction-diffusion system are unstable in the neighborhood

of the FOSS, in the time-space domain.

For proof see Appendix 2.

Theorem 2 states that when spatial perturbations are introduced, then if

any of the (a),(b) or (c) are satisfied, the two negative eigenvalues associated

with the linearization matrix J0 of the FOSS become either both positive

(cases a and c), or one remains negative while the other are positive. In all

cases a patterned solution emerges for the state and costate paths in the

neighborhood of the FOSS.

In all three cases the corresponding dispersion relationship is central in

understanding the emergence of spatial instability. The saddle point prop-

erty of the FOSS means that there exists a two-dimensional manifold such

14



that for any initial values x (0) for the state variables in the neighborhood of

the FOSS there exist initial values p (0) for the costate variables, such that

the system paths (x (t) ,p (t)) converge to the FOSS as t→∞. Furthermore,

if the curvature condition on the maximized Hamiltonian is satisfied, then

this manifold is globally stable (Brock and Scheinkman 1976). In the neigh-

borhood of the FOSS the nonlinear stable manifold can be approximated by

the tangent linear subspace which is spanned by the negative eigenvalues of

the linearization around the FOSS.

When conditions (a) of theorem 2 are satisfied, then the dispersion rela-

tionship (40) becomes positive for a range of positive wave numbers. Denote

by
¡
σ3
¡
k2
¢
, σ4

¡
k2
¢¢

> 0, k2 ∈
¡
k21, k

2
2

¢
the eigenvalues that turn positive

under spatial perturbation, then the patterned state and costate paths can

be approximated as:Ã
x̄ (t, z)

p̄ (t, z)

!
∼

n2X
n1

c3n exp
£
σ3
¡
k2
¢¤
cos (kz)+

n2X
n1

c4n exp
£
σ4
¡
k2
¢¤
cos (kz) , k =

2nπ

L

(46)

It should be noted that the two constants which correspond to eigenvalues

σ1, σ2 with positive real parts should be set equal to zero, so that the use

of the temporal transversality condition at infinity will allow for any initial

state x to choose initial costates p. This choice will set the system on the

spatially heterogeneous - spatiotemporally unstable, ‘optimal’ manifold. The

x components of the vectors (c3n, c4n) are determined by initial values on

x, while the p components are determined by the eigenspace spanned by

the two eigenvalues σ3,4. Furthermore, as in the previous section, n1 is the

smallest integer greater than or equal to Lk1/2π and n2 is the largest integer

less than or equal to Lk2/2π, and the wavenumbers k1 and k2 are such that

for k2 ∈
¡
k21, k

2
2

¢
the dispersion relationship (40) is positive. The length L

of space should be sufficient to allow the existence of these unstable modes.

In case (b) the dispersion relationship detJS
¡
k2
¢
, with JS

¡
k2
¢
given by

(41), becomes negative for a range of positive wave numbers. Let σ3
¡
k2
¢
<

0, σ4
¡
k2
¢
> 0, k2 ∈

¡
k21, k

2
2

¢
then the patterned state and costate paths can

be approximated again by (46) with σ3 < 0, σ4 > 0. The fact that one real

negative eigenvalue exists, does not mean that the system can be controlled

on the one-dimensional stable manifold so that spatial patterns will die

15



out. This is because if the constants of the solution of the Hamiltonian

system associated with the three negative eigenvalues are set equal to zero,

then there is one constant to be determined and two independent initial

values for the state variable. In this case a constant that satisfies both

initial conditions cannot be determined. To put it another way, for any

two independent - that is no proportional to each other - initial states and a

transversality condition at infinity, an initial costate vector cannot be chosen

such that the system converges on the one dimensional stable manifold to

the FOSS. In this case initial states on x and the eigenspace associated

with the eigenvalues σ3
¡
k2
¢
< 0, σ4

¡
k2
¢
> 0 can be used to determine

c3n and c4n. As time increases patterns associated with σ3
¡
k2
¢
will die out

while patterns associated with σ4
¡
k2
¢
will grow. Thus optimal dynamics

are unstable and a spatial pattern emerges.

In case (c) the dispersion relationship is in the form of the system of

inequalities (45). For wavenumbers k2 ∈
¡
k21, k

2
2

¢
such that (45) are sat-

isfied, the complex eigenvalues with positive real parts will be σc3,4
¡
k2
¢
=

u
¡
k2
¢
± iv

¡
k2
¢
, u
¡
k2
¢
> 0. The patterned state and costate paths can be

approximated as in (46) with σ replaced by σc. In this case we have temporal

fluctuations as the spatial patterns are emerging.

Patterned spatiotemporal paths as described above grow exponentially

around the FOSS; this, however, cannot be valid for all t, since then expo-

nential growth would imply that (x,p) → ∞ at t → ∞. However, the ki-

netics of the Hamiltonian system (28)-(31) and the transversality condition

at infinity (26) should bound the solution. This suggests that the growing

solution of the MHS might settle to a certain spatial pattern as t → ∞15

and a spatially Heterogeneous Optimal Steady-State solution (HOSS) for

the optimally controlled system will emerge. This HOSS will satisfy the

system of second-order differential equations in the space variable z, defined

by (28)-(31) for x1t = x2t = p1t = p2t = 0, or,

0 = Hp +Dx
0
zz (47)

0 = ρp
0 −Hx −Dp

0
zz (48)

This second order (4× 4) system can either be solved numerically with ap-

propriate boundary conditions, or can be transformed to an (8× 8) first-
15See Brock and Xepapadeas (2008) for this argument.
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order system by the transformation X = ∂x
∂z , P =

∂p
∂z and then solved given

the spatial boundary conditions on the circle.

To obtain more insights into the structure of spatial instability implied

by theorem 2 we consider briefly the problem of the optimal linear regulator

under spatial diffusion.

3.1 Optimal Linear Regulator under Spatial Diffusion

The problem of a deterministic optimal linear regulator under spatial diffu-

sion (LR-SD) can be defined as:16

max
{u(t,z)}

−
Z ∞

0

Z L

0
e−ρt

£
x0Rx+ u0Qu

¤
dzdt

subject to:

xt = −Ax+Bu+Dxzz

x (0, z) given , x (t, 0) = x (t, L) = x̄ (t) , ∀t

where R,Q are (2× 2) positive definite matrices, A,B are given (2× 2)
matrices and D is the matrix of the difussion coefficients. The maximum

principle under spatial diffusion implies

H = −
¡
x0Rx+ u0Qu

¢
+λ0 [−Ax+Bu+Dxzz] (49)

u∗maximizes H, or u∗ = 2Q−1B0λ (50)

xt = Hp +Dxzz = −Ax+2BQ−1B0λ+Dxzz (51)

λt = ρI2 −Hx−Dλzz =
¡
ρI2 +A0

¢
λ+2Rx−Dλzz (52)

Figure 1 presents a dispersion relationship associated with part (b) of theo-

rem 2 derived from a numerical simulation of the LR-SD problem.17

From the Hamiltonian system (51) , (52) , the FOSS obtained for Dx1 =

Dx2 = 0, is a saddle point with complex roots. For k
2 ∈ (0.831, 1.702) , the

Jacobian of the system (51) , (52) under the spatial perturbation, which is

the dispersion relationship, has two complex eigenvalues with positive real

parts and two real eigenvalues, one positive and one negative. This is part

16Cross products between x and u can be eliminated by suitable transformations of x
and u (Hansen and Sargent 2007).
17The parameters are R11 = 0.5, R12 = −0.07; R21 = 0.07, R22 = 0.5, Q11 =

−0.1, Q12 = 0.08, Q21 = −0.08, Q22 = −0.1, A11 = −0.1, A12 = 0, A210,
A22 = −0.1, B11 = 0.01, B12 = −0.01, B21 = 0.01; B22 = 0.01, ρ = 0.01, Dx1 = 0.1,

Dx2 = 1.

17



0.5 1.0 1.5 2.0
k2

-0.005

0.005

0.010

0.015

J S Ik2M

Figure 1: Dispersion relationship for the linear regulator. Dx1 = 0.1, Dx2 =
1

(b) of theorem 2 implying that a pattern emerges in the neighborhood of

the FOSS.

4 Optimal Diffusion Induced Instability, External-
ities and Regulation

As the conditions of Theorem 1 suggest, the spatial patterning for the POMP

is driven by a Turing type mechanism since the feedback nature of the op-

timal control given by (5) is incorporated into the activator-inhibitor struc-

ture of the model, which along with diffusion drives the formation or the

crashing of spatial patterns. Thus in this case the economic behavior does

not change the basic structure of the reaction-diffusion/inhibitor-activator

model. At the SOMP however spatial patterning is determined by the struc-

ture of the MHS (28)-(31), which retains inhibitor-activator characteristics

for the subsystem related to the state variables, but the structure of the

whole system is different. In the MHS the state variables have positive

diffusion coefficients, while the costate variables have negative diffusion co-

efficients. This indicates that quantity variables (the state variables) move

from high concentration to low concentration, as in classical diffusion, while

the price variables (costate variables) move the opposite way as is natural
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in economic systems. Under this structure, pattern formation is governed

by the curvature of the Hamiltonian function and the size of the discount

rate as indicated by the conditions of theorem 2. Spatial instability in this

case is emerging because the optimized system attains a higher value at the

optimal spatially heterogenous state relative to the spatially homogeneous

state. In this sense the spatial instability associated with the SOMP is an

optimal diffusion-induced instability (ODI).

The different sources of spatial instability are expected to generate in

general different spatial patterns. By comparing the solutions obtained in

the two previous sections it is clear that the spatiotemporal patterns emerg-

ing at the ‘undisturbed Nature’ - the POMP and the SOMP - will in general

be different from each other. It should be noted that one system, say the

POMP, could exhibit a spatially heterogeneous pattern while the other, the

SOMP, a spatially homogenous pattern, since spatial patterns can be formed

but can also be eliminated by the change in parameters and the dimension-

ality induced by alternative behavioral assumptions regarding the choices

of the control variables. On the other hand the diffusion induced spatial

externality is present at the reaction-diffusion system, because agents ig-

nore the impact of their decisions on the concentration of the state variables

which are located on the sites of other agents. If we assume that in human

managed systems the desired solution is the one associated with the SOMP,

then the need for regulation arises.

Some broad features of regulatory schemes become clearer if we consider

the system at a temporal steady state (which could be spatially homogeneous

or heterogeneous), in which case only diffusion, and not temporal growth,

affects the concentration of the state variables. The first-order conditions

for selecting controls for the POMP and SOMP at a temporal steady state,

are respectively

∂U (x (z) ,u (z))

∂uj
= 0 , j = 1, ...,m (53)

∂U (x (z) ,u (z))

∂uj
+
X
i=1,2

pi (z)
∂fi (x (z) ,u (z))

∂uj
= 0 (54)

The fact that the shadow value of the state variables at each site, re-

flected in the costate variables pi (z) , is not taken into account at the POMP

creates the divergence between the POMP and the SOMP. Thus a decen-
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tralized regulatory scheme should be based on introducing these spatially

heterogeneous shadow values into the private agent’s maximization prob-

lem. Therefore regulation will be characterized by spatial heterogeneity.18

To make a simple case assume that the functions fi are separable in the

states and the controls, and linear in the controls. Then (54) will be of the

general form

∂U (x,u)

∂uj
+ γ1jp1 (z) + γ2jp1 (z) = 0 , j = 1, ...,m

where γij , i = 1, 2 are constants. Let p
∗
i (z) be optimal steady state spatial

paths for the costate variables obtained as a solution of (47), (48). Then if

site dependent taxes τ (z) = γijp
∗
i (z) per unit of uj (z) are introduced the

private optimization problem will be

max
u(t,z)

U (x (z) ,u (z))−
mX
j=1

X
i=1,2

£
γijp

∗
i (z)

¤
uj (t, z)

and the first order conditions will be identical to (54). Thus the conditions

for choosing controls optimally are the same for the SOMP and for the regu-

lated POMP. If in the same set up we consider the full spatiotemporal paths,

where both spatial and temporal externalities are present at the unregulated

POMP, then the taxes will be site and time dependent and will have the

form τ (t, z) = γijp
∗
i (t, z) per unit of uj (t, z) , where p

∗
i (t, z) are the optimal

spatiotemporal paths for the costate variables obtained as a solution of (19).

In a similar way quantity instruments can be introduced. Let the spatial

paths for the optimal controls which correspond to the SOMP be (u∗1 (z) , u
∗
2 (z)) .

These paths can be set as quantity constraints to the private agents. If the

constraints are binding then control paths between the SOMP and the reg-

ulated POMP are identical. The quantity constraints can be implemented

either by command and control methods or by setting up markets for trad-

able quotas across markets.

The structure of regulation will became clearer in the application which

follows.
18This concept is similar to the time dependent zonal taxes, zonal permits, and zonal

standards discussed by Goetz and Zilberman 2000
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5 Management of Arid or Semi-arid Grazing Sys-
tems

Arid or semi-arid grazing systems are a typical example of natural sys-

tems where pattern formation regarding vegetation emerges in the set up

discussed above. A semi-arid system can be described in terms of spatiotem-

poral dynamics of three state variables: surface water, soil water, and plant

biomass (e.g. HilleRisLambers et al. 2001, van de Koppel et al. 2002).

We assume, in order to simplify the structure of our model without loss of

generality with respect to the issues that we want to explore, that space is

a circle, in contrast to the two-dimensional space of the relevant literature,

and that surface water is fixed by rainfall and uniformly distributed along

the circle. To introduce economic behavior in the management of these sys-

tems we assume that plant biomass is consumed in the process of producing

cattle products. Cattle products are produced by a conventional production

function with two inputs, plant biomass and grazing effort. The model of a

semi-arid grazing system can be written as:

Pt (t, z) = G (W (t, z) , P (t, z))− b (P )− TH (t, z) +DPPzz (t, z) (55)

Wt (t, z) = F (P (t, z) , R)− V (W (t, z) , P (t, z))− rWW (t, z) +DWWzz (t, z)

P (0, z) , W (0, z) given

P (t, 0) = P (t, L) = P̄ (t) , ∀t
W (t, 0) =W (t, L) = W̄ (t) , ∀t

where P (t, z) which denotes plant density or plant biomass, and W (t, z)

which denotes soil water at time t ∈ [0,∞) and site z ∈ [0, L] , are the state
variables. Rainfall R is fixed and TH (t, z) denotes total harvesting of the

plant biomass through grazing. Thus total biomass consumption at time

t and site z is given by TH (t, z) . The function G (W,P ) describes plant

growth which is assumed to be increasing both in soil water and plant den-

sity, b (P ) describes plant senescence, F (P,R) describes water infiltration

as an increasing function of plant biomass and rainfall, V (W,P ) describes

water uptake by plants as an increasing function of soil water content and

plant density, rW is the specific rate of water loss due to evaporation and

percolation, and DP and DW are diffusion coefficients for plant biomass
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(plant dispersal) and soil water.19

To make the procedure more precise and suitable for numerical simula-

tions, we follow van de Koppel et al. (2002) in choosing specific functional

forms.

G (W,P ) = gWP η+1 , b (P ) = d (1 + δP )P, η ≥ 0, d, δ > 0
F (P,R) = (β + ζP )R , V (W,P ) = uWP , β, ζ, u > 0

In the system described by (55) grazing could occur naturally by herbi-

vores at a state where the given semi-arid system is not disturbed by human

actions. In this case harvesting at the state of ‘undisturbed nature’ can be

approximated as

THun (t, z) = cavgP (t, z) (56)

where cavg can be regarded as a constant defined as c (HERBavg) where

HERBavg is average local herbivore abundance and c is a consumption

constant.

5.1 Pattern Formation in a semi-arid System under Private
Objectives

We consider now the case where the system is managed by economic agents

located at each site, whose objective is maximization of private profit from

cattle products. To obtain the cattle products the economic agents harvest

plant biomass by exercising costly grazing or harvesting effort. Total har-

vesting is determined by a Cobb-Douglas function with constant returns to

scale in plant biomass and grazing effort, defined as:

TH (t, z) = [P (t, z)]α [E (t, z)]1−α (57)

We assume that the cost per unit of grazing effort is constant and indepen-

dent of site, that cattle products are proportional to harvesting and that

19Extension to a two-dimensional (z1, z2) space is straightforward. In the
two-dimensional space the diffusion terms are defined as DP (Pz1z1 + Pz1z1) and
DW (Wz1z1 +Wz1z1) . Spatial heterogeneous perturbation in this case will take the general
form exp (σt) [cos (k1z1) cos (k2z2)] .

22



the price of cattle products is exogenous to the system.20 Then the grazing

effort which maximizes profits from cattle products maximizes also profits

from harvesting, with the price per unit harvest expressed in terms of the

exogenous price per unit of cattle products. Profits from harvesting are

defined as p [P (t, z)]α [E (t, z)]1−α − cE (t, z) .

Using the results of section 2, effort and harvesting at the POMP are

determined, for the case of full property rights, as:

E0 (t, z) = γP (t, z) , TH0 (t, z) = AP (t, z) , γ =

µ
c

p (1− a)

¶− 1
a

, A = γ1−a

(58)

For the case of open access, effort and harvesting are determined as:

Ê (t, z) = γ̂P (t, z) , T Ĥ (t, z) = ÂP (t, z) , γ̂ =

µ
c

p

¶− 1
a

, Â = γ̂1−a (59)

Thus in both cases harvesting at each site is proportional to plant bio-

mass at the same site. If we make the usual assumptions that p > c > 0

and 0 < a < 1, then Â > A and, as expected, for any given level of plant

biomass harvesting under open access is higher relative to the profit max-

imizing harvesting under enforceable property rights at each site. Substi-

tuting H0 (t, z) 21 into (55) we obtain the dynamic system that describes

the spatiotemporal evolution of the plant biomass and the soil water when

private agents maximize profits from cattle production at each site. The

dynamical system is:

Pt = [gWP η − d (1 + δP )−A]P +DPPzz = f (P,W ) +DPPzz(60)

Wt = (β + ζP )R− uWP − rWW +DWWzz = g (P,W ) +DWWzz(61)

It should be noted that the system (60), (61) can also describe spatiotem-

poral evolution at the ‘undisturbed Nature’ case, if A is replaced by cavg.

Thus differences between the ‘undisturbed Nature’ and the the two types

of POMP (enforceable property rights or open access) can be analyzed in

20These simplifying assumptions are useful for providing a structure that helps to de-
velop simulations which support our theoretical findings, without affecting the main char-
acteristics of the problem.
21Alternatively we could substitute open access harvesting Ĥ. The analysis would be

the same.
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terms of differences between natural parameters such as cavg, and economic

parameters such as (p, c, a) .

To explore the formation of spatial patterns we apply the theory de-

veloped in section 2. The FSS
¡
P 0,W 0

¢
is defined by the solution of the

system

W =
A+ d (1 + δP )

gP η
, P =

rWW − βR

ζPuW
(62)

Thus
¡
P 0,W 0

¢
depends on the economic variables through A.

Using the Jacobian of the flat system (where DP = DW = 0) evaluated

at the FSS, the stability of this FSS requires

Trace conditions:

ηgW 0
¡
P 0
¢η−1 − dδ > 022

trJP =
³
ηgW 0

¡
P 0
¢η−1 − dδ

´
P −

¡
uP 0 + rW

¢
< 0

Determinant conditions:

ζR− uW 0 < 0

detJF = −
³
ηgW 0

¡
P 0
¢η−1 − dδ

´ ¡
uP 0 + rW

¢
−
¡
ζR− uW 0

¢
> 0

JPF =

Ã
fP fW

gW gW

!
=

Ã ³
ηgW 0

¡
P 0
¢η−1 − dδ

´
P gP η¡

ζR− uW 0
¢

−
¡
uP 0 + rW

¢ !

If local stability conditions are satisfied, then both eigenvalues of JF are

positive.

Pattern formation through the Turing mechanism requires, according to

the conditions of theorem 1:

ηgW 0
¡
P 0
¢η−1 − dδ >

DP

DW

¡
uP 0 + rW

¢
(63)

−

h
−
¡
uP 0 + rW

¢
DP +

³
ηgW 0

¡
P 0
¢η−1 − dδ

´
DW

i2
4DPDW

(64)

+detJP < 0

The last condition (64) is equivalent to having the dispersion relationship

(16) being negative for a certain range of wavenumbers k. For these wavenum-
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bers one eigenvalue of the Jacobian matrix23

JPS =

Ã
fP − k2DP fW

gW gW − k2DW

!

becomes positive. Thus the FSS is unstable to spatial perturbations and a

spatial pattern is formed around the FSS.

It should be noted that the emergence or not of patterns depends, apart

from the parameters of the natural system, on economic variables which are

summarized by A. For example, it is clear from (62) that a change in A

will affect the FSS values
¡
P 0,W 0

¢
and the pattern formation conditions

(63), (64) . Thus changes in economic parameters such as cost per unit of

grazing effort, elasticities of the production function for cattle products, or

the market price of cattle products, might create or break spatial patterns

in the semi-arid grazing system.

Pattern formation can be explored in more detail by using numeri-

cal values for the economic parameters and the parameters of the nat-

ural system. For the natural system we use the parameter values:24 g =

0.001, η = 0.5, d = 0.03, δ = 0.005,Dw = 1, β = 0.9, ζ = 0.001, R =

50, u = 0.01, rw = 0.1,Dp = 0.02. For the economic parameter A we assume

c = 1, p = 1.1, a = 0.3, which implies A = 0.543. The reaction-diffusion sys-

tem has two flat steady states under enforceable property rights and profit

maximization, which are shown in figure 2.

The steady states are S01 =
¡
P 01 ,W

0
1

¢
= (44.053, 87.327) and S02 =¡

P 02 ,W
0
2

¢
= (2.53781, 359.927) . Calculations of the eigenvalues for the lin-

earization matrix for each FSS reveal that S01 is locally stable, while S
0
2 has

the saddle point property.25 The vector field in the neghborhood of S01 is

shown in figure 3.

When spatially heterogeneous perturbations are introduced, the corre-

sponding dispersion relation is: φ
¡
k2
¢
= 0.02k4−0.272k2+0.0876. As shown

in figure 4 the dispersion relation becomes negative for positive values of the

wave number k and thus the FSS is destabilized by spatial perturbations.

Turing diffusion induced instability emerges under profit maximization and

a spatial pattern is formed in the semi-arid system with the characteristics

23See also Appendix 1, (78).
24These values are in line with those used by van de Koppel et al. (2002).
25The eigenvalues are: S01 → (−0.128667± 0.266616i) , S02 → (0.247865,−0.0869336).
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Figure 3: Vector field around the stable FSS
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of our numerical example.
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Figure 4: The dispersion relationship

In the dispersion relationship of figure 4 k2min = 6.81. The eigenvalue

σ
¡
k2min

¢
= 0.114757 is the eigenvalue which determines the fastest temporal

growth of the spatial perturbation. Thus the spatial perturbation does not

die out as time passes but grows to form a spatial pattern. To obtain a

picture of the growing spatial instability on the neighborhood of the FSS

we assume that the size of the spatial domain is L = 3 so that the range

of unstable wave numbers admits only the wave number n = 1.26 Then the

growing spatial instability for the plant biomass and soil water is propor-

tional to expσ
¡
k2min

¢
cos (2πz/3) and is given approximately by

P (t, z) ∼ 44.053 +Bpv
1 exp(0.114757t) cos

µ
2πz

3

¶
, v1 = 0.99

P (t, z) ∼ 87.327 +Bwv
2 exp(0.114757t) cos

µ
2πz

3

¶
, v2 = −0.11

where vj , j = 1, 2 is the first and the second component of the eigenvector

which corresponds to the eigenvalue σ
¡
k2min

¢
= 0.114757 and B0s are deter-

26The size of the spatial domain satisfies in this case n1 ≥ (Lk1/2π) and n2 ≤ (Lk2/2π) ,
where k1 =

√
0.3297, k2 =

√
13.2895. k21 and k

2
2 are the zeroes of the dispersion relationship

in figure 4.
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mined by initial conditions. The approximate evolution of the two growing

instabilities are shown in figures 5 and 6.
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Figure 5: Spatial instability:Plant biomass
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Figure 6: Spatial instability: Soil water

To obtain an idea about the impact of the economic parameters on pat-

tern formation we show dispersion relations corresponding to different values

of A in figure 7.

The three curves correspond toA = 0.6, 0.5 and 0.32. As A is reduced the

dispersion relationship moves upwards. For A = 0.32, k2min > 0 and the FSS,

which for this case turns out to be a stable node, is not destabilized by spatial

28



5 10 15 20 25
k2

-3

-2

-1

1

2

3
φHk2L

Figure 7: Dispersion relationships and changes in harvesting

perturbations. Thus a spatial pattern does not emerge and plant vegetation

is spatially homogeneous in the given space domain. This result leads us, in

the context of the specific model used, to the following proposition:

Proposition 1 Let harvesting at all sites of the semi-arid system be pro-

portional to plant biomass at the site, or H (t, z) = ΦP (t, z) , where Φ is de-

termined (i) by herbivore abundance and specific consumption in undisturbed

Nature or (ii) by economic parameters in profit maximizing equilibrium with

full property rights, or in an open access equilibrium. The higher Φ is, the

more likely that spatial patterns will emerge.

The intuition behind this result can be described in the following way.

When humans are not in the picture Nature designs, under conditions of

small and most likely erratic rainfall, heterogeneous patterns of vegetation

to maximize water capture for promotion of plant growth on little “islands”.

Thus when there is not enough water patchiness is an essential design by Na-

ture to capture what little rainfall there is to support, at least some patches

of vegetation since without such patchiness design there would be no veg-

etation at all. We can view Nature as “optimizing” total plant production

over the set of “designs” of the landscape. In this case “designs” are mov-

ing water around at a transport cost as well as moving nutrients around

over “patches” at transport costs of nutrients under evaporation, leaching,
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and other losses. Because thresholds have to be crossed by soil water and

other soil nutrients to get any growth at all on a patch, Nature “designs”

heterogeneity patterns to “optimize” plant production.

If we add now ‘graziers’ private agents which harvest plant biomass„

these graziers can be treated like “evaporators” on a patch and also a bit

like “nutrient/soil water” removers too (hoof compactification of the soil

causes it to infill water more slowly, etc.). Assume, to simplify things in the

analysis of the graziers impacts, that we have a discrete two patch model and

assume that Nature optimizes plant production in the sense of the paragraph

above by having vegetation only on one patch. When grazing is introduced

a grazier on patch 1 may impede Nature’s transport of water to patch 2

so both patches die, not just one. If we allow for a continuum of patches

as we do in our model, then heterogeneity patterns will emerge with differ-

ent concentration of plant biomass in different sites. It is most likely that

patches of vegetation smaller in size and less in number emerge when gra-

ziers are introduced. Thus under grazing, the spatial pattern of vegetation

is expected to be coarser relative to pattern emerging in the state of undis-

turbed Nature. It could be the case, in a seasonal model with wet and dry

seasons, that without graziers vegetation is spatially homogenous in the wet

season, since there is plenty of water to support vegetation in all patches,

but ‘patchiness’ emerges in the wet season when graziers are introduced.

In our model this process is captured by the downward movements of the

dispersion relationship as the harvesting parameter Φ increases under the

influence of graziers. Under open access grazing pressure is even higher, rel-

ative to profit maximization under enforceable property rights, which means

that probably more patches will die out and the pattern of vegetation will

be even coarser. Thus forces inducing spatial patterns and patchiness in

the semi-arid system are expected to be the strongest under open access

conditions.

Following the argument of the above paragraph the impact of changes

in rainfall, which is an important driver of the system, on pattern formation

can be traced through changes in R. Changes in rainfall in semi-arid systems

introduce seasonality and our model can be used to study pattern formation

in ‘dry’ or ‘wet’ seasons by studying solutions under parametric changes

in R. Figure 8 shows three dispersion relationships resulting from setting

R = 40, 50, 100 keeping the harvesting parameter at A = 0.543.
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Figure 8: Dispersion relationships and changes in rainfall

The dispersion relation shifts upward as rainfall increases. Thus a ‘wet’

period with R = 100 will result in spatially homogeneous plant vegetation.27

Combined with Proposition 1, this result suggests that aggressive harvest-

ing could result in spatially heterogeneous plant vegetation even in ‘wet’

systems.

Having established that a spatial pattern is emerging in the neighbor-

hood of the FSS, due to the spatial perturbation, we seek to explore the

structure of a spatially heterogeneous steady state. As noticed in section

2, although the state variables grow exponentially in the neighborhood of

the FSS due to the spatial perturbation, the kinetics of the system (60),

(61) could bound the solution (P (t, z) ,W (t, z)) which eventually would

settle to a spatial pattern. Thus we need to examine whether in our nu-

merical example the kinetics of the system (60), (61), bound the solu-

tion (P (t, z) ,W (t, z)) as t grows. Figures 9 and 10 depict the solution

(P (t, z) ,W (t, z)) obtained by numerically solving the system of partial dif-

ferential equations corresponding to (60), (61).28

The behavior of the solution confirms the hypothesis that there is tem-

27This result is in line with results obtained by Vishwesha Guttal and Jayaprakash
(2007).
28We use as boundary conditions, P (0, z) = 44.053+ cos (2πz/3), W (0, z) = 87.3266+

cos (2πz/3) which correspond to the growing spatial instability of figures 5 and 6 for t = 0
with L = 3, and the circle boundary conditions P (t, 0) = P (t, 3) , W (t, 0) =W (t, 3) .
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Figure 9: Long-term spatiotemporal evolution of plant biomass

poral growth near the FSS but then the kinetics confine the solution which

settle to a clearly spatially heterogeneous steady state, with P (100, 0) =

P (100, 3) = 210.523, P (100, 1.5) = 5.54, W (100, 0) =W (100, 3) = 48.489,

W (100, 1.5) = 67.344. Thus there is high concentration of plant biomass in

a one point and low concentration in the middle of the circle. Water con-

centration follows the opposite pattern. The spatially heterogeneous steady

state can also be obtained by solving the second-order system (60), (61) in

the spatial variable z for Pt =Wt = 0, or

d2P (z)

dz2
= − 1

DP
[gWP η − d (1 + δP )−A]P (65)

d2W (z)

dz2
= − 1

DW
[(β + ζP )R− uWP − rWW ] (66)

with initial spatial conditions (P (0) ,W (0)) = (210.523, 48.489) .29 The so-

lution is shown in figure 11.

The plant biomass follows the U pattern, while the water stock follows

the opposite pattern.

29We use arbitrary initial conditions for P 0 (0) , W 0 (0) and multiple shooting in order
to obtain the solution which satisfies the circle conditions P (0) = P (3) ,W (0) =W (3) .
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Figure 10: Long-term spatiotemporal evolution of soil water

5.2 Pattern Formation in a Semi-arid System under Social
Objectives

We consider now the management of a semi-arid system under a social plan-

ner that takes into account both the dynamics of the system and the spatial

externality. The Hamiltonian for the SOMP is

H = pPαE1−α − cE + λ [(gWP η − d (1 + δP ))P − TH +DPPzz]

+μ [(β + ζP )R− uWP − rWW +DWWzz]

and the maximum principle implies:

(1− α) pPαE−α − c− λ = 0⇒ Es (t, z) = γSP (t, z) (67)

γS =

∙
c

(p− λ) (1− a)

¸− 1
a

, THS (t, z) = A∗P (t, z) , A∗ =
¡
γS
¢1−a
(68)

Pt = (gWP η − d (1 + δP )−A∗)P +DPPzz (69)

Wt = (β + ζP )R− uWP − rWW +DWWzz (70)

λt = [ρ− (1 + η)gWP η + d (1− 2δP ) +A∗]λ− (71)

μ (ζR− uW )− αpPα−1 ¡ES
¢1−α −DPPzz

μt = [ρ+ (uP + rW )]μ− λgP η+1 −DWWzz (72)
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Figure 11: The Spatially Heterogeneous Steady State

Assume that a FOSS (P ∗,W ∗, λ∗, μ∗) : (Pt =Wt = λt = μt = 0;DP = DW = 0)

exists and that it has the saddle point property with a two-dimensional sta-

ble manifold. Using (69) - (72), the linearization of the MHS around the

FOSS under heterogeneous spatial perturbations of the form defined in (34)

is

q̄t = JS · q̄ ,JS =

Ã
Hpx −Dk2 Hpp

−Hxx ρI2 −Hxp +Dk2

!
,D =

Ã
Dp 0

0 Dw

!
q̄t =

¡
P̄t, W̄t, λ̄t, μ̄t

¢0
,q = (P,W,λ, μ) ,x =(P,W ) ,p =(λ, μ)

where H denotes the ‘flat’ Hamiltonian obtained by setting DP = DW = 0.

Pattern formation through optimal diffusion induced instability is deter-

mined by the conditions of theorem 2. To obtain more insights into the

structure of the solution for the SOMP we continue the numerical simulation

of the previous section. With discount rate ρ = 0.03 and the same parame-

ter values resulting in the FSS
¡
P 01 ,W

0
1

¢
= (44.053, 87.327) for the POMP,

the FOSS for the SOMP is: (P ∗,W ∗, λ∗, μ∗) = (956.24, 9.61, 0.517, 1.577)

with harvesting parameter A∗ = 0.124 The FOSS is a saddle point with

real eigenvalues σ = (9.547,−9.517, 0.294,−0.264) . The SOMP accumulates
more biomass and uses more water relative to the POMP, while at the steady

state 12.4% of this biomass is harvested relative to 53.4% at the POMP. This

is the expected result when the dynamics are taken into account. To exam-
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ine for the emergence of pattern formation the quantities which are central

are the dispersion relationships K
¡
k2
¢
and JS

¡
k2
¢
and the constant K0,

which are defined as:

K0 = [(ρ−HPλ)HλP +HPPHλλ] + (73)

[(ρ−HWμ)HμW +HWWHμμ]−HλWHPμ (74)

K
¡
k2
¢
= −

¡
D2
P +D2

W

¢
k4 + (75)

[DP (2HPλ − ρ) +DW (2HWμ − ρ)] k2 +K0 (76)

JS
¡
k2
¢
=

¯̄̄̄
¯ Hpx −Dk2 Hpp

−Hxx ρI2 −Hxp +Dk2

¯̄̄̄
¯ (77)

It turns out that for the parameter values used before, and also for a set

of parameter values in the neighborhood of the original set, the conditions of

theorem 2 are not satisfied. K0 < 0 by the saddle point property of the FOSS

and for the relevant parameter set DP (2HPλ − ρ) + DW (2HWμ − ρ) < 0.

Thus the dispersion relationship (75) attains the maximum for k2 < 0 which

means that the conditions of part (a) of theorem 2 are not satisfied. For the

dispersion relationship (77), JS (0) > 0 by the saddle point property of the

FOSS. JS
¡
k2
¢
is monotonically increasing in k2 for the relevant parameter

set. Thus the conditions of part (b) of theorem 2 are not satisfied. Similarly

the conditions of part (c) of theorem 2 are not satisfied for the relevant

parameter set.

This result suggests that, for our example, optimal management by tak-

ing into account both the dynamics and the spatial externality tends to

produce a flat system and break the patterns in plant biomass created un-

der private optimization objectives. Thus the POMP generates patchiness

in vegetation while the SOMP with the same water resources, but less ag-

gressive harvesting relative to the POMP, generates homogenous vegetation

on the spatial domain. Linear approximation of the optimal time paths for

the state and costate variables under the assumption that the initial state

for plant biomass and ground water coincides with the FSS under private

optimization are

P (t) = 956.24− 234.063 exp (−9.517t)− 689.124 exp(−0.264t), ∀z.
W (t) = 9.61 + 74.339 exp (−9.517t) + 3.377 exp(−0.264t), ∀z.
λ (t) = 0.517 + 0.0648 exp (−9.517t) + 0.1822 exp(−0.264t), ∀z.
μ (t) = 1.577 + 0.00027 exp (−9.517t) + 0.2671 exp(−0.264t), ∀z.
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The time paths are shown in figures 12, 13, and 14 .

To examine conditions under which a spatial pattern might emerge at

the SOMP we consider the case of an extremely dry system by setting R = 5.

The FOSS is (P ∗,W ∗, λ∗, μ∗) = (20.907, 14.898, 0.76049, 0.21441) with har-

vesting parameter A∗ = 0.035. This FOSS is a saddle point with real eigen-

values σ = (0.256528,−0.226528, 0.120913,−0.0909126) , so the flat system
can be controlled to converge at the FOSS.

When a spatial perturbation characterized by high soil water diffusion

(Dw = 10,DP = 0.05) is introduced into the dry system, the FOSS is desta-

bilized in the sense of part (b) of theorem 2. The dispersion relationship is

shown in figure 15.

For k2 ∈ (0.0213, 2.118) , JS
¡
k2
¢
< 0. Using k2 = 1, the eigenvalues

of the linearization matrix of the system under the spatial perturbation is

σ =(10.3377,−10.3077, 0.015± 0.0807i) , which implies destabilization ac-
cording to part (b) of theorem 2. Using the eigenspace of the two real

eigenvalues and setting L = 7 so that only one wavenumber exists, the spa-

tiotemporal paths for P and W in the neighborhood of the FOSS can be

36



0 1 2 3 4 5
t

20

40

60

80

100
WHtL

Figure 13: Optimal path for soil water

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.5

1.0

1.5

2.0

2.5

3.0
λHtL,μ HtL

Figure 14: Time paths for biomass and soil water shadow prices
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Figure 15: Dispersion relationship at the SOMP for a dry system.

approximated as:

P (t, z) ∼ 20.907− 0.00679 exp(10.3377t) cos(2πz/7)
+0.00943 exp(−10.3077t) cos(2πz/7)

W (t, z) ∼ 14.898 + 0.000047 exp(10.3377t) cos(2πz/7)

−0.99995 exp(−10.3077t) cos(2πz/7)

The spatiotemporal paths in the neighborhood of the FOSS are shown

in figures 16 and 17.

To examine the long-run behavior of this extremely ‘dry’ system under

spatial diffusion we explore the numerical solution of the MHS which consists

of the four partial differential equations (69) - (72).30 The results indicate

that the system is not converging to a HOSS but instead it breaks down

in a short period of time. It seems that the combination of spatiotemporal

fluctuations induced by the high diffusion rates and the extremely dry condi-

tions make the system collapse. This breakdown is approximatelly depicted

in figures 18 and 19.

30We use as boundary conditions, the equations for the growing spatial instability in
the neighborhood of the FOSS for t = 0, with L = 7, and the circle boundary conditions.
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Figure 16: Spatial instability at the SOMP: Plant biomass

Figure 17: Spatial instability at the SOMP: Soil water
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Figure 18: Collapse of plant biomass

Figure 19: Collapse of soil water
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5.3 Optimal Regulation of a Semi-Arid System

The state where water inflow is set at the intermediate value of R = 50,

and the strength of spatial diffusion is such that a steady state spatially

heterogeneous pattern occurs under private objectives, while a spatially ho-

mogenous system emerges under social objective with a much higher plant

biomass level, supports the idea of regulating the system under private ob-

jectives so that the socially optimal steady state is attained. As discussed

in section 4 regulation could take a quantity form, which implies harvesting

limits, or a price form, which implies a tax on grazing effort.

To study the quantity instrument first, we recall that under profit opti-

mization and social optimization the harvesting rules are

TH0 (t, z) = AP (t, z) , A =

µ
c

p (1− a)

¶− 1−a
a

, A0 = 0.543

TH∗ (t, z) = A∗P (t, z) , A∗ =

∙
c

(1− α) (p− λ)

¸− 1−a
a

, A∗ = 0.124

where the numerical values correspond to the specific steady harvesting rule

in our numerical example.

Definition 1 We define the optimal harvesting limit to be a value A∗such
that the steady state of the plant biomass-soil water system (60), (61), with

private agents maximizing harvesting profits under this limit using the rule

H0 (t, z) = A∗P (t, z), is the same as the socially optimal plant biomass-soil

water steady state which is obtained from the MHS (69) - (72).

Thus for the exact value of A∗, which is A∗ = 0.123595 the regulated

systems attainsc the flat socially optimal steady state (FSOSS) (P ∗,W ∗) =

(956.24, 9.61) . Thus the regulated system tends to a homogeneous steady

state. This is confirmed by the numerical solution of the system of partial

differential equations (60), (61) for A∗ = 123595. The results are shown in

figures 20 and 21.

Any initial spatial perturbation ‘dies out’ at the regulated system, which

converges to the FSOSS. By comparing these figures with figures 9 and

10 which depict the unregulated system, the impact of optimal regulation

becomes clear in terms os the spatiotemporal evolution of the state variables

becomes clear. The harvesting limit in quantity terms, that is the allowed

amount of harvested plant biomass per unit area implied by rule A∗, could be
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Figure 20: Plant biomass under optimal quantity regulation

Figure 21: Soil water under optimal quantity regulation
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implemented either by a command and control approach where the allowed

harvesting at each site does not exceed the allowed harvest limit, or by

setting up markets for tradable harvesting quotas where the total amount of

quotas allowed to be traded at each site will not exceed the allowed harvest

limit. Since the optimal regulation implies a spatially homogeneous state,

limits will be the same across sites.

We turn now to price regulation which takes the form of a tax τ∗ on

grazing effort. Under this tax private agents solve the problem

max
τ∗

p [P (t, z)]α [E (t, z)]1−α − cE (t, z)− τ∗E (t, z)

leading to a harvesting H0
τ∗ = Aτ∗P (t, z) .

Definition 2 We define the optimal tax on grazing effort to be a linear
tax τ∗such that the steady state of the plant biomass-soil water system (60),

(61), with private agents maximizing harvesting profits under this tax, is the

same as the socially optimal plant biomass-soil water steady state which is

obtained from the MHS (69) - (72).

To obtain the optimal tax we use the fact thatA∗ =
h

c
(1−α)(p−λ)

i−(1−a)/a
.

Then the optimal tax is set at the level τ∗ such that
h

c+τ∗

(1−α)p

i−(1−a)/a
= A∗.

It is clear by its construction that the regulated, through the optimal tax,

plant biomass-soil water system will attain the socially optimal steady state

in the way shown in figures 20 and 21. In our numerical example the optimal

tax is τ∗ = 1.97214.

The intuition behind the type of regulation described above can be clar-

ified using again the two-patches example. Assume that under open access

grazing only one patch can support vegetation, since there is not enough

water to support vegetation in both patches. If however grazing is reduced

in both patches, then there is the possibility that both patches will support

vegetation. So the regulator has to design either quantity or price regula-

tion in order to restrict grazing in both patches so that vegetation can be

supported in both of them. In the optimal version of the regulation, grazing

has to be reduced up to the point where vegetation in both patches will

coincide with the steady state attained under social optimization.
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6 Concluding Remarks

In this paper we develop a novel theoretical framework for studying ecosys-

tems managed by humans in which state variables diffuse in space and in-

teract among themselves. Arid and semi-arid grazing systems is a classic

examples of such systems. We develop conditions for pattern formation in

systems where economic agents maximize profit in each site without taking

into account the impact of their actions on other sites, as well as condi-

tions for pattern formation under social optimization objectives. We iden-

tify a diffusion induced spatial externality associated with a POMP, and two

different mechanisms for pattern formation: the classic Turing mechanism

applying to the POMP and optimal diffusion instability applying to the

SOMP. These two mechanisms combined with spatiotemporal externalities

create a divergence in the emerging solutions between the POMP and the

SOMP, and a need for regulation. Using the solution of the SOMP we de-

velop optimal spatiotemporal regulation which internalizes the externalities.

We apply our theory to the management of a semi-arid system. Numerical

simulations confirm our theoretical findings.
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Appendix 1
After substituting (12) into (11) the linearization becomes

x̄t (t, z) = JLx̄ (t, z) , JL =

Ã
b11 −Dx1k

2 b12

b21 b22 −Dx2k
2

!
(78)

Since trJL = b11+b22−Dx1k
2−Dx2k

2 < 0, destabilization of the FSS under

spatially heterogenous perturbations requires that

detJL = φ
¡
k2
¢
= Dx1Dx2k

4−(b11Dx2 + b22Dx1) k
2+detJP < 0 ,detJP > 0

(79)

where detJP > 0 by the stability assumption about the FSS. Relationship

(79) is a dispersion relationship. The instability requirement will be satisfied

if there exist wavenumbers k1 and k2 such that φ
¡
k2
¢
< 0 for k2 ∈

¡
k21, k

2
2

¢
,

which implies that σ
¡
k2
¢
> 0 for k2 ∈

¡
k21, k

2
2

¢
. This in turn requires that:

(i) k2min which corresponds to the wavenumber which maximizes φ
¡
k2
¢
is

positive and, (ii) φ
¡
k2min

¢
< 0 or

b22Dx1 + b11Dx2

2Dx1Dx2

> 0 (80)

−(b22Dx1 + b11Dx2)
2

4Dx1Dx2

+ detJP < 0 (81)

¥
Appendix 2
Substituting the spatially heterogenous perturbations (34) into (32) we

obtain the systemÃ
x̄t (t, z)

p̄t (t, z)

!
= JS

Ã
x̄ (t, z)

p̄ (t, z)

!
, JS =

Ã
Hpx −Dk2I2 Hpp

−Hxx ρ−Hxp +Dk2I2

!

Define the matrix

Z
³ρ
2

´
=

Ã
Hpx −Dk2I2 − ρ

2I2 Hpp

−Hxx −Hxp +Dk2I2 +
ρ
2I2

!

By applying Kurz (1968, theorem 2) we obtain that if σ1, σ2 are eigen-

values of J , then they satisfy σ1,2 =
ρ
2 ± ψ, where ψ is a pair of eigenvalues
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for Z. The eigenvalues of matrix Z are determined by the solution of the

characteristic equation (e.g. Samuelson 1947, p. 373)

ψ4 −M3ψ
3 +M2ψ

2 −M1ψ + detZ = 0 (82)

where M3 = tr(Z) = 0. By rather tedious calculation we can further obtain:

M2 =
³
K − ρ2

2

´
, with K defined in (??), and with M2 being the sum of six

principal minors of Z of second order; M3 = 0, with M3 being the sum of

four principal minors of Z of third order; and detZ =
¡ρ
2

¢4−¡ρ2¢2K+detJ.
Substituting in (82) and using the Kurz theorem we obtain the eigenvalues

of J as:

3
1σ
4
2 =

ρ

2
±

vuut³ρ
2

´2
− K

2
±

sµ
K

2

¶2
− detJS (83)

which is an extension of Dockner’s (1985) formula for the eigenvalues of the

MHS for optimal control problems with two state variables, for the case

where the state variables diffuse in space.

We can now prove part (a) of the theorem:

The FOSS will have the saddle point property (two positive and two

negative eigenvalues) under spatially heterogenous perturbations if (i)K < 0

and (ii) 0 < detJ <
¡
K
2

¢2
(Dockner 1985). In this case detJ > 0. Therefore,

if K > 0 while (ii) is still satisfied, the two negative eigenvalues will become

positive. From the definition ofK = K1+K2+2K3 in (??) and the definition
of K0 in (37) we obtain

Ki

¡
k2
¢
= K0

i +
£
−D2

xik
4 +Dxik

2(2Hxipi − ρ)
¤
, i = 1, 2 ,K3 = K0

3 (84)

K0
i = (ρ−Hxipi)Hpixi +HxixiHpipi ,K3 = −Hp1x2Hx1p2 +Hx1x2Hp1p2

K0 =
X
i=1,2

[(ρ−Hxipi)Hpixi +HxixiHpipi ] + [−Hp1x2Hx1p2 +Hx1x2Hp1p2 ]

Therefore,

K
¡
k2
¢
= −

¡
D2
x1 +D2

x2

¢
k4+

⎡⎣X
i=1,2

Dxi(2Hxipi − ρ)

⎤⎦ k2+K0 ,K0 < 0 (85)
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where K0 < 0 because of the saddle point assumption for the FOSS. For

instability we want K
¡
k2
¢
> 0 for some wavenumber k, thus (85) is a

dispersion relationship. But:

K
0 ¡
k2
¢
= −2

¡
D2
x1 +D2

x2

¢
k2 +

⎡⎣X
i=1,2

Dxi(2Hxipi − ρ)

⎤⎦
and K (0) = K0 < 0. Therefore K

0
(0) =

hP
i=1,2Dxi(2Hxipi − ρ)

i
must be

positive so that K
¡
k2
¢
cuts the y-axis at a negative point and is increasing.

Furthermore, since K
¡
k2
¢
is strictly concave because −

¡
D2
x1 +D2

x2

¢
< 0

the maximum of K
¡
k2
¢
must be positive for instability.

The maximum of K
¡
k2
¢
is obtained at:

k2max : K
0 ¡
k2max

¢
= 0

k2max =

hP
i=1,2Dxi(2Hxipi − ρ)

i
2
¡
D2
x1 +D2

x2

¢
and for instability

K
¡
k2max

¢
= −

¡
D2
x1 +D2

x2

¢
k4max+

⎡⎣X
i=1,2

Dxi(2Hxipi − ρ)

⎤⎦ k2max+K0 > 0

or

−
¡
D2
x1 +D2

x2

¢ hPi=1,2Dxi(2Hxipi − ρ)
i2

4
¡
D2
x1 +D2

x2

¢2 +hP
i=1,2Dxi(2Hxipi − ρ)

i2
2
¡
D2
x1 +D2

x2

¢ +K0 > 0

or hP
i=1,2Dxi(2Hxipi − ρ)

i2
4
¡
D2
x1 +D2

x2

¢ +K0 > 0

where K0 < 0 by the saddle point assumption of the FOSS. Therefore, the
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two negative eigenvalues of the FOSS will turn positive under diffusion if:hP
i=1,2Dxi(2Hxipi − ρ)

i
2
¡
D2
x1 +D2

x2

¢ > 0 (86)hP
i=1,2Dxi(2Hxipi − ρ)

i2
4
¡
D2
x1 +D2

x2

¢ +K0 > 0 (87)

Parts (b) and (c) of the theorem follow from Feichtinger et al. (1994)

where the conditions for obtaining three eigenvalues with positive real parts

and four complex eigenvalues with positive real parts from (83) are stated.

Complex eigenvalues are determined as follows: If Φ =
¡
K
2

¢2−detJ < 0

then
q¡

K
2

¢2 − det J = i
√
−Φ = iΨ. Write

r³ρ
2

´2
− K

2
± iΨ =

√
Θ± iΨ

Then by the definition of the square root of a complex number:

√
Θ± iΨ =

r
ζ +Θ

2
± i

Ψp
2 (ζ +Θ)

, ζ =
p
Θ2 +Ψ2

Then the eigenvalues of the linearization (32) are:

3
1σ
4
2 =

ρ

2
±
r

ζ +Θ

2
± i

Ψp
2 (ζ +Θ)

(88)

Four complex eigenvalues with positive real parts require that ρ/2−
p
(ζ +Θ) /2 >

0 if (ζ +Θ) > 0. If ζ +Θ < 0 the second term of (88) will be imaginary but

in any case all the eigenvalues are complex with positive real parts provided

that the conditions (c) of theorem 2 are satisfied.¥
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