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Non-Classical Expected Utility Theory with
Application to Type Indeterminacy∗

V. I. Danilov† and A. Lambert-Mogiliansky‡

December 11, 2007

Abstract

In this paper we extend Savage’s theory of decision-making under
uncertainty from a classical environment into a non-classical one. We
formulate the corresponding axioms and provide representation theo-
rems for qualitative measures and expected utility. We also propose an
application in simple game context in the spirit of Harsanyi.

1 Introduction

In this paper we propose an extension of the standard approach to decision-
making under uncertainty in Savage’s style from the classical model into the
more general model of non-classical measurement theory. Formally, this means
that we substitute the Boolean algebra model with a more general ortholattice
structure (see [6]).
In order to provide a first line of motivation for our approach we turn back

to Savage’s theory in a very simplified version. In Savage [13], the issue is about
the valuation of “acts” with uncertain consequences or results. For simplicity
we shall assume that the results can be evaluated (cardinally) in utils. Acts

∗The financial support of the grant #NSh-6417.2006.6, School Support, is gratefully
acknowledged.

†Central Economic Mathematical Institute, Russian Academy of Sciences, 47 Nakhi-
movski Prospect, 117418 Moscow, Russia. danilov@cemi.rssi.ru
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lead to results (measurable in utils), but the results are uncertain (they depend
on a state of Nature). How can one formalize acts with uncertain outcomes?
The classical approach amounts to the following. There exists a set X of

states of nature, which may in principle occur. For simplicity, we assume that
the set X is finite. An act is a function f : X → R. If the state s ∈ X is
realized, our agent receives a utility of f(s) utils. But before hand it is not
possible to say which state s is going to be realized. To put it differently, the
agent has to choose among acts before he learns about the state s . This is the
heart of the problem.
Among possible acts there are “constant” acts, i.e. acts with a result that

is known before hand, independently of the state of nature s. The constant
act is described by a (real) number c ∈ R. It is therefore natural to link
an arbitrary act f with its “certainty equivalent” CE(f) ∈ R (such that our
decision-maker is indifferent between the act f and the constant act which gives
utility CE(f)). The first postulate of our simplified Savage model asserts the
existence of the certainty equivalent :

• S1. There exists a certainty equivalent CE : RX → R and for the
constant act 1X we have CE(1X) = 1.

It is rather natural to require monotonicity of the mapping CE:

• S2. If f ≤ g then CE(f) ≤ CE(g).

The main property we impose on CE is linearity:

• S3. CE(f + g) = CE(f) + CE(g) for any f and g ∈ RX .

The requirement S3 looks like a very strong condition indeed. Savage
himself and his followers preferred to appeal to the so-called "sure thing prin-
ciple" so that the linearity is derived from some other axioms. But the related
considerations are not relevant to the point we make in this paper.
In fact axiom S3 should be understood as a condition of additivity rather

linearity. But together with monotonicity axiom S3 implies true linearity, that
is CE(αf +βg) = αCE(f)+βCE(g) for any α, β ∈ R. As a linear functional
on the vector space RX , CE can be written in a form CE(f) =

P
x f(x)µ(x).

By axiom S2, µ ≥ 0; by CE(1X) = 1 we have
P

x µ(x) = 1. Therefore µ(x)
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can be interpreted as the “ probability”1 for the realization of state x. With
such an interpretation, CE(f) becomes the "expected" utility of the act f .
Of course, we may assign probabilities not only to single states but also to

any subset of states (or to any event) A ⊂ X. µ(A) can be understood either
as the sum

P
x∈A µ(x), or as CE(1A) , where 1A is the characteristic function

of the subset A. The interpretation in the second approach is clear: the act 1A
is a bet on event A such that we receive 1 util if event A is realized and 0 util
otherwise (if the opposite or complementary event A occurs). The decision-
maker can compare such bets on events and thereby compare events with
respect to their likelihood. So this implies a notion of qualitative probability
measure.
In this paper we propose to substitute the Boolean lattice of events with

a more general ortholattice. The move in that direction was initiated long
ago, in fact with the creation of Quantum Mechanics (QM). The Hilbert space
entered into the theory immediately, beginning with von Neumann [14] who
proposes to use a lattice of projectors in the Hilbert space as the suitable model
for QM instead of the classical (Boolean) logic. In their seminal paper from
1936 [2], Birkhoff and von Neumann investigate the necessary properties of
such a non-distributive logic. The necessity to use more general ortholattices
than the Boolean one, arises as soon as the measurements (in this paper we
understand acts as measurements) affect the measured system and change its
state.2 This is particularly important when one does not limit attention to a
single measurement, but is interested in a sequence of measurements or decision
problems. If our measurements do not change the state of the object, one can
use Savage’s classical paradigm.
Recently a few decision-theoretical papers appeared (see for example, [11,

7, 9, 8]) in which the standard expected utility theory was transposed into
Hilbert space model. Lehrer and Shmaya write “We adopt a similar approach
and apply it to the quantum framework... While classical probability is defined
over subsets (events) of a state space, quantum probability is defined over
subspaces of a Hilbert space." Gyntelberg and Hansen (2004) apply a general
event-lattice theory (with axioms that resemble those of von Neumann and
Morgenstern) to a similar framework. One could expect that Gyntelberg and

1Sometimes this probability is called subjective or personal, because it only expresses the
likelihood that a specific decision-maker assigns to event x.

2For a formal exposition of this argument see our article in Mathematical Social Sciences
(2007).
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Hansen truly would be working with general ortholattices. But no, they too
work with subspaces of a Hilbert space. Our first aim is to show that there is no
need for a Hilbert space, the Savage approach can just as well (and even easier)
be developed within the frame of more general ortholattices. Beside making
this formal argument, a motivation for this research is that a more general
description of the world allows to explain some behavioral anomalies e.g., the
Eldsberg paradox (see [7]). In an illustration we show that the results in this
paper are relevant to modelling interaction in simple games when a decision-
maker faces a type indeterminate opponent i.e., an agent whose type changes
under the impact of decision- making as proposed by Lambert-Mogilliansky,
S. Zamir and H. Zwirn [10].
For the sake of comparison with the Savage setup, we develop the theory in

a static context. But non-classical measurement theory was developed to deal
with situations where the measurements impact on the states of the measured
system . Therefore, a genuine theory of non-classical expected utility should
apply to sequences of acts or measurements. In the Discussion we mention
some dynamic implications.

2 Ortholattices

A lattice is an ordered set such that any of its subsets (including the empty
subset) has a greatest lower bound (∨ or sup) and a lowest higher bound (∧
or inf), which guarantees the existence of a maximal element 1 and a minimal
element 03. An ortholattice is a lattice L equipped with an operation of ortho-
complementation ⊥: L → L. This operation is assumed to be an involution
(a⊥⊥ = a), to reverse the order (a ≤ b if and only if b⊥ ≤ a⊥) and to satisfy
the following property a ∨ a⊥ = 1 (or, equivalently, a ∧ a⊥ = 0).
Example 1. Let X be a set and L = 2X be the set of all subsets of X. The

order is defined by set-theoretical inclusion. For A ⊂ X, A⊥ = X − A, is the
set-theoretical complement. It is the classical situation.

Example 2.Take some finite dimensional Hilbert space H (over the field
of real or complex numbers). Let L be the lattice of vector subspaces of H
and ⊥ be the usual orthogonal complementation.

3It is more natural to call what we just defined, a complete ortholattice. Usually one
only requires the existence of finite bounds. However we shall not interest us much for the
general case, assuming finiteness of L.
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This example is standard in Quantum Mechanics as well as in the articles
mentioned in the Introduction. But it was early understood that the lattice
L(H) (sometimes it is called the lattice of projectors) is endowed with a number
of special properties4. We discuss a significantly more general case in the next
example.

Example 3. Let (X,⊥) be an orthospace that is a set X equipped with
an irreflexive and symmetric binary relation (orthogonality) ⊥. For A ⊂ X

A⊥ = {x ∈ X, x ⊥ a for all a ∈ A}.

The sets of the form A⊥ are called orthoclosed subsets or flats. When equipped
with the relation ⊂ and the operation ⊥, flats form an ortholattice F(X,⊥)
(for details see [6]). Moreover almost any (at least any finite) ortholattice has
the form of F(X,⊥) for a suitable orthospace (X,⊥).
In order to get better acquainted with this subject, let us consider a few

concrete examples.

3a) Assume that all distinct points of X are pairwise orthogonal. Then any
subset of X is orthoclosed and the ortho-complementation coincides with the
usual set-theoretical complementation. That is we obtain the Boolean model
of Example 1.

3b) Let X consist of four points r, l, r0, l0. The orthogonality relation is
represented by the graph below, where we connect points with a plain line
when they are NON-ORTHOGONAL (so that orthogonal points as "far from
each other" are unconnected).

d d d dr l0 r0 l

The point r is orthoclosed since r = {r0, l}⊥; similarly the point l is or-
thoclosed. There are two other (nontrivial) flats: the set {r0, l} = r⊥ and
{l0, r} = l⊥. The corresponding ortholattice is represented below

d
dd

d d
d
@
@

¡
¡

@
@

¡
¡

0

1

l r

r⊥ l⊥

4Maybe we should give examples here?

5

ha
ls

hs
-0

05
87

72
1,

 v
er

si
on

 1
 - 

21
 A

pr
 2

01
1



3c) Let us consider the orthospace represented by the following graph
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3d) On the left side below we depicted another orthospace and on the right
side the corresponding ortholattice.
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We want to defend the thesis that an ortholattice is a natural structure
for applying all the concepts that are used in the classical theory of decision-
making under uncertainty. As in the Boolean model we may speak of the
intersection (∧) and union (∨), as well as of the complementation (or as the
negation, and understand it as ortho-complementation). All the usual rela-
tions between these operations are preserved with one exception: the law of
distributivity is not satisfied in the general case. But how often is it used?
In the proofs of some theorems and propositions, perhaps. But hardly in the
formulation of the concepts.
A central point is that it is possible to speak about probabilities which can

be considered as a quantified saturation of the ortholattice skeleton.
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3 Non-classical probability

The theory of probability starts with the definition of a set X of elementary
events. Thereafter it moves over to general events. In our language events
(or properties) are elements of an ortholattice L. The next key concept is a
"collection of mutually exclusive events". In the classical model this is simply
a partition of the set X, that is a decomposition X = A1 q ... q An. In the
general case the notion of a collection of mutually exclusive events should be
replaced by the notion of an Orthogonal Decomposition of the Unit (ODU).

Definition 1 An Orthogonal Decomposition of the Unit in an ortholattice L
is a (finite) family of α = (a(i), i ∈ I(α) ) of elements of L satisfying the
following condition: for any i ∈ I(α)

a(i)⊥ =
_
j 6=i

a(j).

The justification for this formulation is provided by that a(i) ⊥ a(j) for
i 6= j and ∨ia(i) = 1. The proof is obvious.
For instance, the single-element family 1 is a (trivial) ODU. For any a ∈ L,

the two-element family (a, a⊥) is an ODU. We call this kind of family the
question about property a.
Intuitively, the family α is to be understood as a measurement (or a source

of information) with a set of possible outcomes I(α). If such a measurement
yields an outcome i ∈ I(α), we conclude that our system is endowed with
property a(i) (or that the event a(i) occurs). Assume that we can "prepare" our
system in some state and repeatedly measure the system (each time prepared
in that same state). The measurement outcomes can differ from one trial to
another. Imagine that we performed n such measurements (for n relatively
large) and that outcome i was obtained ni times. Then we can assign each
outcome i a "frequency" pi = ni/n. In fact we have that pi ≥ 0 and

P
pi = 1.

This leads us to

Definition 2 An evaluation on an ortholattice L is a mapping ν : L → R.
An evaluation ν is called
1) nonnegative if ν(a) ≥ 0 for any a ∈ L;
2) monotone if ν(a) ≤ ν(b) when a ≤ b;

3) normed if ν(1) = 1;
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4) additive (or a measure) if ν(a ∨ b) = ν(a) + ν(b) for orthogonal events
a and b. We write a⊕ b instead of a ∨ b to emphasize that a ⊥ b.

5) probabilistic (or a probability) if it is nonnegative and
P

i ν(a(i)) = 1

for any ODU (a(i), i ∈ I).

We make a few simple remarks on the links between these concepts. From
4) or 5) it follows easily that ν(0) = 0; clearly then 2) =⇒ 1). It is also clear
that 5) =⇒ 3), and 1), 3) and 4) together imply 5). In the classical (Boolean)
case 5) implies 1) - 4), but that is not true in the general case. Indeed, let
us consider Example 3b, where (excluding the trivial events 1 and 0) we have
four events r, l, r⊥, l⊥ and where r ≤ l⊥ and l ≤ r⊥. To assign a probability
is equivalent to giving two numbers ν(r) and ν(l) both between 0 and 1 but
otherwise arbitrary. Such a probability is monotone if ν(r) + ν(l) ≤ 1 and is
additive if ν(r) + ν(l) = 1.

There exists an important case when everything simplifies and approaches
the classical case. It is the case of orthomodular lattices. So are called the
lattices that satisfy the property of orthomodularity (if a ≤ b then b = a ∨
(b ∧ a⊥)). It is clear that any Boolean lattice is orthomodular and so are the
lattices from Examples 2, 3c, and 3d. In contrast, the lattice from Example
3b is not orthomodular. We assert that for orthomodular lattices, property 5)
implies 3) and 4).

Lemma 1 If L is orthomodular ortholattice, then any probability on L is ad-
ditive and monotonic.

Proof. Let ν be a probability on L. We first establish additivity. Suppose
a ⊥ b and pose c = (a⊕ b)⊥. Since (c, c⊥) is an ODU, ν(c) + ν(c⊥) = 1.
We assert that (a, b, c) is an ODU as well. To prove that we need to show

that a⊥ = b⊕ c. Since a, b and c are pairwise orthogonal, b⊕ c ≤ a⊥. By force
of the property of orthomodularity we have that a⊥ = (b⊕ c)⊕ (a⊥∧ (b⊕ c)⊥).
But a⊥∧(b⊕c)⊥ = (a∨b∨c)⊥ = (a⊕b)⊥.∧c⊥ = c∧c⊥ = 0. Hence a⊥ = b⊕c.
Similarly b⊥ = a⊕ c. The equality c⊥ = a⊕ b is satisfied by definition. Thus,
the triplet (a, b, c) is an ODU.
Therefore we have the equality ν(a) + ν(b) + ν(c) = 1. Hence ν(a ⊕ b) =

ν(c⊥) = 1− ν(c) = ν(a) + ν(b), which yields the additivity of ν.
Monotonicity follows trivially from the formula b = a⊕ (b ∧ a⊥), the addi-

tivity and the nonnegativity of the number ν(b ∧ a⊥). QED
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Thus, for the case of orthomodular lattices, a probability may also be
defined as a nonnegative normed measure.

4 Qualitative Measures

As was already explained we model uncertainty by an ortholattice of properties
or events. If we understand the elements of the lattice as events, we may talk
of smaller or larger probability for the realization of these events. Further, we
focus on the qualitative relation corresponding to the "more (or less) likely
than" relation between events .

Definition 3 A qualitative measure on an ortholattice L is a binary relation
(of “likelihood”) ¹ on L satisfying the following two axioms:
QM1. ¹ is complete and transitive.
QM2. Let a ¹ b and a0 ¹ b0. Then a ⊕ a0 ¹ b ⊕ b0 (recall that it means

that a ⊥ a0and b ⊥ b0). The last inequality is strict if at least one of the first
inequalities is strict.5

A qualitative measure ¹ is generated by a (quantitative) measure µ when
a ¹ b if and only if µ(a) ≤ µ(b). In this section we are interested by the
question as to when a qualitative measure can be generated by a quantitative
measure (or when there exists a probabilistic sophistication). For simplicity we
shall assume that the ortholattice L is finite. But even in the classical context
the answer is generally negative (Kraft, Pratt, Seidenberg, 1959). Therefore, in
order to obtain a positive answer we have to impose some additional conditions
which strengthen QM2. We shall here consider a condition generalizing the
classical “cancellation condition”. We prefer to call it “hyperacyclicity”.

Definition 4 A binary relation on L is said to be hyperacyclic if the following
condition holds:
Assume that we have a finite collection of pairs (ai, bi) and that ai ¹ bi for

all i and for some i the inequality is strict. Then
P

µ(ai) 6=
P

µ(bi) for some
measure µ on L.

5The special case of QM2 when a0 = b0 is referred to in [9] as De Finetti axiom.
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It is obvious that hyperacyclicity implies acyclicity as well as .
Clearly, if the qualitative relation ¹ is generated by a measure µ then it is

hyperacyclic. The main result of this section (and the analog of Theorem 1 in
[9]) asserts that for finite ortholattice the reverse is true.

Theorem 2 Let ¹ be a hyperacyclic qualitative measure on a finite ortholat-
tice L. Then ¹ is generated by some measure on L.

A complete proof of Theorem 1 can be found in the Appendix. Here we
confine ourselves with describing the logic of the proof: We first embed the
ortholattice L into a vector space V and identify linear functionals on V with
measures on L. With the qualitative measure ¹ we construct a subset P ⊂ V

and show that 0 does not belong to the convex hull of P . The separability
theorem then guarantees the existence of a linear functional on V (that is of
a measure on L) which is strictly positive on P . It is easy to show that this
measure generates the relation ¹.
Clearly, if the relation ¹ is monotonic (that is a ¹ b for a ≤ b), then any

measure µ generating¹ is also monotonic. If, in addition, 0 ≺ 1 then µ(1) > 0;
dividing the measure µ by µ(1) we can assume that µ is a normalized measure.
Thus, the measure µ is a monotonic probability.

5 Non-classical utility theory

First of all we need to formulate a suitable generalization of the Savagian
concept of act. Roughly speaking an act is a bet on the result of some mea-
surement.

Definition 5 An act is a pair (α, f), where α = (a(i), i ∈ I(α)) is some ODU
(or a measurement), and f : I(α)→ R is a function.

We call the measurement α the basis of our act. Intuitively, if an outcome
i ∈ I(α) is realized as a result of measurement α, then our agent receives f(i)
utils.
In such a way the set of acts with basis α can be identified with the set

(vector space, indeed) F (α) = RI(α). The set of all acts F is the disjoint union
of F (α) taken over all ODU α.

10

ha
ls

hs
-0

05
87

72
1,

 v
er

si
on

 1
 - 

21
 A

pr
 2

01
1



We are concerned with the comparison of acts with respect to their at-
tractiveness to our decision-maker. We start with a implicit formula for such
a comparison. Assume that the agent knows (more precisely, he thinks he
knows) the state of the system, that is he has in his mind a (subjective) prob-
ability measure µ on the ortholattice L. Then, for any act f on the basis
α = (a(i), i ∈ I(α)), he can compute the following number (expected value of
the act f)

CEµ(f) =
X
i

µ(a(i))f(i).

Using those numbers our agent can compare different acts.
We now shall (following Savage) go the other way around. We begin with

a relation ¹ representing preferences over the set of all acts F , thereafter we
formulate axioms, impose conditions and arrive at the conclusion that the
preferences are explained by some probability measure µ on L.
More precisely, instead of a preference relation ¹ on the set F of acts, we at

once assume the existence of a certainty equivalent CE(f) for every act f ∈ F .
(Of course this does simplify our task. But this step is unrelated to the issue
of classicality or non-classicality of the "world"; it is only an assertion about
the existence of a utility on the set of acts. It would have been possible to
obtain the existence of CE from yet other axioms. We chose this more direct
and shorter way).
Given that we shall only impose three requirements on CE. The first two

relate to acts defined on a fixed basis. Such acts are identified with elements
of the vector space F (α) = Rα.

Monotonicity axiom. The restriction of CE on each F (α) is a monotone
functional.

Linearity axiom. For any measurement α the restriction of CE on F (α)

is a linear functional.

The third axiom links acts between different but in some sense comparable
basis. For this we need to be able to compare at least roughly two different
measurements. Consider two ODU α = (a(i), i ∈ I(α)) and β = (b(j), j ∈
I(β)). We say the measurement α is finer than β if there exists a mapping
ϕ : I(α) → I(β) such that a(i) ≤ b(ϕ(i)) for any i ∈ I(α). Simply stated it
means that as we know a result i of the first measurement, we know the result
of the second measurement without performing it, it is j = ϕ(i). We note also
that the transformation mapping ϕ is uniquely defined. In fact assume that

11
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ϕ(i) simultaneously belongs to b(j) and b(k). Then a(i) belongs to b(j)∧ b(k).
But since b(j) and b(k) are orthogonal b(j) ∧ b(k) = 0, so a(i) = 0. But this
type of events does only formally enter in the decomposition of the unit and
it can be neglected.
In any case, any such mapping ϕ : I(α)→ I(β) defines a mapping

ϕ∗ : F (β)→ F (α).

For a function g on I(β) the function ϕ∗(g) in a point i has the value g(ϕ(i)).
Intuitively, the payoffs from both functions (acts) g and f = ϕ∗(g) are

identical in all situations. Therefore our agent should consider them as equiv-
alent and assign them the same certainty equivalent. This is the idea of the
following axiom.

Agreement axiom. Suppose that a measurement α is finer than β and
ϕ : I(α)→ I(β) is the corresponding mapping. Then CE(g) = CE(ϕ∗(g)) for
each g ∈ F (β).

Take for instance f to be the constant function in I(α) with value 1. The
agreement axiom says that the agent is indifferent between two acts. The first
is to receive one util without performing any measurement. The second is to
perform the measurement α and (independently of the outcome) to receive a
unit of utils.
The last requirement which cannot really be called an axiom says that the

utility of the trivial act with payoff 1 is equal to 1. That is CE(1) = 1.

Theorem 3 Suppose that a certainty equivalent CE satisfies the monotonic-
ity, linearity and agreement axioms. Then there exists a probabilistic valuation
µ on L such that CE(f) =Pi µ(a(i))f(i) for any act f on the basis of mea-
surement α = (a(i), i ∈ I(α)). Moreover this valuation µ is uniquely defined.

Proof. For a ∈ L we denote 1a the bet on property a. It gives 1 util if
we receive the answer YES on the question (a, a⊥) and 0 for NO. Let µ(a) =
CE(1a). Since 1a ≥ 0 we have µ(a) ≥ 0 for any a ∈ L.
Let now α = (a(i), i ∈ I(α)) be an arbitrary ODU, and f : I(α) → R be

an act on the basis α. We denote with the symbol 1i the act on the basis of
α which yields 1 on i and 0 on F (α)− {i}. By the agreement axiom we have
that CE(1i) = µ(a(i)). Since f =

P
i f(i)1i we conclude that

CE(f) =
X
i

µ(a(i))f(i)
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In particular, if f = 1 we obtain that 1 = CE(1) =
P

i µ(a(i)). Therefore µ is
a probabilistic valuation. QED

We do not assert that the valuation µ is monotone. In the next section we
substitute the agreement axiom with a stronger "dominance" axiom and we
obtain the monotonicity of µ.

6 The Dominance axiom

Let α = (a(i), i ∈ I(α)) be a measurement (or an ODU). And let b ∈ L be an
event (or a property). We say that an outcome i ∈ I(α) is impossible under
condition b (or in presence of the property b), if a(i) ⊥ b. All other outcomes
are in principle possible, and we denote the set of possible outcomes as I(α|b).
Clearly

b ≤
_

i∈I(a|b)
a(i) = a(I(α|b)),

and I(α|b) is the smallest subset of I(α) with that property. In fact if b ≤ a(J)

then a(J)⊥ ≤ b⊥. But a(J)⊥ = a(I(α)− J), therefore for any i, not belonging
to J, we have a(i) ≤ b⊥, that is a(i) ⊥ b.
Consider for instance a situation when we have two measurements α =

(a(i), i ∈ I(α)) and β = (b(j), j ∈ I(β)). Suppose that the measurement α is
finer than β and ϕ : I(α)→ I(β) is the corresponding mapping. Since

b(j) = a(ϕ−1(j)),

it is easily seen that I(α|b(j)) = ϕ−1(j) and I(β|a(i)) = {ϕ(i)}.
We go back to acts. Let f : I(α) → R and g : I(β) → R be acts on

the α and β basis respectively. We say the g dominates f (and write f ≤ g)

if for any i ∈ I(α) and any j ∈ I(β|a(i)) (that is j is possible at the event
a(i)) the inequality f(i) ≤ g(j) is true. Intuitively, this means that the act g
always gives no less than the act f . With such an interpretation it is natural to
assume that our rational decision-maker must assign to g no less utility than
to f. We formulate this as

Axiom of dominance. If f ≤ g then CE(f) ≤ CE(g).

It is clear that the dominance implies monotonicity. We assert that the
dominance axiom also implies the axiom of agreement. In fact let β be a
measurement coarser than α and let f = ϕ∗(g) for some act g on the β basis.

13
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From the description above it is clear that f ≤ g and g ≤ f such that CE(f) =
CE(g).

Theorem 4 Assume that the axiom of linearity and dominance are satisfied.
Then CE is an expected utility for some monotonic probability measure µ on
L.

Proof. The first statement follows from earlier remarks and theorems.
Therefore we should prove the monotonicity of the measure µ. Let a ≤ b. Con-
sider two measurement-questions α = (a, a⊥) and β = (b, b⊥). Let f = 1a, that
is f is a bet on the event (property) a : the agent receives one util if measure-
ment α reveals (actualizes) property a, and receives nothing in the opposite
case. We define 1b similarly on the β basis. Clearly 1a ≤ 1b. In fact if the
first measurement reveals (actualizes) property a, then b is true for sure since
a ≤ b. Therefore 1b gives the agent one utils when a occurs, and ≥ 0 utils
when a⊥ occurs, which is not worth less than 1a. By force of the axiom of
dominance CE(α) ≤ CE(β). The first term is equal to µ(a) and the second
to µ(b). QED

7 Illustration: Non-classical type uncertainty

In this section we want to address the question as to whether the general
approach developed in this paper can be relevant in decision theory. Isn’t it
possible to find a suitable classical representation? Indeed, consider the case
when the states of Nature relevant to an act is whether the egg you are about
to add to the omelet is rotten or not (Savage’s own example). There, it is clear
that the ortholattice representing Nature is Boolean. One may really wonder
if real life ever offers examples of decision situations where uncertainty needs
to be modelled with a non-Boolean ortholattice.

7.1 Non-classical versus classical representation

In this section we propose a method for constructing a classical model of a sys-
tem starting from a description in terms of the general framework developped
in this paper. We recall that an act corresponds to a measurement α and a
payoff function f : I (α)→ R, defined on the set of outcomes of the measure-
ment. In order to evaluate an act, the decision-maker must guess the state
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of Nature. When we describe Nature with an the ortholattice L, a state is a
probability measure on L. Formally, everything is the analogue of Savage. The
only difference is that Savage assumes that the ortholattice is Boolean. There-
fore, the question regarding the comparison with a classical model boils down
to the question as to whether one can represent Nature i.e., our ortholattice
L with an equivalent or suitable Boolean ortholattice L0. And whether for each
measurement α in L we can define a corresponding ODU α0 = (a0(i), i ∈ I(α))

in the new ortholattice L0. Note that the set of outcomes of measurements α
and α0 is the same.
A most natural way of doing this is to look for an homomorphism ϕ : L→

L0 of ortholattices which commutes with operations ∨, ∧ and ⊥ . And since
we are interested in a classical explanation we have to choose L0 as a Boolean
ortholattice, we call it B, and a suitable homomorphism ϕ so we can represent
the measure σ with some measure σ0 on B.
Let our system (here Nature) be represented by a (finite) orthospace (X,⊥) . For

simplicity we shall assume that our orthospace is orthoseparable.6 We call or-
thobasis any subset B ⊂ X endowed with the following two properties:
1. Distinct elements of B are orthogonal to each other;
2. B is maximal with property 1 , i.e., for all x ∈ X, x /∈ B, you can find

b ∈ B such that x and b are non-orthogonal.
We understand an orthobasis as a complete measurement; B is the set of

outcomes of measurement B.

Definition 6 We call a state (or a probability measure) in X the correspon-
dance σ : X → R+ such that for any orthobasis the following equality holds:
σ (B) :=

P
b∈B σ (b) = 1.

With this definition, the numbers σ (b) can be viewed as probabilities for
the outcomes of measurement B in state σ.

A state is called dispersion-free or classical if the outcome of any measure-
ment is deterministic, that is if σ (x) ∈ {0, 1} . In other words a dispersion-free
state can be identified with a subset S ⊂ X such that its intersection with
any orthobasis is exactly one element. We may call such a subset an antibasis
because it only contains elements that are non-orthogonal to each other. We
denote the set of all antibases A (X,⊥) .

6Orthoseparability means that all singletons sets are flats.
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We view the set A (X,⊥) as a natural set of classical states of our system.
Indeed, we see that, by construction, every such states gives a deterministic
response to any measurement. In such a way we have defined a natural Boolean
counterpart of our system. The set A (X,⊥) is not the only possible classical
model of the system (X,⊥) however. In particular, one may construct complex
models with hidden variables.7 Our view is that for the limited purpose of this
section (and because there is a lack of concensus on the meaning of hidden
variables), we can confine attention to simple classical models constructed
whithout additional structure as described above.

7.2 Playing with a Non-classical opponent

We shall consider a situation where our decision-maker faces uncertainty about
the type (or preferences) of the agent that he is interacting with. That is what
we earlier called "Nature" is another decision-maker. The idea that agents
(represented by their preferences and beliefs) may be viewed as non-classical
systems was first proposed in Lambert-Mogiliansky, S. Zamir and H. Zwirn
(2003) and further developped in e.g. Busemeyer et al (2006a, 2006b) and
Danilov and Lambert-Mogiliansky (2007). The motivation for this approach
is that a variety of empirical phenomena, so-called behavioral anomalies, can
be explained when representing uncertainty about the type (preferences) of a
decision-maker with a non-boolean ortholattice. In that context the term type
is equivalent to the term "state" when talking about arbitrary systems. A
decision situation or DS is an ODU that measures a type characteristics.8

We next formulate a simple game situation in terms of the general theory
exposed above. We immediately wish to emphasize that this is only an ex-
ploratory first step of games with indeterminate players. In the next section
we illustrate the distinction between classical and non-classical models in a few
examples.

7It is well-known that it is possible with unobservable hidden variables to construct a
model that replicates the quantum predictions in most cases including what concerns the
position and momentum of a particle.

8The classical approach to uncertainty in interactive decision situations i.e., in "games"
is due to Harsanyi’s. All uncertainty about physical outcome functions, utility functions and
strategy spaces is captured in uncertainty about the type of the players. Uncertainty about
the type is represented by a Boolean ortholattice of type characteristics. We next consider
an example of a classical player interacting with a "type indeterminate" player that is a
player represented by a general ortholattice of type characteristics.
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The closest formal equivalence with the non-classical Savage model obtains
when dealing with a sequential move game where our decision-maker (we call
him player 1) moves first and the opponent (player 2) moves second which
ends the game. We consider the problem from the point of view of player 1,
a classical decision-maker who knows his type but is uncertain about the type
of his opponent.
The opponent is represented by his type i.e., an element θ ∈ (X,⊥) . Or

equivalently a type is described as a probability measure µ over L the corre-
sponding lattice of type characteristics. The type t or the measure µ captures
player 1’s (subjective) beliefs about player 2’s type. An act is a pair (α, f) ,
where α = (a (i) , i ∈ I (α)) is some ODU (measurement), and f : I (α)→ R is
a payoff function. The interpretation is that α is a move that implies a bet
on the uncertain behavior of the opponent and a payoff function depending on
the behavior of the opponent. Only the move by player 1 qualifies as an act. It
induces a decision node for the player 2 which is understood as measurement
α of player 20s type. The parallel with the general model is straightforward.
When player 2 chooses i, i.e., when the type a (i) ∈ I (α) is actualized, player
1 receives a payoff of f (i) (cardinal) utils.9

Assume that Player 1 knows (or thinks that he knows) the type t ∈ X of
player 2 is or equivalently player 1 knows the probability distribution µ on L.
That is a probability distribution over decisions in various nodes α, β ∈ F .
Then, for f : I (α) → R on the basis α = (a (i) , i ∈ I (α)) and g : I (β) → R
on basis β = (b (i) , i ∈ I (β)), player 1 can compute and compare the following
numbers (expected values)10

CE (f ;µ) =
X
i

µt (a (i)) f (i) and

CE (g;µ) =
X
i

µt (b (i)) g (i) .

It follows from Theorem 4 that if the axioms of linearity and dominance
are satisfied, we can define a CE that is an expected utility for any initial
type t of player 2. Our rational decision-maker (player 1) selects among the
possible acts the one associated with the largest expected payoff. So we see
that the probability measures on the ortholattice of type characteristics play a

9The type a (i) is defined as the type with property that the choice of i maximizes his
utility.
10As in the general model we assume the existence of a certainty equivalent.
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role similar to beliefs about the (Harsanyi) type of the opponent in the analysis
of a classical player 1’s decision-making.

7.2.1 Examples

Our first example involves two games the Prisoner’s Dilemma (PD)11 and the
Ultimatum Game(UG)12.
Example 1
Player 1 is confronted with a choice between playing the PD or UG with

player 2. From his point of view the PD is an act: (α, f) with I (α) = {C,D}
and f is player 1’s payoff.13 Similarly, the UG is an act: (β, g) with I (β) =

{G,E} corresponding to two options for sharing the pie: one generous(G)
and the other egoist(E). Measurements α and β are incompatible ODU so the
corresponding set of pure types is X = {C,D,G,E} .
Any type t of player 2 is described by four non-negative numbers corre-

sponding to player 1’s subjective probability for the realization of the different
type characteristics in each of the two acts:

prob (C| t) = µ, prob (D| t ) = (1− µ) , prob (E| t) = λ, prob (G| t) =
(1− λ) .

Following the method exposed in section 7, we build a classical model of
player 2. It is given by the set of antibases (or classical pure states)A (X,⊥)
= {CG,CE,DG,DE}. It is easy to see that the agent of type t can be
represented as a mixture of the four classical states with prob (CG| t) = λµ

and similarly for the probabilities of the other states. Such a classical model
gives exactly the same predictions and makes the same recommendation as the
non-classical one. So in this example there is no reason to embrasse the more
general approach.

Example 2

11The Prisoner’s Dilemma is an achetypical game of two players where each player chooses
between cooperation and defection. We consider a simultaneous move version of this game.
12The ultimatum game is a game of two players concerned with the division of a pie. The

first player (our player 2) moves to propose a division of the pie. The second player (our
player 1) either accepts in which case the pie is allocated according to the proposal. Or he
refuses in which case both players get zero payoff.
13We do not explicite player 1’s action in the games. Player 1’s payoffs should be under-

stood as the best reply payoffs. That is the payoffs associated with the best reply to player
2’s expected play.
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The model of example 1 is enriched as follows. First, the PD and the UG
are augmented with one common option, that of "not playing" N. Second,
we add a third game, the Trust Game(TG)14 which is constructed so as to
share an option in common with the two first games. More precisely, we
consider the act (δ, h ) corresponding to second move in a TG with three
possible levels of effort: low L, high H and medium M . The orthospace is
given in fig.1.15 The representation entails that the L−type in TG is the same
as the D−type in the PD and H = G. Our orthospace has six pure states:
C,D,M,G,E,N. The classical counter part is given by the set of antibases
A (X,⊥) = {CEM,CG,NM,DE} .

Consider now type t0 of player 2, defined by following probabilities:
prob (N | t0) = .5, prob (G| t0 ) = .5, prob (D| t0) = .5, implying that all

other types have probability zero.
We now show that we cannot reproduce the predictions of the non-classical

model by assigning probabilities to the four classical types. Indeed, since C
has probability zero both CEM, CG must be assigned probability zero. The
same holds for NM and DE becauseM and E also have probability zero. So
none of the classical types can be assigned positive probability! So here we see
that there is no way to represent state t0 in the classical model.16

14The trust or investment game is a two-players game where player 1 invests a fixed
amount which pays back depending on player 2’s effort.
15An orthospace is a graph that connects all orthogonal elements.
16It is true that this result relies on an (implicit) assumption there does not exist a
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In order to better understand the implications of the distinction between
the two models consider the following payoffs (for player 1): in the PD: f (D) =
f (N)) = 1 and f (C) = 10; in the UG: g (N) = g (G) = 2 and g (E) = 0; and
in the TG, h (L) = 0 and h (M) = h (H) = 3.When the player has the classical
representation in mind we can express the expected utility of any act as follows

EUcl = p1DE + p2NM + p3GC + p4MCE,
4X

i=1

pi = 1

where the vector of probability (p1, ..., p4) represent (the belief of player 1
about) player 2’s type. We compute the expected utility of the 3 acts: EUcl (PD) =

1 + 9 (p3 + p4) ; EUcl (UG) = 2 (p2 + p3) ; EUcl (TG) = 3p2 + 3 (p3 + p4) . It
appears clearly that for any type of player 2, UG is dominated by TG which in
turn dominates PD. So UG is never recommended. Consider now, a decision-
maker who has the correct non-classical model in mind and knows that his
opponent is of type t0 with the probabilities given above. We compute the
expected utility of each act given type t0:

EUncl (PD; t0) = 1, EUncl (UG; t0) = 2 and EUncl (TG; t0) = 1.5. We see
that UG dominates both TG and PD so the recommendation is playUG which
was a dominated option in the classical model.

Example 3
We conclude this section with an example that involves a series of decisions.

We return to the first example with the two acts: PD with outcome (C,D)
and UG with outcomes (E,G). The set of possible types of the opponent is
X = {C,D,G,E} . We know that C ⊥ D and G ⊥ E. As for the other
correlations we assume the following: If the agent is of type D (or C) then UG
will give outcome E (or G) with probability 1/2. And when player 2 is of type
E (or G), the PD results in type C or D with equal probability. As we already
saw this system has a classical counter-part with types CG,CE,DG,DE.

Consider the case when the outcome C yields 100 euros i.e., f (C) =
100, f (D) = g (E) = 0 and g (G) = 10. Suppose all types have initially

measurement with outcome set {D,N,G} . In the opposite case the ortholattice would boil
down to a Boolean algebra to which we associate a classical probability space. But we could
had taken any similar example with 5 or more (an impair number) elements common to
two games. The orthospace with 5 such elements depicts a pentagone with each segment
being the basis of a triangle. The same impossibility result obtains with no need of an
assumption on the non-existence of a measurement. We chose the three acts case for the
ease of presentation.
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equal probability. If our decision-maker can only do a single measurement, the
two models calls for selecting the PD.

Suppose now that our decision-maker can make a series of 3 measurements.
In both models the optimal strategy includes selecting the PD as a first mea-
surement and, if the outcome is C, to repeat the choice of the PD two more
times. If the outcome is D then again both models call for selecting UG as a
second measurement. But from here the recommendations of the two models
differ. Whatever the outcome of UG, it is optimal in the classical model to
select UG as the third act. This is because if he is lucky he may earn 20 euros
and if unlucky i.e., the result of UG is E, he believes that the type of the
opponent is DE and so he has nothing to hope for anymore. In contrast, the
non-classical model calls for selecting PD as the last act whatever the outcome
of UG. This is because the agent knows that whether the type is G or E there
is (again) 1/2 probability for obtaining outcome C in the PD in which case
he earns 100. On average after an initial draw of D, the agent with the non-
classical model in mind earns 55 while the agent with the classical model in
mind earns 10. So in a dynamic context, and even when two acts have no out-
come in common, the recommendations of the classical and the non-classical
models differ and that they are associated with different expected payoffs.

8 Discussion

In this paper we show that Savage’s theory of decision-making under uncer-
tainty can be formulated in terms of a very general algebraic structure called
an ortholattice instead of the more restrictive Boolean algebra. Our results
shed new light on the generality of the Savage’s approach. They also extends
it so as to allow considering decision situations where the payoff relevant un-
certainty pertains to non-classical objects. In this section we want to discuss
some limitations of our approach.
Savage argument is formulated in a static context. In a static context a

classical state space can represent uncertainty even when measurements are
incompatible provided they have disjoint outcome sets. This is what we il-
lustrated with our first example in section 7. For the case the outcome sets
intersect as example 2 of section 7, one can construct states that cannot be
represented in a classical state space. These states are quite peculiar however.
Indeed, returning to our t0 state in the triangle example, it is easy to see that
such a state cannot be obtained as the result of any of the three measurements.
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So if the system started from that state, as we performed measurements on
it, the system never returns to it. It is an "ephemeris" state. This seems
to be a rather general characteristics of non-classical states that cannot be
expressed in a classical state space. It is therefore legitimate to question the
practical value of the proposed generalization of Savage. Our response is that
the non-classical representation of uncertainty becomes truly valuable when
we consider a dynamic situations i.e., a situation when a series of decisions
under uncertainty is to be made. In a classical world, the state pre-exists the
measurement, it is only revealed by it. As the decision-maker proceeds in the
series of decisions, properties of the world (type characteristics of the agent)
become known to him. The decision-maker, with a classical representation in
mind, makes his next decisions on the basis of updated beliefs according to the
Bayes’ rule. But if the system is non-classical performing measurements on it
alters its state. Bayes’ rule which assumes that the state remains unchanged
is not longer appropriate. In example 3 of section 7, we show that in the
simplest case the classical and the non-classical representation of uncertainty
yield distinct recommendations for decision-making.

Here we prove Theorem 1.

1. Construction of the vector space V . Denote R⊗L the vector space
generated by L. It consists of (finite) formal expressions of the form P

i riai,
where ri ∈ R and ai ∈ L. Denote K the vector subspace in R⊗L generated
by expressions a ⊕ b − a − b (recall that a ⊕ b means that a ⊕ b = a ∨ b and
a ⊥ b.) Finally, V = V (L) is the quotient space R⊗L by the subspace K,
V = (R⊗L)/K.
The ortholattice L naturally maps into V ; the image 1 · a of an element

a ∈ L we denote simply as a. Any linear functional l on V restricted to L gives
a valuation onL. Since l(a⊕b−a−b) = l(a⊕b)−l(a)−l(b) = 0, the valuation l is
additive, that is a measure on the ortholattice L. Conversely, let l be a measure
on L. We extend it by linearity to R⊗L assuming l(P riai) =

P
ril(ai). By

force of additivity, l yields 0 for elements of the form a ⊕ b − a − b, that is l
vanishes on the subspace K. Therefore l factors through V and is obtained
from a linear functional defined on V . We just proved

Proposition 1. The vector space of measures on L is identified with the
space V ∗ of linear functional on V .

Remark. The canonical mapping L → V (L) can be considered as the
universal measure on the ortholattice L. It is injective if and only if the
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ortholattice L is orthomodular.
2. Construction of the set of “strictly positive” P . Let ¹ be a binary

relation on L; as usual, ≺ denote the strict part of ¹. By definition, P = P (¹)
consists of (finite) expressions of the form

P
i(ai − bi), where bi ¹ ai for all i

and bi ≺ ai for some i. (P is empty if the relation ≺ is empty, that is if all
elements in L are equivalent relatively to ¹.) We note also that P is stable
with respect to the addition.

3. Suppose now that a relation ¹ is hyperacyclic. Note that the hypera-
cyclicity of ¹ means precisely that 0 does not belongs to P .
Proposition 2. If the relation ¹ is hyperacyclic then 0 does not belong to

the convex hull of P .

Proof. Assume that 0 is a convex combination of elements of P , 0 =
P

i ripi,
where pi ∈ P , ri ≥ 0, and

P
i ri = 1. By Caratheodory’s theorem we can

assume that the pi are affinely independent (and therefore the coefficients ri
are uniquely defined). We assert that in this case the coefficients are rational
numbers.
It would be simplest to say that the set P is defined over the field of rational

numbers. But it is not so easy to provide a precise meaning to it. For that
purpose we choose and fix some subset L ⊂ L, such that its image in V is a
basis of that vector space. We also choose a subset M of expressions of the
form a ⊕ b − a − b, which constitute a basis of the subspace K. The union
of L and M is a basis of the vector space R⊗L. On the other side, L is a
basis of R⊗L as well. Since elements of L ∪M are rational combinations of
elements of the L,basis elements of L, in turn, can be rationally expressed in
terms of L ∪M . In particular, the images of elements of L in V are rational
combinations of elements of the L basis. All the more, the elements pi ∈ P can
be rationally expressed in terms of L. It follows (see, for example, Proposition
6 in [3], Chap. 2, § 6) that 0 can be expressed rationally through pi. Since the
coefficients ri are defined uniquely, they are rational numbers.
Now the proof can be easily completed. We have an equality 0 =

P
i ripi,

where pi ∈ P and ri are rational numbers (not all equal to zero). Multiplying
with a suitable integer we may consider ri themselves as integers. Since P is
stable with respect to addition, we obtain that 0 ∈ P , in contradiction with
hyperacyclicity of the relation ¹.
4. Together with Separation theorem of convex sets (see [12]) the results

above imply existence of a (non-trivial) linear functional µ on V , non-negative
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on P . But we need strict positivity on P . To obtain it we show that (in the
case of a finite ortholattice L) the convex hull of P is a polyhedron.
Let us introduce some notations. A denotes the set of expression a − b,

where a Â b. B denotes the set of rays of the form R+(a − b), where a º b.
Finally, Q is the convex hull of A∪B in V . By definition, Q consists of elements
of the form

q = α1(a1 − b1) + ...+ αn(an − bn) + β1(c1 − d1) + ...+ βm(cm − dm), (∗)

where ai, bi, cj, dj ∈ L (more precisely, belong to their image in V ), ai Â bi for
any i, cj º dj for any j, αi, βi are nonnegative, and

P
i αi = 1.

Proposition 3. The convex hull of P coincides with Q.

Proof. It is clear from the definitions that any element of P belongs to Q.
By the convexity of Q, the convex hull of P is also contained in Q.
It remains to show the converse, that any element q of Q belongs to the

convex hull of P . For that (appealing to the convexity of co(P )) we can assume
that q has the form in (∗) with n and m equal to 1, that is

q = (a− b) + β(c− d),

where a Â b, c º d and β ≥ 0. If β is an integer, it is clear that q ∈ P. In
general case β is a convex combination of two nonnegative integers β1 and β2;
then q is the corresponding convex combination of two points (a−b)+β1(c−d)
and (a− b) + β2(c− d) both belonging to P .

Corollary. Assume that an ortholattice L is finite. Then the convex hull
of P is a polyhedron.

In fact, in this case the sets A and B are finite. Therefore (see [12], theorem
19.1) Q is a polyhedra.
Thus, if 0 does not belong to the convex hull of P (see Proposition 2) then

there exists a linear functional µ on V which is strictly positive on P . As we
shall see, this immediately provides us with a proof of Theorem 1.

5. Proof of Theorem 1. The assertion in the theorem is trivially true if
all elements of L are equivalent to each other. Therefore we can assume that
there exists at least one pair (a, b) such that a Â b. Let µ be a linear functional
on V (we may consider µ as a measure on the ortholattice L) strictly positive
on P . We assert that this measure generates the relation ¹ .
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Let us suppose c º d. Since for any integer positive number n the element
(a − b) + n(c − d) belongs to P , we have µ(a) − µ(b) > n (µ(d) − µ(c)) for
any n. This implies µ(d) ≤ µ(c). Conversely, let us suppose µ(c) ≥ µ(d) for
some c, d ∈ L. We have to show that c º d. If this is not the case then, by
completeness of the relation º, we have d Â c. But then d − c belongs to P
and µ(d − c) = µ(d) − µ(c) > 0, which contradicts to our first assumption.
This completes the proof of Theorem 1.
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