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The geometry of Global Production and Factor Price Equalisation.

Ekeland Ivar
Canada Research Chair in Mathematical Economics, UBC

Guesnerie Roger
Collège de France and Paris School of Economics.

Revised December 29, 2006�

Abstract. We consider a production economy where commodities are
partitioned into irreproducible factors and reproducible goods, and the produc-
tion technologies have constant returns to scale. We examine the geometry of
the e¢ cient frontier of the global production set and derive theorems of non-
substitution type. We complement the geometric viewpoint by an algebraic
characterization of the e¢ cient frontier, that put emphasis on the "factors val-
ues" of goods. We analyse the connections between the prices of goods and the
prices of factors. In particular, we show that if the number of goods is at least
twice as large as the number of factors, then, generically, the prices of goods
uniquely determine the prices of factors.
Résumé :
Nous considérons le secteur productif d�une économie où les biens sont par-

titionnés en facteurs non reproductibles et biens productibles et les techniques
de production ont des rendements constants. Nous examinons la géométrie de la
frontière e¢ cace de l�ensemble de production global et dérivons des théorèmes
de type théorème de non-substitution. Le point de vue géométrique est com-
plété par une caractérisation algébrique de la frontière e¢ cace, qui met l�accent
sur les "valeurs factorielles" des biens. Nous approfondissons, dans ce contexte,
les relations entre prix des biens et prix des facteurs et démontrons, que si le
nombre de biens est au moins deux fois plus grand que le nombre de facteurs,
"génériquement", le prix des biens détermine univoquement le prix des facteurs.

�We are grateful to M. Bégorre-Bret, C. Bidard, P.A Chiappori and M.Jerison for helpful dis-
cussions. We also thanks for their comments participants to the 2001 NBER general equilibrium
conference and to seminars at the universities of Chicago, Paris 10, Toulouse, and the Institute for
Advanced Studies in Vienna.
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The geometry of Global Production and Factor Price Equalisation. 2

1. Introduction

We consider in this paper, an abstract economy in which commodities can be parti-
tioned into produced goods and non-reproducible factors of production, henceforth
referred to simply as �goods�and �factors�. Goods are produced from goods and fac-
tors. The production sector, on which we focus attention, consists of a collection of
technologies with constant returns to scale, and without joint production.
Our investigation aims at improving upon the present understanding of the geom-

etry of the global production set, in particular of the subset of what we call non-
specialized production plans and of its e¢ cient frontier. The analysis is conducted
both in the primal setting, the space of goods and factors, where we look at the the
global production set and its frontier, and in the dual setting, the space of prices,
where we investigate the structure of the set of price systems which support e¢ -
cient production. The conclusions obtained from the complementary combination of
the primal and dual viewpoints allows a geometric and algebraic assesment of the
qualitative properties of the e¢ ciency frontier under scrutiny. The concept of factor
values of the goods provides an intuitive interpretation of the �ndings. The analysis
emphasizes the role prices of goods and the prices of factors. It leads us to revisit in
our setting the problem known in the literature as factor price equalisation.
This paper undoubtedly belongs to the �eld of production theory. However, this

microeconomics topics may be related with a larger set of preocupations which have
surfaced in the economic literature over a rather long period.
Indeed, special cases of the abstract model we are considering appear in di¤erent

research traditions, some of which are old, associated, for example, with the names
of Sra¤a, Leontie¤, and Heckscher-Ohlin. Sra¤a and Leontie¤, because we focus
attention on the �production of commodities by means of commodities�(1960) in a
constant returns to scale setting. Heckscher-Ohlin, because the standard models of
international trade based on their work1 stress, as we do here2, the dichotomy between
factors and goods.
But although these traditions have developed outside the Walrasian tradition (and

sometimes against it), the concerns of the paper may also be related with the present
state of general equilibrium theory. On the consumption side, since the discussion
on the Sonnenschein-Mantel-Debreu Theorem3 in the eighties, it has been recognized

1See for example, Dixit-Norman (1981)

2Indeed, the production sector under consideration here can be viewed as the production sector
of a generalized Heckscher-Ohlin economy, in which the number of goods or factors is not restricted
to two and in which goods and factors, not only factors, serve to produce goods

3See Shafer-Sonnenschein(1982) and the references therein
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The geometry of Global Production and Factor Price Equalisation. 3

that the most abstract theory used in general equilibrium is, somehow, too general.
E¤ort has then been directed towards the development of more focused settings which
may be empirically more relevant, for instance in the direction indicated by Hilden-
brand (1994). In a similar way, the analysis presented in this paper can be viewed
as part of a research program aimed at constructing a theory of production of inter-
mediate scope, lying somewhere between the most general Arrow-Debreu model and
the simpli�ed and sometimes simplistic modelling of production adopted in �elds of
application.
Fields of applications that might potentially bene�t from "a theory of produc-

tion of intermediate generality" include, as we argue in Ekeland-Guesnerie (2007),
macroeconomics and growth theory. More obvious examples of possible fruitful con-
nections are for example, computable general equilibrium models and trade theory.
Computable general equilibrium models, which are widely used in applied research,
generally have constant returns to scale production sectors, often �tting, as special
cases, the framework of our model. Also, the present development of international
trade has revived the interest for the phenomenon of factor price equalisation4. The
present production model provides a core building block of elementary trade theory,
that would take into account what W.Ethier (1984) called �higher dimensional is-
sues�5.
The results of the paper may be presented in �ve di¤erent categories.

� The paper provides a primal description of the geometry of e¢ cient production
plans. In particular, Theorem 4 captures, hopefully in a general and synthetical
way, the essence of �non-substitution�6: beyond the polar Arrow-Samuelson
case, where the e¢ cient boundary is limited by a hyperplane, the frontier of the
global production set displays a regular geometry.

4Economic historians have reassessed the empirical importance of the phenomenon of factor price
equalisation(O�Rourke, Taylor and Williamson (1995) and O�Rourke and Williamson (2000)). And
one of the hottest empirical debate in the last twenty years has borne on the extent to which factor
price equalisation explains the increase of wages di¤erentials in the US: see for example Freeman
(1995), for a lively account of empirical aspects of the debate and of its theoretical background.
Although the paper does not claim immediate relevance to such debates, it provides some hopefully
fresh view on one of its basic perspectives

5This is obviously not a new subject subject : see Samuelson (1953), Mc Kenzie, (1955), Jones-
Scheinkman (1977), Neary (1985), for a somewhat limited sample of the most signi�cant earlier
contributions.
Note too, that although the �new�theory of international trade stresses new reasons for gains to

trade, in addition to the indirect exchange of factors, it does not dismiss the e¤ect of trade on factor
prices. On the whole, the interest in the e¤ect which trading goods may have on factor prices seems
to have been rekindled rather than weakened by the contemporary development of international
trade.

6Some of its corollaries are well known, and if the statement itself is likely to have been understood
before, it does not seem to have been formulated as such.
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The geometry of Global Production and Factor Price Equalisation. 4

� The paper comes back, from Proposition 11, on the global dual description of
the production possibilities by stressing the key role of the factor values matrix,
both in the formal statements and in their interpretation.

� A key preparation theorem, Theorem 14 is stated. Although it has interest of its
own, it is an intermediate technical tool7 crucial to the analysis. It has a simple
interpretation: the local property according to which, in a constant returns
framework, the prices of goods can be locally written as a function of the prices
of factors is shown to be global.

� The analysis of the geometry of the global production set stressed for example in
Theorem 4 has an algebraic counterpart stressed in Theorem 17, which provides
the "equations" of the factor sections of the e¢ ciency frontier. Theorem 22 and
its Corollary characterizes a surrogate production sector where goods would
be produced only from factors. Proposition 24 is the key tool for comparative
statics studies.

� Finally the paper focuses attention on the factor price equalisation problem
that has received a lot of earlier attention. It �rst reassess and/or extend earlier
results.

- Corollary 8 restates one of the early �ndings of Mc Kenzie.

- Corollary 26 is the adaptation to our more general framework of one of the
most powerful standard factor price equalisation theorem8 obtained in the Gale-
Nikaido tradition, a tradition that assumes that the number of goods equals
the number of factors, together with some generalized non-intensity reversal
condition9.

� The next global univalence results we give, Theorems 27 and 28 are only generic
but do not require any non-intensity reversal assumption. Indeed, theorem 27,
our main result, here asserts that if the production plan is e¢ cient, and if the
number of goods is at least twice the number of factors, then, generically (that
is except for certain pathological and non-robust situations), prices of goods
uniquely determine prices of factors.

The paper proceeds as follows.
Section 2 presents the model, the objects under scrutiny.
Section 3 analyses global economic e¢ ciency from the primal viewpoint and pro-

vides the basic dual �ndings..
7It is straigthforward in some special cases, but not in general.
8It is due to Mas Colell(1979b)
9See Arrow-Hahn (1971), for an account of the related earlier literature.
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The geometry of Global Production and Factor Price Equalisation. 5

Section 4 presents the preparation Theorem and combines it with previous �ndings
in order to obtain a full algebraic characterisation of the e¢ cient frontier, and as a
consequence some key comparative statics results.
Section 5 establish the new factor price equalisation statements presented above.
A conclusion is o¤ered and a number of derivations appear in three appendices.

2. Model and preliminary analysis.

2.1. Setting and assumptions. Consider a static production economy with
constant returns to scale, in which one distinguishes between produced goods and
non-reproducible factors of production (henceforth referred to as �goods�and �fac-
tors�). There will be L goods and K factors; we denote a bundle of the former by
x = (x1; : : : ; xL), and of the latter by v = (v1; : : : ; vK). For the sake of simplicity, we
focus on the case where L = K:; although we will indicate the statements that are
valid for L < K:
The dual variables will be denoted by (p1; : : : ; pL); (goods prices) and (w1; : : : ; wK)

(factors remunerations), respectively. The bundle (x; v) 2 RL+K will be denoted by
y, and the system (p; w) 2 RL+K by q. We shall refer to y as a production plan and
to q as a remuneration plan.
Factors cannot be produced but are used to produce goods. Goods must be

produced, they are also used to produce other goods. Throughout this paper, we will
assume that all technologies available for producing goods exhibit constant returns
to scale; such technologies typically use as inputs some factors and some other goods.
In this paper, we will assume that:

� each technology has a unique output: there is no joint production,

� all factors and all goods are used in production.

In this setting, the production technology of good ` will be associated with a
production function f` : RL�1+ �RK+ �! R+; so that x` = f`(�x0;�v) is the quantity
of good ` that will be produced by using e¢ ciently the available technology and the
input vector (x0; v); which has negative components.
Given x 2 RL, we shall denote by x�` 2 RL�1 the goods bundle obtained from

x by deleting the `-th component. Assuming free disposal, the production set Y` for
good ` is then given by:

Y` =
�
(x; v) 2 RK+L jv 2 �RK+ ; x�` 2 �RL�1+ ; x` � f`(�x�`;�v)

	
Our �rst assumptions subsume standard conditions concerning production func-

tions, concavity, and constant returns to scale
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The geometry of Global Production and Factor Price Equalisation. 6

Condition 1. For every `, with respect to all variables the function f` is concave
and positively homogenous of degree one
The next condition means that all goods other than ` and all factors are required

in producing ` :
Condition 2. For every ` the function f` is positive on RL�1++ �RK++ and vanishes

on the boundary.
We shall also need some smoothness and nondegeneracy conditions on the pro-

duction functions.
Condition 3. For every ` the function f` is twice di¤erentiable on RL�1++ �RK++,

the �rst derivatives are all strictly positive:

Df` : R
L�1
++ �RK++ ! RL�1++ �RK++

and the matrix of second derivatives, D2f`, has corank 1 at every point
The condition on the gradientDf` means that the production functions are strictly

increasing with respect to all inputs. Since f` is positively homogeneous of degree
one, Df` is positively homogeneous of degree zero, so that, by the Euler identity, we
have D2f`(z)z = 0 for all z 2 RL�1++ � RK++. This means that z is in the kernel of
D2f`(z), which must be at least one-dimensional. Our assumption means that there
is nothing else in the kernel, which is then exactly one-dimensional. It is a standard
addition to the smoothness assumption.
Note that, strictly speaking, our assumptions rule out from the analysis two of the

more popular models of production economies: the Heckscher-Ohlin model and the
Leontie¤model. In the Heckscher-Ohlin model, there are two goods and two factors,
but no intermediate goods are used in production: goods are produced with factors
only. In the Leontie¤ model, there is a single factor, and for each production sector
a single technology: these technologies display strict complementarities, which are
incompatible with Condition 3.
Naturally, our model covers cases as close as desired to these two special models.

Simple intuition then rightly suggests that most of the results we shall derive here
will also apply to these models.
We �nally introduce Condition 4.
Condition 4 : Y is closed, and

�
RL++ �RK

�
\ Y 6= ;.

Condition 4 means that, given su¢ cient amounts of factors, there is some produc-
tion plan such that every good is produced in positive net quantity. In other words,
the economy is not unproductive to the point where, even with large amounts of fac-
tors, it would be impossible to have a positive net production of all goods together10

Note already that Condition 4, together with free disposal and constant returns
to scale implies :

�
RL++ �RK

�
\ Y = RL++.

10Indeed, when the production economy reduces to a Leontie¤ economy, this condition is the
standard condition ensuring that the input-output matrix is is labelled �productive�.
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The geometry of Global Production and Factor Price Equalisation. 7

2.2. The global production set. .

De�nitions.. The global production set in the economy is:

Y =
X
`

Y`

We call YE; the e¢ cient frontier of the global production set.
Take a production plan y = (x; v) 2 Y . By de�nition, it can be written (possibly

in many di¤erent ways) as:
y =

X
y`

with y` = (x`; v`) 2 Y`.
This paper focuses attention on production plans that involve all existing pro-

duction sets, i.e in the just given formal de�nition, such that y` 6= 0;(and y` non
negative). The set of such production plans is a subset of Y , denoted YNS:
In other words, the Non Specialized global production set11 YNS � Y is the

set of all production plans involving gross (not necesssarily net) positive production
of every good.
Again, the knowledge of this set follows from the knowledge of its e¢ ciency

frontier :
YNSE =

�
y 2 YNS

�� Y \ fy +RL+K++ g = y
	

Note that Condition 4 implies that the intersection of YNS, and hence of YNSE,
with RL++�RK , is non empty : there is at least one e¢ cient production plan involving
the activity of all production sets and involving a gross production of every good.
We call Y +

NS = YNS \
�
RL++ �RK

�
and Y +

NSE = YNSE \
�
RL++ �RK

�
This paper focuses attention on the non-specialized global production set YNS; its

e¢ cient frontier YNSE; and its restriction to the positive orthant of goods Y +
NSE:

There are several alternative ways to describe production possibilities that provide
complementary insights.
We will use three of them.

� The �rst one relies on the study of the sections of Y` with x` = 1; i.e to :

Y 1
` =

�
(x; v) 2 RK+L jv 2 �RK+ ; x�` 2 �RL�1+ ; 1 � f`(�x�`;�v)

	
� The second one focuses on the sections of the global production set, which,
for given factors endowments, summarize the production possibilities of the
economy .

11This terminology should not be midsleading. In particular, the properties we are investigating
serve to study non specialized situations in trade as well as specialized situations..
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The geometry of Global Production and Factor Price Equalisation. 8

Indeed, for v 2 �RK++, we de�ne : Y (:; v) = fx j (x; v) 2 Y gand, with similar
notation, YNS(:; v); YNSE(:; v) and Y +

NSE(:; v):

� The third one consists in considering sections for �xed x; rather than �xed v:
Indeed, the set Y (x; :) = fv0j(x0; v0) 2 Y; x0 � xg is the (convex) set of factor
endowments that would allow to produce more than the vector x of goods. We
may then consider the sets Y (e`; :); 1 � ` � L, where ei` = 0 if i 6= ` and e`` = 1.
(they are non-empty, because of C4 and its consequences). Viewed as sections
of a global production set, they de�ne a surrogate economy where goods are
produced from factors alone.

We leave to the reader to check :

Proposition 1. 1. The knowledge of Y is equivalent to the knowledge of
Y 1
` ;8l:

2. YNS can be recovered from YNS(:; v);8v=kvk = 1; where k:k designates,
for example, the Euclidean norm.

E¢ ciency.. The standard decentralisation theorem asserts that an e¢ cient global
production plan is the sum of pro�t-maximizing production plans, pro�t being mea-
sured with an appropriate supporting price vector.
Let us then take a point y =

P
` y` 6= 0 on the e¢ cient frontier of Y (without

assuming yet that it is non-specialized). There is some non-trivial price vector q =
(p; w);which we call a remuneration plan supporting y; such that:

q0y = Maxq0z j z 2 Y g (1)

q0y` = Max fq0zl j zl 2 Ylg = 0; for every l: (2)

Our conditions C1, C2 straigthforwardly imply

q 2 RL+K+ and q0y = 0 (3)

and since we have y` 6= 0 for some `; C3 involves that q is unique (up to a positive
constant).
We have previously normalized the production sets Y` by setting production equal

to one unit of good `. From now on, remuneration plans will often be scaled by
choosing the �rst good as numeraire, so that p1 = 1.

E1 = q = f(p; w) 2 RL+K++ j p1 = 1g (4)

Our �st insights are summarized in Proposition 1.
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The geometry of Global Production and Factor Price Equalisation. 9

1

2

A

B

Proposition 2. Let y an e¢ cient NS-production plan and call �(y),the unique nor-
malized remuneration plan supporting it. Then :
-�(y)y = 0
- y can be uniquely written as y =

P
` �`(y)`(y), with `(y) 2 Y 1

` : and where
�`(y) > 0 are the activity levels at which technology ` has to operate.
- �(y)`(y) = 0; for all `, or equivalently `(y) 2 T (y) where T (y) = f�(y):z = 0g.

The proposition is derived in a pedestrian way in appendix 1, in which the map-
pings �`; ` are carefully de�ned and assessed.
We may illustrate the above concepts as well as our �rst insights in very simple

cases.
The �rst case has only one factor K = 1, and 2 goods, L = 1; 2; the production of

which has constant returns to scale. The case is both well known and easy to visualize,
as in Figure 1.

Figure 1 depicts the transformation possibilities of sector 1, (resp.2) when it can
use one unit of the scarce factor, in the quadrant underneath, (resp. to the left) of
the positive quadrant. When the unit of scarce factor can be shared in proportions
t; 1� t; the corresponding production plan obtains as the convex combination of two
production plans in the left and right quadrant. The straight line AB visualizes the
upper limit of attainable production plans.
In the above formal terms, Figure 1 visualizes ; the section of the global production

set , a subset of RL+K = R3; with the hyperplane v = 1, i.e attainable global
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The geometry of Global Production and Factor Price Equalisation. 10

Y1

Y2

production plans when the available quantity of factor is 1 (what we called Y (:1)).
The production set itself is the cone generated in R3 from this section. The e¢ cient
frontier of Y , YE, is the cone in R3 generated by the upper bold line (the upper
bound of the section). The e¢ cient frontier of YNS; YNSE is the cone in R3 generated
from the segment AB of the straight line : it is a portion of hyperplane. This is a
remarkable and well known property, on which we come back later.
Note that this primal view of the e¢ cient set has a dual counterpart : there is a

single supporting hyperplane T (y) to the e¢ cient part of the non-specialized global
production set : also, the associated production prices, �(y) are proportional to the
�labour values�of goods
Such a geometry is not general: a two goods and two factors model of Heckscher-

Ohlin type, the global production set is obviously still a cone. Its section by the plane
(v1 = 1; v2 = 1) would be again be convex, but it would be strictly convex, so that
the boundary of its section in the positive quadrant would not be a straight line, as
in Figure 1, but a single point, as in Figure 2.12

12This is well known in the standard H-O model; in our version of the model, it may be proved
directly but also results for example from the forthcoming theorems.
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The geometry of Global Production and Factor Price Equalisation. 11

3. Global economic efficiency :

3.1. The primal viewpoint and the geometry of YE.

The geometry of YNSE. Let us now focus attention on the non specialized

e¢ cient frontier YNSE. Remind here the examples of Section 2
We already know from the decentralization lemma that YNSE is smooth, in the

sense that at every point y of YNSE there is a unique normalized supporting remu-
neration plan �(y), and hence a well-de�ned and unique tangent hyperplane T (y).
The next result tells us that YNSE is made up of L-dimensional cones, smoothly glued
together.
Take an e¢ cient NS production plan y, and consider the (unique) normalized

y-allocation (`(y); �` (y)); 1 � ` � L. Set:

C(y) =

(X
`

�``(y) j �` > 0; 1 � ` � L;

)

C (y) is an L-dimensional polyhedral cone in RK+L, with vertex at 0;and edges
carried by the `(y). In the case K = 1; L = 2 we investigated before, C (y) is the
two-dimensional cone in (x1; x2; v)-space, the section of which with v = 1 is the line
segment we depicted in Figure 1.
We know that y 2 C(y) (just take �` = �` (y)). Recall, from the previous section,

that T (y) = fy0 j �(y)y0 = 0g is the tangent hyperplane to Y at y.

Proposition 3. C(y) = T (y) \ YNSE:

The proof is in appendix.
The proposition provides the �rst �primal� insight into the geometry of the set

YNSE : it is a disjoint union of L-dimensional polyhedrals, each of one being the
intersection of some tangent hyperplane with the set YNSE itself.
This property will not be commented here at his stage. Note only that in both cases

illustrated in Figure 1 and 2, YNSE consists of a single 2-dimensional polyhedral. We
have already commented the property on Figure 1, although its illustration through
Figure 2 requires some additional mental gymnastics.

Non-substitution theorems. Remind that, for v 2 �RK++, Y (:; v) = fx j (x; v) 2 Y g
and, with similar notations, we have de�ned YNS(:; v); YNSE(:; v), (all are convex sets
with non-empty interior, but not cones) and Y +

NSE(:; v).
A facet of YNSE(:; v) is the intersection of YNSE(:; v) with a tangent hyperplane;

it is necessarily a closed convex set containing the points of contact. We de�ne its
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The geometry of Global Production and Factor Price Equalisation. 12

dimension to be the dimension of the smallest a¢ ne subspace which contains it, and
we recall that its relative interior is its interior relative to its a¢ ne span.
Our main result in this subsection, which generalizes the classical non-substitution

theorems, is :

Theorem 4. Every x 2 YNSE(:; v) belongs to a single facet. This facet has dimension
(L�K), and x belongs to its relative interior.

The proof is in appendix .
There are two limiting situations, K = 1 (one factor) and K = L � 1 (many

factors). In the �rst case, we get the classical non-substitution theorem of Arrow and
Samuelson:

Corollary 5. When there is only one factor of production, available in total quantity
�v 2 RK++, the set Y (:; v)\RL+ of all goods bundles which can be produced is bounded
by an a¢ ne hyperplane.

Proof. The set Y (:; v)\RL+ is bounded by YNSE(:; v)\RL+ . By Theorem 4, every
y 2 YNSE(:; v) belongs to a single (L � 1)-dimensional facet, and is in its relative
interior. The only possibility is that this facet is common to all y 2 YNSE(:; v) \ RL+
, and the result follows.
To say what happens in the second case, we must recall that a hypersurface in

RL is ruled if it is a union of straight lines, and that it is developable if it is ruled
and, along each of these straight lines, all points have the same tangent hyperplane.
The next corollary does not seem to have appeared in previous literature, although
it would (probably) follow from Travis (1972?) in the case L = 3; K = 2; and from
(2006) in the case L = 4; K = 3

Corollary 6. If there are L � 1 factors of production, available in total quantity
�v 2 RK++, the set Y (:; v) \ RL+ of all goods bundles which can be produced is
bounded by a developable hypersurface.

Corollary 6 is visualized on Figure 3, for L = 3; K = 2: The �gure provides a good
support for intuition of the general situation.

It is suggestive in showing why the dimension of the faces, here one, is compatible
with the fact that supporting prices vary smoothly on the e¢ ciency surface. This is
a key point in the general understanding of the problem.
Another interesting case is L = 2K : there are twice as many goods as factors.

Corollary 6 provides another viewpoint on the general situation, in what will appear
later (Section ..) a borderline case
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The geometry of Global Production and Factor Price Equalisation. 13

1

2

3

DIAGRAM 2

Corollary 7. If K = L=2, every x 2 YNSE(v) \ RL+ belongs to the relative interior
of some K-dimensional facet of Y (v) \RL+.

Corollary 7 is another consequence of Theorem 4 : the result was stressed �rst by
Mc Kenzie (1955)

Corollary 8. (Mc Kenzie) : If (p; w1); (p; w2) are two remuneration plans in YNSE(v)
associated with x; x0; then w1 = w2:

Proof. Proof : McKenzie�s proof (in a model with a �nite number of activities
and hence slightly di¤erent from this one) would however works here. The result is
here a simple consequence of the above theorem : suppose that there exist such x; x0;
in two di¤erent facets. The statement implies necessarily : px+ w1v > px0 + w2v; so
that px > px0: But symmetrically one would have px0 > px; a contradiction.

This is the �rst occurrence in the paper of what we shall call later (Section )
a factor price equalisation result, : Two di¤erent facets in YNSE(v) have di¤erent
normal price vectors p:

The geometry of Y (:; x). Remind that : Y (x; :) = fv0j(x0; v0) 2 Y; x0 � xg the
set of factor endowments that allow to produce x;
We have :
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The geometry of Global Production and Factor Price Equalisation. 14

Proposition 9. The set Y (x; :) = fv0j(x0; v0) 2 Y; x0 � xg; is strictly convex, 8x 2
Pr ojxY
Proof. The proof will be given later, but the statement is more conveniently
presented unde the present headings

It follows :

Corollary 10. The sets Y (el; :) 8l = 1:::L; are strictly convex.

3.2. E¢ ciency : the dual viewpoint. Dual characterisation of e¢ ciency has
already being presented. The dual viewpoint leads us to describe the e¢ ciency fron-
tier indirectly, through the geometry of the set of supporting prices (mathematically
speaking, we describe the polar cone of the production set rather than the cone itself).
We pursue the implications of the initial analysis by emphasizing the problem of cost
minimization.

Cost Minimisation, production prices, and the �factor values�matrix..
Let a remuneration plan q = (p; w) 2 RL+K++ be given. Say we wish to produce one
unit of good `. To do it at minimal cost requires solving the optimization problem:

Min
�
px�` + wv j x�` 2 RL�1+ ; v 2 RK+ ; f`(x

�`; v) � 1
	
: (5)

It follows from our assumptions that this problem has a unique solution13 for every
q. In other words, there is a unique cost-minimizing bundle of goods and factors for
the production of one unit of good `. In line with the notation of formulas (22),(23)
and (24) we denote this solution by:

(a`(p; w); b`(p; w)) 2 RL++ �RK++ (6)

with a`` = 0. We shall refer to the (a
j
`; b

k
` ) as the Leontie¤ coe¢ cients associated with

the remuneration plan q = (p; w) : The unit production cost of good ` is then

c`(p; w) = pa`(p; w) + wb`(p; w) =
X
j 6=`

pja
j
`(p; w) +

X
k

wkb
k
` (p; w) (7)

which is the optimal value achieved in problem (5). It follows from Conditions 1 and
2 that the function c` is positively homogeneous of degree one and concave. Using
the nondegeneracy in Condition 3 and the inverse function theorem, we see that it is
C1 as well.
13Indeed, existence follows from the fact that the set where f`(x�`; v) � 1 is convex and contained

in the strictly positive orthant, by conditions 1 and 2, while the coe¢ cients of (p; w) are strictly
positive. Uniqueness follows from condition 3 and the strict quasi-concavity of f`
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The geometry of Global Production and Factor Price Equalisation. 15

In a remuneration plan, production prices must be equal to costs, (average and
marginal costs are equal in our constant returns to scale setting) so that the following
relation holds :

p` = c`(p; w) = p0a`(p; w) + w0b`(p; w); 8` (8)

In order to describe this system of equations in a more compact way, let us de-
note by A(p; w) the L � L matrix with a`(p; w) as l-th column (so that all diagonal
coe¢ cients are zero) and by B(p; w) the L�K matrix with b`(p; w) as l-th column.
Considering p and w as line vectors, equations (8) then become:

p (I � A(p; w)) = wB(p; w) (9)

If the above formula holds true for some p 2 RL++ and w 2 RK++, then A
0(p; w)

is necessarily productive, and the same is true of its transpose14 A(p; w) so that the
matrix I � A(p; w) is invertible with positive entries. Hence, one will write (9) as :

p = wB(p; w) (I � A(p; w))�1 (10)

= w[B(p; w) +B(p; w)
X
n�1

An(p; w)] (11)

p = wB(p; w) (I � A(p; w))�1 = w[B(p; w) +B(p; w)
X
n�1

An(p; w)]

Note then, that if the bundle x has to be produced with the techniques B; A; the
vectors of factors directly required for production is Bx; the vectors of goods directly
required is Ax; and the vector of factors indirectly required for producing these goods
is BAx; and the quantity of goods indirectly required is A2x; the production of which
also requires BA2x of factors, and so forth.
In a one-dimensional setting (K = 1), where the only factor is called labour, this

formula expresses the standard �nding that the labour value of a commodity is the
sum of direct labour plus (total) labour indirectly incorpated in the production of the
commodity.
Let us denote F (p; w) = B(p; w) (I � A(p; w))�1 = [B(p; w)+B(p; w)

P
n�1A

n(p; w)]:
Here, from the decomposition just stressed the term Fkl at the kth line and l th

column of the K � L matrix F (p; w) is similarly interpreted as the total quantity
of factor k used directly and indirectly in the production of good l;(with the cost
minimizing techniques when the inputs prices are (p; w)):The kth line of the matrix
is a one-dimensional line vector describing the factor k value of the l goods : it is the
�labour values�vector, when the factor is called labour. Similarly, the lth column is

14 ,See for example Horn-Johnson (1995), Green-Whinston-Mas-Colell ()
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The geometry of Global Production and Factor Price Equalisation. 16

the vector of factors directly or indirectly required for the production of one unit of
good l;
We propose to call F the �factor values�matrix.
Cming back on the fact that if ( p; w) is a remuneration plan associated with some

e¢ cient production plan in YNSE;then p = wF (p; w): we reassess it in words :
The price of any good equals the sum over factors of the price of the factor mul-

tiplied by the factor value of the good.

Relating the primal and the dual viewpoint.. The proof of next result

requires a careful comparison of the dual and primal notation which is made in the
appendix. We rewrite the �ndings of proposition 9 and 10 of the appendix, in a way
that is immediately relevant here.

Proposition 11. 1-If y = (x; v) 2 YNSE, and (p; w) = ��(y) is an associated remu-
neration plan, then :p = wF (p; w); and 9� � 0 s.t x = (I � A(p; w)�; v = B(p; w)�
2- If :(p; w) 2 RL+K++ ; and p = wF (p; w); then any y = (x; v); x 2 RL; v 2 �RK++;

such that there exists 9� � 0 with x = (I�A(p; w)�; v = B(p; w)� ;belongs to YNSE,
and (p; w) = ��(y):

Corollary 12. In both parts 1 or 2 of Proposition 1, one has F (p; w)x+ v = 0:

In addition to the factor values interpretation of e¢ ciency prices stressed again in
the proposition, the corollary says that for any e¢ cient production plan, the factor
values of a good vector in equals the quantity of factors available for production. The
latter property obtains from the decomposition of y stressing activity levels �, s.t
�[I � A(:)]� = x and B(:)� = �v; as noted in parts 1 and 2 of the proposition, and
derived and expressed carefully in the Appendix.

4. Prices of factors and prices of goods
At this stage, it is clear that pursuing the dual viewpoint require that we improve our
inderstanding of the structure of the set of all possible remuneration plans q = (p; w):

4.1. - A key insight, the Preparation theorem.. Let us come back to the
above pricing equations, that characterize the couples (p; w) that are remuneration
plans:

p = wB(p; w) (I � A(p; w))�1 = F (p; w):
It has been noticed early, that a standard counting, number of equations number of

unknowns, suggests that whenever the number of goods equal the number of factors,
there may be a one-to-one correspondance between the factor price and the goods
prices. Also, with more goods than factors, the same unformal counting seems to
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The geometry of Global Production and Factor Price Equalisation. 17

reinforce the presumption. In fact, neither the �rst ��nding�nor the second one are
true. The examples of Section 5 illustrate this remark to which we come back later.
However, behind these unformal counting exercises, there is something which is

general and true and which is indeed captured by the implicit function theorem : if
(p; w) is a solution of the above equations, and if we change w by dw; then, there
exists a unique p + dp that satis�es the equations. In other, the set of (p; w) that
satis�es �locally�the equations is such that p = '(w); in more technical words, the
set is the �local�graph of some function '. We show here that this function can be
extended to a global one.
Let us be more formal.
The set under scrutiny in this section is the cone15:

� = fq = (p; w) j q = ��(y); � > 0; y 2 YNSEg

� = fq = (p; w) 2 RL+K++ j p = wB(p; w) (I � A(p; w))�1g (12)

.
:We begin, as announced, by showing that � is locally the graph of a map '. This

local property has been known in the literature of the seventies and eigthies although
rarely stressed as such.16

Lemma 13. Let q = (p; w) 2 �: There exists a neighbourhood N of w in RK++; and
a smooth map ' : N!RL such that '(w) = p and:

f('(t); t) j t 2 N g � �

Proof. Let q = (p; w) 2 �: So equations (12) hold true in a neighborhood of �.
By the envelope theorem, this set of equalities can be di¤erentiated as :

dp = B(q) (I � A(q))�1 dw:

The conclusion follows from the implicit function theorem applied at q.

15Recall that �(YNSE) � E1, meaning that p1 has been normalized to 1. Equivalently :

� = fq = (p; w) j q = �q0; � > 0; q0 2 �(YNSE)

The fact that this set is non-empty follows from C4.
16See however Woodland (1983), chapter 5 and specially p. 115,116.
Naturally, in the case where goods are produced only from factors (as is the case in the Gale-

Nikaido tradition evoked below) both the local and the global property have been known for long : '
consists of the collection of standard cost functions (costs depending only on w) and from standard
production theory,
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The geometry of Global Production and Factor Price Equalisation. 18

This de�nes ' locally only. We are going to show that it can be de�ned globally.
More precisely, we will show that the projection map from � to RK++ is globally one-
to-one. The proof here is more delicate, and is given in Appendix 2. We show �rst
that above each w there can be at most one p (Lemma ??)17, and then that the local
extension can be made global (Lemmas ?? and ??).

Theorem 14. (Preparation Theorem) � is the graph of a map ' : RK++ ! RL++
, smooth and homogeneous of degree one.

In economic terms, the theorem asserts that prices of factors globally determine
the prices of goods. Although the statement is straigthforwardly established in models
where goods are produced from factors, we believe it si novel in the present context..
It follows immediately that the relative prices of factors globally determine the

relative prices of goods. Normalizing the prices of goods by setting p1 = 1 (that
is, taking the intersection with E1) tells us that the prices of factors should satisfy
' (w)1 = 1: In other words, w should belong to the (K � 1)-dimensional manifold F1
de�ned by the nonlinear equation:�

(I � A('(w); w))�1B('(w); w)w0
�
1
= 1 (13)

where the notation []1 denotes the �rst component of the bracketed vector.
Next, we have :

Proposition 15. The jacobian derivative of ' : RK++ ! RL++ , a smooth and homo-
geneous of degree one map is

@'(w) = F ('(w); w)

Where F is the L�K matrix of transposed �factor values�matrix, evaluated in
('(w); w)

Proof. It is an easy application of the �enveloppe theorem�.
In words, the property has a very intuitive interpretation, when taking into ac-

count our interpretation of the �factor value�matrix : the change of the price of
good l; induced by a (small) change of the price of factor k (approximately) equals
the factor k value of good l:18

17The argument is reminiscent of a standard argument in the analysis of the Malinvaud-Taylor
algorithm, see Malinvaud (1967). We owe the idea as well as relevant references to Michael Jerison.
18In the case wher goods are produced only from factors, it is clear that @'(w) obtains from the

collection of cost minimizing input bundles : the factor k value of good l is there the direct quantity
of factor k used for the production of one unit of good l
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The geometry of Global Production and Factor Price Equalisation. 19

Note that, speci�yng the above statement in a 2x2 world, leads to the Stopler-
Samuelson theorem. It may make sense to view this formula as a generalized Stopler-
Samuelson theorem.19.

4.2. A synthetical dual description.. Up to now, we have focused attention
on sections with �xed v asking ourselves what are the remuneration plans, which we
may index by w: A natural question is to know what is the set of w associated with
a given v or, equivalently, the set of v associated with a given w ? Next proposition
sheds light on the second question.

Proposition 16. Fix w: The set of v such that ('(w); w) is a remuneration plan
for some y in YNS is a closed convex cone denoted K(w) generated by the vectors
Fl('(w); w); l = 1::L: The mapping w ! (K(w)) is continous.

The knowledge of the mapping K(w) together with the mapping '(w) leads to
a simple synthetical description of the e¢ ciency frontier under scrutiny here. Let us
provide it �rst from the sections YNSE(:; v)

Theorem 17. Description of Y +
NSE(:; v):

The knowledge of '(w); K(w) determines Y +
NSE(:; v) as follows.

Y +
NSE(:; v) = \w2K�1(v)fx0 2 RL++ j F ('(w); w)x0 + v = 0g:

Theorem 17 puts emphasis on Y +
NS(:; v); but its proof has implications on the

description of YNSE: that are displayed as Corollary 18. Both will be commented
later.

Corollary 18. Description of YNSE:
? 6= \w2K�1(v)f(x 2 RL++; v) j F ('(w); w)x+ v = 0g � YNSE
YNSE � \w2K�1(v)f(x; v) j F ('(w); w)x+ v = 0g

The proof of the above statements relies on a series of Lemmas

Lemma 19. The set of v for which there is a facet contained in a set fx0j F (p; w)x0+
v = 0g for a given (p; w) is a convex cone K(p; w):

Proof. Take (p; w) and y1 = (z1v1); y2 = (z2; v2); such that (p; w) = �(y1) =
�(y2); then fF (p; w)z+ v = 0g; for (z1v1); (z2; v2) implies that it holds for tz1+ (1�
t)z2; tv1 + (1� t)v2:

19This formula also can allow to stress �friends�and �enemies�along the lines of Jones-Scheinkman
(1977).
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The geometry of Global Production and Factor Price Equalisation. 20

Lemma 20. Consider y = (x; v) 2 YNSE, and (p; w) is an associated remuneration
plan.Then, the L-dimensional cone C(y) in YNSE to which, according to Theorem 4,
y belongs is such that : f(x0 2 RL++; v0) j F (p; w)x0+v0 = 0g � C(y)

C(y) � f(x0; v0) j F (p; w)x0 + v0 = 0g

and the facet in YNSE(:; v) to which it belongs is such that :

Facet (x) \RL++ = fx0 2 RL++ j F (p; w)x0 + v = 0g

Proof. From the above proposition 11 and its corollary, we know that F (p; w):x+

v = 0:From the same proposition, every y0 = (x0; v0) in YNSE with (p; w) as remuner-
ation plan is such that: F (p; w):x0+ v0 = 0: Reminding that C(y) = T (y)\YNSE and
that y0 = (x0; v0) 2 T (y) = T (y0); (normal to (p; w)), we get the second conclusion.
For getting the �rst conclusion, we note that if F (p; w)x + v = 0; for some v and
some x;then there is an x0 2 RL++ with F (p; w)x0+v = 0;The third conclusion follows
easily from the de�nition of YNSE(:; v)
At this stage, the proof proceeds as follows :

Proof. We then refer to the preparation theorem and the above lemma. If F ('(w); w)x+
v = 0; for some v and some x;then there is an x0 2 RL++ with F ('(w); w)x0 + v = 0;
so that v does belong to the convex cone generated by the columns of F ('(w); w):
Conversely, if v belongs to this cone, the above lemma yields that it belongs to
K(w): Hence, the conclusion. The continuity properties of the mapping K follow
easily. Proposition 16 follows.
Theorem 17 then obtains from Proposition 16 and the lemma.
Theorem 17 provides the �equations�determining the cones of YNS and the facets

of YNS(; :v) exhibited Proposition 3 and Theorem 3. In words, paraphrasing Theorem
4, the equations determining a facet in YNS(; :v) read : the �factors values� of any
production plan of goods in the facet equals the quantity of available factors.
The statement is clearly illustrated from previous �gure 3. Each of the lines that

generate Y +
NSE(:; v) in the �gure is the intersection of two hyperplanes, the �rst one

expressing that, say, the total "labor" values of the three goods equals available
labour, the second one expressing, say, that the �land value� of the three goods
bundle equals the available land.
Next Corollary con�rms the assertion of Proposition 9.

Corollary 21. Y (x; :) is strictly convex.

Proof. The set does not contain any "line".

Then, we have :
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The geometry of Global Production and Factor Price Equalisation. 21

Theorem 22. Description of Y (x; :)
Y (x; :) = f[w2RK++(F ('(w); w))xg+RK++
and �F ('(w); w))x is the unique solution to minf�wv0 j v0 2 Y (x; :)

We �rst ask ourselves what is the cost minimizing bundle of factors, at factor
price w;for producing x: The answer is simple : the unique solution is to take �v =
F (p; w)x. Let us prove it.
Proof. Let (x; v) be a NS e¢ cient production plan, and (p; w) the supporting
remuneration plan. Then, v = �F (p; w)x is the unique solution of the problem:

minf�wv0 j v0 2 Y (x; :) (14)

and the optimal value is p:x. Applying Lemma ??, we get:

px+ wx = max fpx0 + wv0 j (x0; v0) 2 Y g = 0

As a consequence, we have:

wx = max fwv0 j (x; v0) 2 Y g = �px

which is the desired result by (??).
Conclusion then follows from the Preparation theorem and Corollary 21.
We stress two useful corollaries

Corollary 23. Dual description of the sets Y (e`; :); 1 � ` � L,
1- B(Y (e`; :)) = f[w2RK++(F

l('(w); w)g+RK++ is a strictly convex set.
2- 'l : w 2 RK++ ! wF l('(w); w) is the surrogate concave homogenous of degree

zero cost function,
3- (@2'l=@w

2) is a symmetric negative semi-de�nite KxK matrix of rank K � 1:
4- Y +

NS can be recovered from Y (e`; :);8l:

Proof. Theorem 22 together with the Preparation Theorem imply 1 and the fact
that (@'l=@w) coincides with the second derivative of the functionw ! w:F (' (w) ; w)e`
(which is homogenous of degree one). So it must be symmetric and degenerate. As
'l minimizes the cost, it is a concave function with respect to w; so that ((@

2'l=@w
2)

must be negative semi-de�nite. 4 follows from ...
Finally we stress static compartive results, by examining the local co-movements

of a NS production plan and the supporting remuneration plan. The following propo-
sition summarizes the result in a way that attempts to compromise rigor and readi-
bility.
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The geometry of Global Production and Factor Price Equalisation. 22

Proposition 24. ??Let �y = (x; v) be a NS e¢ cient production plan, and (p; w) some
supporting remuneration plan, so that p = ' (w) Then (x + dx; v + dv) still belongs
to YNSE; and (p+ dp; w + dw) still is an associated remuneration plan if and only if :
1- pdx+ wdv = 0;
2- dp = (dwF ['(w); w]) ;
3- dwM = dv � [F ('(w); w)]dx, where

M :=
@

@w
[F ('(w); w)x] jw= �wj

is a symmetric negative semi-de�nite KxK matrix of rank K � 1.

Proof. 1 and 2 follow imediately from our previous �ndings ...
>From the above theorem M as a combination with strictly positive coe¢ cents

of (@'l=@w) must be symmetric and degenerate. Note also that, by Proposition ??,
�F (' (w) ; w)x is a cost-minimizing vector with respect to w; so that M must be
negative semi-de�nite.

Corollary 25. If dw = 0, that is, if the prices of factors do not change, we get
dv = F ('(w); w)dx:

Ribzcinsky�s theorem appears as a particular case of the above statement in a 2x2
world with no-intensity reversal and where goods are produced from factors only.

5. Factor Price Equalisation.

The factor price equalisation preoccupation seems to have here a natural formulation,
without predjudging at this stage how it interferes with the trade questions : in a given
production economy, is it the case both that (p; w1) and (p; w2) can be remuneration
plans so that the same price for goods is compatible with di¤erent prices of factors
? In other words, could it exist two distinct, here unconnected, economies with the
same available technologies, two distinct total vector of factor endowments, such that
respectively (p; w1) and (p; w2); w1 6= w2;appear in equilibrium?

5.1. Classical �ndings : number of goods equal number of factors. This
question has been looked at in the literature.
First, the question may be raised in di¤erent ways and has indeed been. For

example Mc Kenzie asks a more demanding property : can it be the case that (p; w1)
and (p; w2) can be remuneration plans, in the same section v = ste of the production
set. As we have seen, the answer has been known to be no, a theorem that is more
easily recovered from the present analysis . In other words, one cannot �nd two similar
economies, both in terms of technologies and inital endowments, in which the factor
price equalisation fails.
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The geometry of Global Production and Factor Price Equalisation. 23

W1

C1(W1,W2)=1

C2(W1,W2)=P2

Let us come back to the initial and more di¢ cult question : can (p; w1) and (p; w2)
can be remuneration plans, (for di¤erent v)
It has been known for some time that the answer to the above question is no in

the two goods two factors models, whenever the so-called factor intensity of goods
is not reversed in the production process : this is the no-intensity reversal condition.
Under the no-intensity reversal condition, the (remuneration) price of goods uniquely

determine the price of factors : this is the factor price equalisation property. Indeed,
in this case, in the plane (w1; w2) of the prices of factors, which here is drawn under
the assumption that there is no intensity reversal and that good 1 is more intensive
in factor 1.

Such a univalence theorem has been extended to the case where the the number
of factors equals the number of goods and goods are produced only from factors,
in a literature starting from Gale-Nikaido (1965) and which was active in the seventies
(see f.e Nikaido (1972)). The literature has emphasized a generalized no-intensity
reversal condition, a weaker form of which appears in Mas-Colell (1979b).
We show that Mas-Collell�s �ndings hold in the extended setting we consider here.
Assume that K = L and consider the function ' : RK++ ! RL++; whose existence

has just been shown.
As in Mas Colell (1979b), let us consider the share matrix S (') with entries:

s`k =
wk
'`

@'`
@wk

As we have seen above, S (') can be computed explicitly in terms of A and B.
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The geometry of Global Production and Factor Price Equalisation. 24

DIAGRAM 4
W1

W2

The extended non-intensity reversal assumption that we consider asserts that the
determinant (detS) never vanishes : the reader will note that in the one-dimensional
case this is equivalent to non intensity reversal as discussed above.

Corollary 26. Assume K = L, consider the function ' the existence of which is
established in the above preparation theorem, and assume that detS'(w) is bounded
away from zero on RK++. Then ' : R

K
++ ! RL++ is onto and one-to-one.

Proof. The assumption means that there is some " > 0 such that j detS'(w) j
� " for all w 2 RK++. The proposition follows the fact that, once ' is shown to exist,
the proof, and indeed the statement of Mas Colell (1979b) applies here20

5.2. Factor price equalisation in general.. However, the univalence property
does not hold true when the no-intensity reversal condition does not hold, even if
K = L : for example the next �gure, which exhibits iso-cost curves in the space
of the factor prices, when K = L = 2;shows an example of non intensity reversal,
which has nothing pathological. Note that here, as well as in the previous picture,
the analysis exploits the fact - the generality of which is established by Theorem 11-
that the set of normalized (the normalization obtains by putting the price of good one
equal to one) remuneration plans (p; w) is a one-dimensional object (because there
are only two factors) that may be indexed by the ratio of factor prices (the length of
the factor price vector being determined by the price normalisation).

20For the reader�s convenience, let us mention that the proof consists in considering the map  :
RK ! RL de�ned by  (u) = log'(expu1; :::; expu2). By assumption, the determinant of the
Jacobian matrix D is bounded away from zero. By Hadamard�s global version of the implicit
function theorem,  is onto and one-to-on (see also Mas Colell (1979a))
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The geometry of Global Production and Factor Price Equalisation. 25

DIAGRAM 5a
W1/W2

P1/P2

Here, the prices of goods do not any longer univoquely determine the prices of
factors : every p is associated with two di¤erent w:Therefore, plotting relative prices
of goods in terms of relative prices of factors, we get a local maximum (or minimum),
as in Figure 5.

Similarly, in the case where the number of goods were 3, with the same number of
factors,K = 2; L = 3; mapping relative prices of goods in terms of relative prices of

factors gives a map from R into R2 and Figure shows a picture with self-intersections.
Each self-intersection corresponds to a point where the map is not one-to-one : there
are some p associated with two w. that is, the prices of goods in such a case do
not determine the prices of factors. Although the picture rightly suggests that the
non univalence situation is less frequent than in the previous example, it is non
pathological (only strong assumptions as non intensity reversal can rule it out) and
and (if it holds for some production economy, it holds for neighbour ones, for every
reasonable de�nitions of neighbour). For example, in a three goods economy where
there is intensity reversal occuring for every pair of goods, the reader is invited to
visualize in the two dimensional factor prices where iso-costs functions are drawn, a
situation where three iso-cost curves intersect in two di¤erent points and convince
himself that the occurrence of the sitaution is not destroyed by a small change of the
underlying production sector.

Note that a self-intersetion of the above curve inw1; w2..satis�es ' (w1) = ' (w2) ; w1 6=
w2

In a sense, we have two equations and two unknown, and the fact that this system
of two equations has a solution should not be expected to be pathological.
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DIAGRAM 5b

P1

P2

DIAGRAM 5c

P1
P2

P3

Coming back on the K = 2 exemple, and reminding the one-dimensional prop-
ertyof the set of remuneration plans, we note that the likelihood of p associated
with two w, becomes weaker when L = 4: With four goods, or more, the set under
scrutiny would be a parametric curve in R3, or in a higher-dimensional space, and
it is extremely unlikely that such a curve would display self-intersections (see Figure
5b).
We can also appeal to the above equations determining a self-intersection. The

system ' (w1) = ' (w2) ; w1 6= w2 has three equations and two unknowns.
Hence, the prices of goods should be expected to determine the prices of factors

whenever K � 4 = 2L. Indeed, one will show so that the factor price equalisation
theorem holds.
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The geometry of Global Production and Factor Price Equalisation. 27

:The idea of the proof can be related with this counting of equations and un-
knowns. In the general case, there are (L� 1) equations, one for each (normalized)
good price. On the other hand, there are (K � 1) unknowns for w1 and (K � 1) for
w2, in total 2 (K � 1) unknowns. If there are more equations than unknowns, that
is, if:

L� 1 > 2 (K � 1)
L > 2K � 1

Then a solution is unlikely.

5.3. A generic theorem. Using Thom�s Transversality Theorem, is possible to
frame the above discussion in a rigourous mathematical statement. Let us �rst note
that a production economy, in our model, is entirely characterized by the family
f = (f1; :::; fL) of production functions. Pick some r � 2, and let us denote by F r

the set of all f = (f1; :::; fL) which satis�es conditions C1 to C4, each f` being r times
continously di¤erentiable. In Appendix 11 we prove the following:

Theorem 27. If 2K � L, then, there is generically inF r, factor prices equalisation
holds in the economy generated by f

'(w1) = '(w2)) w1 = w2: (15)

In other words, for "almost all" f 2 F r, factor prices equalisation holds in the
economy where f = (f1; :::; fL) are the production functions, whatever the total factor
endowments. Since there is no equivalent of Lebesgue measure in in�nite-dimensional
spaces, such as F r the expression "almost all" take on a special meaning, which is
described in Appendix 11.
The proof of Theorem ?? is given in Appendix 11. It builds on the above intuition,

that is, if there are more equations than unknown, then system (??) should have no
solution, and if it happens to have one, it should be a pathological situation which
could be corrected by an arbitrarily small perturbation of the function '. But one
can perturb ' only through perturbing f , and the main di¢ culty in the proof is that
the dependence of ' on the (f1; :::; fL) is not explicit. One then has to go through
the implicit function theorem, and to prove that a certain number of determinants
do not vanish, which gives the proof a rather technical character.
The idea of the proof can now be explained more precisely. Recall the de�nition

of E1 from (??) and F1 from (13). Set:

D =
��
w1; w2

�
j w1 6= w2

	
� F1 � F1
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P1

P2

Delta : Codimension L
1

Image : dimension <
2K1

and de�ne a map � : D ! E1 � E1 by �(w1; w2) = ('(w1); '(w2)). Now consider
the diagonal:

� = f(p1; p2) 2 E1 � E1 j p1 = p2g
Figure :

The codimension of� is L�1 (because E1 has dimension L�1), and the dimension
of the image of � is at most 2(K�1) (because F1 has dimensionK�1). If 2(K�1) <
L� 1, that is, 2K � L; the image of � will not intersect � in general21. This means
that, when 2K � L; the equality '(w1) = '(w2) cannot occur when w1 6= w2:
If L < 2K, there are two possible cases: K < L < 2K and L � K. In the �rst

one, we still have a factor price equalisation theorem, but a weaker one. It starts
with the following geometrical result, which is also proved in Appendix 11.

Theorem 28. If K < L < 2K, generically in F r, the cone

C =
��
w1; w2

�
2 R2K++

�� w1 6= w2; '(w1) = '(w2)
	

21This is a nonlinear version of the geometrical fact that a randomly chosen linear subspace of
dimension p will not intersect another randomly chosen linear subspace of codimension > p.
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The geometry of Global Production and Factor Price Equalisation. 29

is either empty, or a submanifold of dimension (2K � L)

Comments and corollary.

6. A few words on applications.

The direct applications of our results have been stressed (Corollary) or are obvious.
However, there are many potential applications, some of them we have started to
develop. We provide here a list of such applications. Our forthcoming paper (Ekeland-
Guesnerie (2007)) attempts to describe more in detail the lines of research that may
be pursued, while stressing some �ndings of work in progress.

Equilibrium theory with production. . Equilibrium theory of the walrasian
type adresses many qualitative questions. We shall start here for the assesment of the
Walras correspondence.

The properties of the Equilibrium correspondance. . The question is the
following : Consider a set of economies - where endowments, preferences, etc...- may
vary. The equilibrium correspondence associates with a given economy the set of
equilibria of this economy : the knowledge of this correspondance brings a qualitative
information : what is the number of equilibria, how does this number vary with the
economy, in which cases is the number equal to one (the uniqueness question). At the
highest abstract, as the one adopted by Kehoe (1985), the qualitative answers remain
general, even by mobilizing the most powerful techniques.
In the setting of a many-consumers economy, where endowments vhin factors are

privately owned and inelastically supplied, the comparative statics of the change from
a situation 0 to a modi�ed situation where preferences are �xed but individual initial
endowments change by dvh is governed by an equation of the form : .
Comparative statics is the governed by the formula :
M(0)dw0 = �(F (0))(@D=@p)Cste0 F (0)dw0�

P
k F (0)

P
h(@Dh=@R)(v

k
0;h�F hx0;h)dwk

+
P

hw0dvh(@Dh=@R)0] + dv:
where notation is the one adopted in the paper for M;F;w; v, possibly indexed

by houselhold vh; xh and where (@D=@p)Cste0 denotes the matrix of compensated ag-
gregate demand and (@Dh=@R) the individual vectors of income e¤ects.
The relevant matrix in a one consumer case is : G(0) = fA(0)+(F (0))(@D=@p)Cste0 (F t(0))g

which is negative semi de�nite and invertible. The possible bifurcations are associated
with the additional terms
+
P

k F (0)
P

h(@Dh=@R)(v
k
0;h � F hx0;h)dwk

The di¢ culty is, like in an exchange economy linked to the individual income ef-
fects, that relate to the di¤erence in the quantity of factor k held by consumer h and
the quantity of factor k; directly or indirectly incorporated that he consumes. Het-
erogeneity then matters a lot...The understanding of this term is crucial for studying
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The geometry of Global Production and Factor Price Equalisation. 30

the bifurcations of the Walras correspondence, but also for other questions which are
sketched here.

Others.. - Uniqueness : the just sketched analysis suggests new results that
would idnetify connected components of economies without bifurcations and/or re�ect
limited heterogeneity of income e¤ects. It also allows to appraise existing results
obtained in the case where goods are only produced from factors and to extend them
to the more complex setting.
- An alternative to the standard Walras tâtonnement would be a tâtonnement

bearing on all (or a subset) of factor prices while supposing that the prices of the
goods (in our teminology) are immediately equated to the price implied by the factor
prices. One can �nd a number of arguments supporting this suggestion. One of them
is that it was one of the original proposals of Walras himself (Walras (), p. ).
The proposition can be viewed formally as involving a tâtonnement process on an

excess demand function that would be equal to Z(w) = F ('(w); w)D('(w); wv) �
v;at �xed v.
Such an excess demand function cannot be anything (work in progress).
Again the income e¤ects associated with the above term +

P
k F (0)

P
h(@Dh=@R)(v

k
0;h�

F hx0;h)dwk play a crucial role in the analysis. Conditions for the existence of a Keynes
e¤ect (decrease in wages involves increase in unemployment) are displayed (work in
progress).

The standard theory of trade : comparative statics.

Stylised model and questions. We have already argued that our analyis pro-
vide a more general versions perspective on the �ndings associated with the Stopler-
Samuelson or Ribzcinsky�theorems, as well as possibly additional insights on what
is the counterpart of non-intensity reversal. Let us sketch some comparative statics
analysis of a simple trade model with only two countries.
Let us consider two countries that have the same production sector, hence the same

'(w):Assume that they have di¤erent vector endowments V a; V b; and for the sake of
simplicity, representative consumers a; b that, when needed for the simplicity of the
argument, may have the same homothetic preferences (so that there is a representative
consumer for the world).
The object of theoretical interest is the graph of the trade equilibrium correspon-

dence : how do vary equilibrium (ia) with the data? Here is a limited sample of
questions.
Q1- for a given set of economies, does there exists a non specialized trade equi-

librium, where all goods are produced at the same price in every country, (which
would then coincide with the world equilibrim with factor mobility), does there exist
several and how many ? how do they vary with the data and how do we switch to
specialisation ?

ha
ls

hs
-0

05
89

10
5,

 v
er

si
on

 1
 - 

27
 A

pr
 2

01
1



The geometry of Global Production and Factor Price Equalisation. 31

Q2 - In a non specialized trade equilibrium, are the price of factors equalized
across countries ? When is it the case in a specialized trade equilibrium ?
Q3 - Can specialized equilibria coexist in a given world with non specialized trade

equilibria. etc..

Some answers.. We claim that the above analysis, or its suggested exten-
sion, provides appropriate tools for a systematic investigation of the above questions.
Again, it is di¢ cult to go very far into the analysis without understanding better the
graph of the Walras correspondence of an isolated economy.
Together with the other tools presented here, the factor price equalisation results

shed light on the graphof the trade equilibrium correspondence.
-When enough goods are traded (more than 2K); then factor price equalisa-

tion obtains. Or, similarly, absence of factor price equalisation involves important
specialisation and limited trade.
- With less traded goods, K < L < 2K; the critical economies where factor price

equalisation does not hold provide interesting information on the graph of the trade
correspondence and possibly on the coexistence of specialized and non-specialized
equilibria.

Others.

Production theory : extensions, joint production. Also, the results also
have applications to the case of joint production, a context in which the line of
approach of Bidard (1990) provides a natural entry.

Non standard trade theories.. In case where prices are not competitive prices

but result from oligopolistic pricing, as in the new trade theory, prices are still related
ot marginal costs and then the connections prices of goods- factor prices are not
basically dissimilar with what has been established here.

Taxation. Taxation theory -either from the viewpoint of reform or of the de-
scription of the manifold of equilibria has been developed oftne under the assumption
of decreasing returns and not of constant returns.

Intertemporal production theory.. We believe that our results provide start-
ing points for an improved investigation of several other subjects, such as the analysis
of observable consequences of general equilibrium theory, in the line of previous at-
tempts in the framework of an exchange economy, as in Brown-Matzkin (1996) or
Chiappori-Ekeland-Kubler-Polemarchakis (2000) or the intertemporal theory of pro-
duction, rather than the atemporal one considered here. In an intertemporal context
where capital depreciate within the period, goods at period t are produced from goods
produced at period t � 1 and from factors available at period t: Most of our results
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The geometry of Global Production and Factor Price Equalisation. 32

apply and allow to derive dynamic non-substitution theorems as well as the intertem-
poral prices of goods as a function of the time varying relative prices of factors and
of inter-period interest rates. And for exemple, the deformation of prices due tech-
nical progress can be assessed. When capital does not depreciate immediately, some
additional work is required to adapt the present results.

7. Conclusion.

We �rst provide a �nal assesment of our results, in order to make clearer their position
in the complex literature to which they add.
The results of Section 2 to 4 apply whatever the structural assumption on the pro-

duction system (producing good l may require all or a subset of goods and factors,
but this is given at the outset). Our assessment of the geometry of the global produc-
tion set in Section 3 is claimed to be original, although some of its aspects have been
understood and presented in special contexts in the case where goods are produced
from factors only. The algebraic perspective of Section 4 provides a generalisation to
the case where goods are produced from factors and goods of results known in the
case where goods were produced from factors only.
The results of Section 5 are novel, to the best of our knowledge. The genericity

argument has been presented in the case where all other goods are needed in the pro-
duction of any good, but it has counterparts under di¤erent structural assumptions.
Let us make some �nal comments on our own motivation for this this research.
Although "general equilibrium", as a subject aiming at maximal generality in

the understanding of the systemic aspects of economic interactions, is no longer very
active, its intellectual apparatus is extremely alive in many speci�c �elds where it
has been either partly adapted (standard or new trade theories) and/or simpli�ed
to the extreme (with a representative consumer). Also a lot of in�uential work on
policy analysis rests on the use of computable general equilibrium models that adopt
speci�c modelling options that both allow to simplify the general analysis and make
it empirically plausible.
In all cases, it may be argued that an equilibrium theory of intermediate generality

is needeed, not mainly to provide provide speci�c applications of the intellectual
products of the most abstract theory, but essentially and crucially to improve upon
the present speci�c models and increase their policy relevance.
The present paper is an attempt of going further into a theory of production of

intermediate generality, aiming at hte just described objectives. As argued above,
the most systematic attempts in this direction have been made in international trade
theory untill the eighties; however, the results presented here are neither uniquely
motivated by trade, nor primarily applicable to this �eld. They concern a broader re-
search program, and aim at providing some useful harbour to additional investigation
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in this program.
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9. Appendix
9.1. Appendix 1 : A detailed primal view of the problem..

De�nition 1. Given a production plan y 2 Y , any family y`; 1 � ` � L, with
y` = (x`; v`) 2 Y` and y =

P
y` will be called a y-allocation. A production plan y

is non-specialized if there exists a y-allocation with x`` > 0 for all ` . The set of all
non-specialized production plans will be denoted by YNS:

YNS =
nX

y` j y` = (x`; v`) 2 Y`; x`` > 0 8`
o

In a non specialized production plan, gross production x`` of every good ` is posi-
tive, but not necessarily net production x` =

P
k x

`
k. The case when x

`
` = 0 for some

good ` is the case when production is specialized, in the terminology of international
trade.
>From now on, we shall write NS instead of non-specialized. Take a NS production

plan y =
P
y`, with y` = (x`; v`) 2 Y`. We have:
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vk =
X
`

vk` ; vk` < 0 8` (16)

xi =
X
l

xi` ; x`` > 0 8` (17)

x`` � f`(�x�`` ;�v`); 8` (18)

Since we have constant returns to scale, the set YNS is a convex cone. It makes
sense to normalize the production plans in each sector by considering the inputs
required to produce one unit of good. Set:

Y 1
` =

�
y = (x; v) 2 Y` j x`` = 1

	
so that any vector y 2 Y 1

` describes one of the many ways to produce one unit of
good `.

De�nition 2. Let y be a NS production plan. A family (by`; �`) ; 1 � ` � L will be
called a normalized y-allocation if:

by` = (x̂`; v̂`) 2 Y 1
` (19)

�` > 0 8` (20)

y =
X
`

�`by` (21)

Equation (19) is the normalization condition. It is clear from the de�nitions that
for any NS production plan, as de�ned by equations (16), (17), and (18), there is a
corresponding normalized allocation.
The economic interpretation is straightforward. The (�x̂�`` ;�v̂`) are the inputs

required to produce one unit of good `, with the chosen technology, and the numbers
�` then denote the level at which this technology has to be set in order to produce
(jointly with the others) the bundle y.
To stress this interpretation, and make the connection with the classical Leontie¤

model, let us introduce new notations. Set:

ai` (y) = �bxi` > 0 8i 6= ` (22)

a`` (y) = 0 (23)

bk` (y) = �bvk` > 0 8k (24)

Equations (18) and (21) can then be written :
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1 � f`(a`; b`)

xi = �i �
X
`

ai`�`

vk = �
X
`

bk`�`

or, with straigthforward notation :

x = (I � A)�; v = �B�; (25)

where22 A = (ai`) and B =
�
bk`
�
are respectively L � L and K � L matrices with

positive coe¢ cients (except for the diagonal of A which is zero), the `-th column of
which consists of the input vector, respectively in goods and factors, used for the
production of one unit of good ` in the chosen allocation.

9.2. Appendix 2 : E¢ ciency from the dual viewpoint. The next lemma
summarizes our conclusions with the further implications that obtain when the e¢ -
cient production plan y is non-specialized23:

Lemma 29. If a NS-production plan y is e¢ cient, then there exists a unique remu-
neration plan, q 2 E1 such that :

q0y` = Max fq0y j y 2 Y`g = 0 8`

and there is a unique normalized y-allocation (by`; �`): The by`; 1 � ` � L; are linearly
independent, and q0by` = 0 for all `.
This lemma enables us to de�ne maps `; �` and �1 from YNSE to Y 1

` ; R++ and
E1 by:

`(y) = by`
�`(y) = �`

�(y) = q

In other words, `(y) is the unique (and e¢ cient) way of producing one unit of
good ` when the global production plan y = (x; v) is aimed for. The activity level

22In a Leontie¤ economy, with strict complementarities, A and B are given a priori , while here
they arise endogenously, but not necessarily uniquely.
23The linear independence of the by` follows from the fact that only technology ` can produce good

`: The remaining follows straightforwardly from what we just said.
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The geometry of Global Production and Factor Price Equalisation. 37

at which technology ` has to operate, using this production plan, is speci�ed by
�`(y) > 0, so that y =

P
` �`(y)`(y). The normalized remuneration plan supporting

this production plan is �(y); with �(y)0y = 0.
We shall also consider later on the map:

 : YNSE �! Y 1
1 � :::� Y 1

L

de�ned by  = (1; :::; L)

10. Appendix 3 : the geometry.
C (y) is an L-dimensional polyhedral cone24 in RK+L, with vertex at 0;and edges
carried by the `(y). We know that y 2 C(y) (just take �` = �` (y)). Because of
formula (1), we see that T (�y) = fy j �(�y)y = 0g is the tangent hyperplane to Y at �y.

Proposition 30. C(y) = T (y) \ YNSE

Proof. Consider the closure of C (y):

�C(y) =

(X
`

�``(y) j �` � 0; 1 � ` � L;

)

It is a closed convex cone, containing each of the `(y). Because of equation (??),
each of the `(y) also belongs to the hyperplane T (y). It follows immediately that
�C(y) � T (y): As a consequence of our constant returns to scale assumption, all of
�C(y) is contained in the global production set Y . Hence �C(y) � T (y) \ Y , and
C(y) � T (y) \ YNSE.
Conversely, if z 2 T (y)\YNSE, then there is a normalized z-allocation (`(z); �`(z)) ; 1 �

` � L: By equation (??), each `(z) maximizes �(y)0z` subject to z` 2 Y`, and it fol-
lows from uniqueness that `(z) = `(y) and z 2 C (y). Hence T (y) \ YNSE � C(y)

As a consequence of Proposition 3, we have that

YNSE = [y2YNSEC (y)

so that the cone YNSE is a disjoint (possibly in�nite) union of L-dimensional polyhe-
dral cones.

Theorem 31. Every x 2 YNSE(v) belongs to a single facet Facet (x) � YNSE(v). If
L � K, this facet has dimension (L�K), and x belong to its relative interior

24In the case K = 1; L = 2 we investigated in Section ??, G (y) is a two-dimensional cone in
(x1; x2; v)-space. Its section by the plane v = 1 is the line segment we depicted in Figure 1.
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The geometry of Global Production and Factor Price Equalisation. 38

Proof. If y = (x; �v) 2 YNSE, denote by T (y) the tangent hyperplane (in RK+L)
to YNSE at y and by T (x) the tangent hyperplane (in RL) to YNS(�v) at x. Since
YNSE(�v) is the intersection of YNSE with RL � fvg, we must have:

T (x) = T (y) \
�
RL � fvg

�
:

By de�nition:

Facet(x) = YNSE(�v) \ T (x) = YNSE(v) \ T (y) \
�
RL � fvg

�
(26)

and using proposition 3 we �nd that

Facet(x) = C(y) \
�
RL � fvg

�
In RL+K , C(y) is an L-dimensional cone and RL � fvg an L-dimensional a¢ ne

subspace transversal to the cone. Their intersection is an (L�K)-dimensional cone,
as announced.
There are two limiting situations, K = 1 (one factor) and K = L � 1 (many

factors). In the �rst case, we get the classical non-substitution theorem of Arrow and
Samuelson

10.1. Appendix 4 : Primal and dual.. The next result summarizes our �nd-
ings up to now, while explicitly relating the dual notation of this subsection with the
primal notation of the previous one. It basically tells us about the decentralization
role of remuneration plans.

Proposition 32 [Decentralization]. If y = (x; v) is an e¢ cient NS production plan,
then :

1. There is a unique normalized y-allocation (`(y); �` (y)); 1 � ` � L, with
�` (y) > 0, and a unique normalized remuneration plan �(y) = (p (y) ; w (y))
supporting y

2. If q = (p; w) = �(y); so that p1 = 1, the matrices A(q) and B(q) obtain from
the `(y) as follows:

`(y) = ( �a1`(q); :::;�a`�1` (q) 1 �a`+1` (q); :::;�al`(q);�b1`(q); :::;�bK` (q) )
(27)

3. The matrices A (q) and B (q) are positively homogeneous of degree 0, and we
have

p (y) = wB(q) (I � A(q))�1 (28)
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The geometry of Global Production and Factor Price Equalisation. 39

4. We have:

� (y) = (I � A(q))�1 x (29)

�v = B(q)� (y) = B(q) (I � A(q))�1 x (30)

The converse of Proposition ?? is the following :

Proposition 33. Suppose q = (p; w) 2 RL+K++ is such that p = wB(q) (I � A(q))�1.
For any � 2 RL++, de�ne y� = (x�; v�) by

x� = (I � A(q))� (31)

v� = �B(q)� (32)

Then y� is in YNSE; and q = a�(y�) for some a > 0.

Proof. If the above condition holds for some q = (p; w) > 0; the `-th columns of
the matrices A(q) and B(q) de�ne a cost minimising bundle for the production of one

unit of good `; and then, for each `, a pro�t maximising y` 2 Yl (with zero pro�t).
This implies that for any � 2 RL++; the production plan y� de�ned by (??) and (??)
is the sum of pro�t maximising bundles; therefore it is e¢ cient and belongs to YNSE:
The uniqueness of (the direction of) q follows from the same argument as above

10.2. Appendix 5 :Proof of the Preparation Theorem 14.. We begin by
proving that the projection map  from � to RK++ is one-to-one.

Lemma 34. If (p1; w) and (p2; w) 2 �, then p1 = p2

Proof. Suppose otherwise, so that p1 6= p2. Introducing the cost functions, as in
equation (7) we have p1 = c(p1; w) and p2 = c(p2; w). Consider

t = Max`(p
1
`=p

2
`)

and assume without loss of generality that t > 1. Set p3 = t p2; so that p3` � p1` 8`;
and p3k = p1k for some k: But tp

2 = c(tp2; tw) by homogeneity, and hence, using the
fact that the cost is a decreasing function of prices:

p3` = c`(p
3; tw) > c`(p

1; w) = p1` 8`

Hence p3k = p1k , a contradiction.
We then prove that the projection map  from � to RK++ covers all of R

K
++ . We

begin with a technical result. By C4, there is some y 2 YNSE \
�
RL++ �RK

�
� Y ++

NSE.
Take a supporting price vector, for instance q = �(y), and set A = A(q) and
B = B(q))
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The geometry of Global Production and Factor Price Equalisation. 40

Lemma 35. Take q0 = (p0; w0) 2 �. Then, p0 � B0w0 (I � A0)�1

Proof. Consider the goods price vector p1 de�ned by p1 = B0w0 (I � A0)�1.
We have p1 = B0w0 + A0p1, meaning that the vector p1 gives the unitary costs of
production if the input prices are (p1; w0) and the plan y is used. Set p2 =
B(p1; w0)0w0+A(p1; w0)0p1. The vector p2 gives the unitary costs of production if the
prices are (p1; w0) and a cost-minimizing plan is used; these costs must be less than
the costs of production using any other plan, so that p2 � p1.
The algorithm then proceeds : set p3 = B(p2; w0)0w0+A(p2; w0)0p2; then p3 � p2,

and so on. The sequence pn is a decreasing sequence of positive vectors, so that it
must converge to some p satisfying p = (w0)0B(p; w0) + p0A(p; w0), and by Lemma
?? we must have p = p0. We have proved that p1 � p2 � ::: � p = p0:

Lemma 36. The projection map  from � to RK++ covers all of R
K
++

Proof. We shall prove that the image  (�) is open and closed in RK++. Openness
follows from lemma 13. To show closedness, consider a sequence wn in  (�) \ RK++,
converging to some w 2 RK++ . Take the corresponding sequence pn such that
(pn; wn) 2 �, so that wn =  (pn; wn): By the preceding lemma, the pn are uniformly
bounded, so there is a convergent subsequence to some p, and p0 = w0B(p; w) (I � A(p; w))�1by
continuity. Since w 2 RK++ and the matrices B and (I � A)�1 have positive coe¢ -
cients, we must have p 2 RL++. So the image  (�) is closed in R

K
++. Since R

K
++ is

connected, the only subsets which are both open and closed are the empty set ? and
RK++ itself. The result follows.
The map  can be inverted on RK++, yielding the Preparation Theorem.

11. Appendix 6 : Genericity.
Consider a property P (�), depending on � 2 �. In our context, � indexes parameters
that generate di¤erent speci�cations of a model. We would like a suitable mathemat-
ical notion to translate the idea that P holds true "in general", that is, for "most"
speci�cations of the model.
The standard way to make this idea precise is to be Bayesian. In this approach,

one endows the parameter space� with a positive measure �, and says that a property
P holds �in general�if it holds �-almost surely, that is, if:

� [�� 
] = 0:

where 
 is the set of � 2 � such that P (�) is true. Taking � to be the real line, �
to be the Lebesgue measure, and P (�) to be the property �� is irrational�, we will
thus state (correctly) that real numbers are irrational in general
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The geometry of Global Production and Factor Price Equalisation. 41

The problem with this approach lies in choosing the measure �. In the absence of
a priori information, the Lebesgue measure may seem an appropriate starting point,
because it is translation-invariant. Unfortunately, it is not a probability, so that it
will not �t easily into a Bayesian framework. One may overlook this problem by
pointing out that it is not the measure � which is important, only the �-negligible
subsets are. One then runs into a second problem, namely the fact that there is
no equivalent of Lebesgue measure in in�nite-dimensional spaces, such as function
spaces. On such spaces, there is no translation-invariant measure that one could use
to de�ne negligible sets without a priori information.
One then has to choose a probability. If � is �nite-dimensional, one runs into the

familiar problems of Bayesian theory. There is no reason why two di¤erent observers
should share the same prior, or even why they should have priors which are absolutely
continuous with respect to each other. If � is in�nite-dimensional, there is the added
di¢ culty that there are very few probabilities on such spaces; we have already noted
that there is no equivalent of the Lebesgue measure. It will thus be very di¢ cult
to give a mathematically precise and generally accepted meaning to the statement
"continous functions are not linear in general".
In this paper, we will use a second approach, which is due to Rene Thom; see

Abraham and Robbin (1967) and Aubin and Ekeland (1984) for discussions of this
approach. It consists in endowing the parameter space� , not with a positive measure,
but with a complete metric, so that all Cauchy sequences converge. This approach
de�nes a property P (�) to be generic if there is a sequence of subsets Un � � such
that

Un is open and dense 8n

 � \nUn

where 
 is again the set of � where P (�) holds true.
As an example, the property of being irrational is generic among real numbers.

Indeed, the set of rational numbers is countable, so the set of irrational numbers
is the intersection of a countable number of open dense sets. Let �n; n 2 N , be
the rationals, then the set of irrationals will be \nUn, where Un is the complement
of f�ng. This approach also works in our second example. Denote the space of
continuous functions on [0; 1] by C0 ([0; 1]), and the subset of a¢ ne functions by
A ([0; 1]). A ([0; 1]) is closed and has empty interior, so that its complement is an
open dense subset. So, nonlinearity is a generic property in C0 ([0; 1]) :
If two properties P1 and P2 are generic, so are P1^P2 (P1 and P2) and P1^P2(P1

or P2)As a consequence, if P is generic, then its negation not P cannot be generic.
More generally, if a sequence of properties Pn are all generic, then so is ^nPn. In
other words, generic properties behave in the same way as properties that are true
almost surely, although there is no underlying measure to support them.
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The geometry of Global Production and Factor Price Equalisation. 42

Thom�s approach has the great advantage that in many cases of interest there is
a natural metric on the parameter space �, even if there is no natural probability
measure on it. So people will agree on what is generic or not, although they do not
agree on which sets have measure zero.

Proof of Theorems ?? and ?? .

De�ning appropriate sets and maps. Let us denote by F r the set of all
f = (f1; :::; fL) which satis�es conditions C1 to C4, each f` being r times continously
di¤erentiable. Note that there is no natural norm on this space (because our as-
sumptions allow f` or its derivatives to become unbounded when its arguments go to
zero or in�nity), but nevertheless there is a natural metric, the precise description of
which is given in what follows. In the statements of Theorems ?? and ??, genericity
is understood with respect to F r, for some r � 2.
Assume L > K. Set J = L+ 1�K and denote by Cr the space of all real-valued

functions f on RJ++ which are positively homogeneous of degree one, r times continu-
ously di¤erentiable onRJ++, and vanish on the boundary. Let S =

�
z 2 RJ++ j

P
zj < 1

	
be the standard simplex in RJ . Choose a family 
n of open subsets of S such that

n � 
n+1 � S and S = [
n. Endow Cr with the following family of semi-norms:

q0 (f) = max f jf (z)j j z 2 Sg

qni1:::iK (f) = max

� ���� @mf

@i1z1:::@
i
J zJ

(w)

���� j w 2 
n�
where 1 � m � r; i1 + :::+ iJ = m. This is a countable family of semi-norms, which
we relabel simply as fqkgk�1. It is well known that the distance

d (f; g) =
X
k

1

k2
max fqk (f � g) ; 1g

turns Cr into a separable and complete metric space. To say that fn ! f in Cr means
that fn converges to f uniformly on S (and hence uniformly on compact subsets of
RJ+; including the boundary) and that all partial derivatives of fn converge to the
corresponding derivatives of f , uniformly on compact subsets of S (and hence uni-
formly on compact subsets of RJ++; excluding the boundary). Every neighbourhood
of f in Cr contains a neighbourhood of the form fg j qk (f � g) � "g for some k and
".
Let us denote by F the set of all f = (f1; :::; fL) which satis�es conditions (1) to

(4): Set F r = F \ Cr, and endow F r with the induced topology. Since r � 2, F r is
an open subset of Cr, so that F r is a Baire space.
In the above, we have de�ned maps A : RK+L++ ! L(RL; RL); B : RK+L++ !

L(RK ; RL) (see section 4.1) and ' : RK++ ! RL++ (see Theorem 14). These maps
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The geometry of Global Production and Factor Price Equalisation. 43

depend on f 2 F , and we shall henceforth write them Af ; Bf and 'f to stress this
dependence. Note that they are all positively homogeneous, A and B of degree 0,
and 'f of degree one.
For the purposes of the proof, it will be convenient to normalize prices by setting

w1 = 1. We set:
W1 =

�
w 2 RK++ j w1 = 1

	
Consider the (2K � 1)-dimensional space:

� =
�
(w1; w2; �) 2 W1 �W1 �R++

�� w1 6= w2
	

and the map 	 : F r �D ! RL de�ned by

	(f; w1; w2; �) = �'f (w
1)� 'f (w

2) (33)

Transversality..

Proposition 37. Generically in F r, the partial map 	f : D ! RL de�ned by
	f (w

1; w2; �) = 	(f; w1; w2; �) is transversal to the origin in RL.

Again, we refer to Abraham and Robbin (1967) and to Aubin and Ekeland (1984)
for a de�nition of transversality and a statement of the Thom transversality theorem.
Saying that 	f is transversal to the origin means that either 	�1f (0) is empty, or that
at every (w1; w2; �) 2 	�1f (0), the tangent map D	f is onto. Theorems ?? and ??
both will follow from this proposition.
We shall �rst prove a weaker result. Fix a compact subset C � W1; set:

�C =
�
(w1; w2; �) 2 C � C �R++

�� w1 6= w2
	

and denote by 	Cf the restriction of 	f to �
C .

Lemma 38. For every compact subset C � W1, every f 2 F r has an open neigh-
bourhood N (f) such that, generically with respect to g 2 N (f), the partial map
	Cg : �

C ! RL is transversal to the origin in RL.

Proof. Let C and f be given. Let Gf =
��
'f (w) ; w

�
j w 2 C

	
be the graph of 'f

over C; it is a compact subset of RL+K�1++ . Take a bounded open subset V � RL+K�1++

such that �V�RL+K�1++ and Gf � V. For each q = (p; w) in Gf , the matrices Af (q) =
(ai`) and Bf (q) =

�
bk`
�
are obtained by solving for every ` the following equations in

a` 2 RL++, b` 2 RK++ and �` > 0:

a`` = 0

Df`(a�`; b`) = �`q

f`(a�`; b`) = 1
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The geometry of Global Production and Factor Price Equalisation. 44

which are the optimality conditions in problem (5). Applying the implicit function
theorem, with the help of condition 3, we �nd that the solution (a�`; b`) and the
Lagrange multiplier �` depend smoothly on q. It follows that there is a bounded open
subset U` the closure of which, �U`, is contained inRK+L�1++ , such that (Af (q) ; Bf (q)) 2
U` for every q 2 �V.
>From now on we shall work in the Banach space Cr

�
�U`
�
. Applying the implicit

function again, this time in Cr
�
�U`
�
, we �nd that there is some "` > 0 such that

whenever kg` � f`kCr( �U`) < "`, and q = (p; w) 2 �V, then the solution (a�`; b`; �`) of
the system:

a`` = 0

Dg`(a�`; b`) = �`q

g`(a�`; b`) = 1

has the property that (a�`; b`) 2 U`, and depends smoothly on g` (in the Cr
�
�U`
�
-

norm) and q. Set:

B (f`; ") =
n
g` 2 Cr

�
�U`
�
j kg` � f`kCr( �U`) < "

o
B (f; ") =

LY
`=1

B (f`; ")

For �xed q; we can �nd the derivative with respect to g` as follows. Linearizing the
system at (a�`; b`; �`), and denoting by (��`; �`; �`) a tangent vector at that point,
we relate them to the tangent vector h` at g` by:�

D2f` (a�`; b`)
�
(��`; �`)� �` (p; w) = �Dh`(a�`; b`) (34)

[Df` (a�`; b`)]
0 (��`; �`) = �h`(a�`; b`) (35)

where h` 2 Cr
�
�U`
�
, and (��`; �`; �`) 2 RJ � R. For any given h`, this is a system

of (L+K) equations with (L+K) unknowns which is always uniquely solvable by
Condition 3. By the implicit function theorem, the map g` ! (a�`; b`) from B (f`; "`)
to RJ is Cr�1 and its derivative is onto.
We now go back to 'f : Recall that, for w 2 W1 and g 2 F r, we de�ne '1g (w),

henceforth denoted by 'f (g; w), as the unique solution p of the equation:

p0 = w0Bg(p; w) (I � Ag(p; w))
�1

so that 'f maps B (f; ") � C into RL++. Using the implicit function theorem again,
we see that 'f is C

r�1. We shall henceforth assume that " has been chosen so small
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The geometry of Global Production and Factor Price Equalisation. 45

that, for every g 2 B (f; "), we have Gg � V, where Gg is the graph of '1g over C: By
the envelope theorem, the derivative D'f (f; w) : (h; !)! � sending tangent vectors
(h; !) at (f; w) into tangent vectors � to p is given by:

�0 = !0B(I�A)�1+!0 [(DfB)h] (I � A)�1�!0B(I�A)�1 [(DfA)h] (I�A)�1 (36)

where (DfA;DfB) denotes the derivative at g = f of the map

g !
�
Ag
�
'f (w) ; w

�
; Bg

�
'f (w) ; w

��
which is de�ned by relations (34) and (35) and has been shown to be onto.
We claim that D'f (f; w) is onto for every (f; w). Indeed, take any � 2 RL and

any ! 6= 0. Pick some X 2 L
�
RL; RK

�
such that �0�!0B(I�A)�1 = !0X (I � A)�1.

Since (DfA;DfB) is onto, we can �nd some h such that (DfA)h = 0 and (DfB)h =
X. Plugging this into (36) proves the claim.
Now go back to formula (33) de�ning 	. Set:

�(f; "; C) =
�
(g; w1; w2; �) 2 B (f; ")� C � C �R++

�� w1 6= w2
	

and denote by �	 the restriction of 	 to D (f; "; C). Since w1 6= w2 in W1, then
q1 =

�
'f (w

1) ; w1
�
and q2 =

�
'f (w

2) ; w2
�
cannot be collinear. Plugging q1 and

q2 in problem (5), we �nd di¤erent, solutions. This means that the corresponding
(a�` (q

1) ; b` (q
1)) and (a�` (q2) ; b` (q2)) are distinct, so that the vectors h(a�` (q1) ; b` (q1))

and h(a�` (q2) ; b` (q2)) can be chosen independently. It then follows from the preced-
ing argument that D �	 is onto at every point. In particular, it has to be onto at every
point where �	 = 0;which means that �	 is transversal to the origin.
By Thom�s transversality theorem, generically with respect to g 2 B (f; ") ; the

partial map
�	g : (w

1; w2; �)! �	(g; w1; w2; �)

from �C to RL is transversal to the origin.Note that g ! �	g is just the restriction of
g ! 	Cg to B (f; "). It follows that every point f 2 F r has a neigbourhood Br (f; ")
where, generically with respect to g 2 Br (f; "), the map 	Cg is transversal to the
origin.
We now derive Proposition ?? by applying another lemma. Recall �rst that a

Lindelöf space is a topological space such that every covering by open subspaces has
a countable subcover. Separable metric spaces (i.e. metric spaces which contain a
countable dense subset) are Lindelöf, and every open subset of a Lindelöf space is
Lindelöf; in particular, F r is Lindelöf:

Lemma 39. Suppose the space � is Baire and Lindelöf and there is a property P (�)
such that every � 2 � has an open neighbourhood V (�) on which P (�) is generic.
Then P (�) is generic on �:
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The geometry of Global Production and Factor Price Equalisation. 46

Proof. By the Lindelöf property, take a countable subcover Vn; n 2 N: Let An
be the set of points � 2 Vn where P (�) is true, and denote by Bn the complement
of (Vn), the closure of Vn; in �. Set C = \n (An [Bn). By assumption, we have
An � \kAn;k, where the An;k; k 2 N; are open and dense in Vn: Set Bn;k = An;k [Bn,
clearly an open and dense subset in �, and C contains the intersection \n;kBn;k. Since
the Vn; n 2 N , cover �, every point � 2 C must belong to some Vn; and therefore
cannot belong to its complement Bn. It follows that it belongs to An; so that P (�)
is true on C, as announced.
Combining Lemmas ?? and ??, we �nd that, generically in F r; the partial map

	Cf : D
C ! RL will be transversal to the origin in RL. Taking a family of compact

subsets Cn � W1;such that Cn � Cn+1 and [Cn = W1, and denote by Pn (f) the
property:

Pn (f) =
�
	Cnf is transversal to 0 2 RL:

	
Since Pn (f) is generic in F r, so is ^nPn (f). This means that 	f is transversal to

the origin, and Proposition ?? is proved. So the set (	f )�1(0) either is a submanifold
of codimension L in D (and hence of dimension 2K� 1�L) or is empty. The latter
is always the case when 2K � 1� L < 0, and Theorem?? follows.
If w1 6= w2 2 RK++ are such that '(w1) = '(w2), since ' is positively homogeneous

of degree one, we can �nd some positive �1 and �2 such that w1=�1 2 W1 and
w2=�2 2 W1, so that:

�1
�2
'(w1=�1) = '(w2=�2)

yielding a point (w1=�1; w2=�2; �1=�2) 2 (	f )�1(0). In other words, the cone��
w1; w2

�
2 R2K

�� w1 6= w2; '(w1) = '(w2)
	

is generated by (	f )�1(0). If 	f is transversal to the origin, this cone is a submanifold
with one more dimension than (	f )�1(0), namely 2K � L, and Theorem ?? follows.
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