
 

Nash bargained consumption decisions: a revealed preference 
analysis 
by 
 
 
Laurens CHERCHYE 
Thomas DEMUYNCK 
Bram DE ROCK 

 
Public Economics 

 
 

Center for Economic Studies 
Discussions Paper Series (DPS) 11.07 
http://www.econ.kuleuven.be/ces/discussionpapers/default.htm 

 
 

April 2011 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6557629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.econ.kuleuven.be/ces/discussionpapers/default.htm
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A revealed preference analysis
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Abstract

We present a revealed preference analysis of the testable implications of the Nash
bargaining solution. Our specific focus is on a two-player game involving consump-
tion decisions. We consider a setting in which the empirical analyst has information
on both the threat points bundles and the bargaining outcomes. We first establish
a revealed preference characterization of the Nash bargaining solution. This char-
acterization implies conditions that are both necessary and sufficient for consistency
of observed consumption behavior with the Nash bargaining model. However, these
conditions turn out to be nonlinear in unknowns and therefore difficult to verify.
Given this, we subsequently present necessary conditions and sufficient conditions
that are linear (and thus easily testable). We illustrate the practical usefulness of
these conditions by means of an application to experimental data. Such an exper-
imental setting implies a most powerful analysis of the empirical goodness of the
Nash bargaining model for describing consumption decisions. To our knowledge,
this provides a first empirical test of the Nash bargaining model on consumption
data. Finally, we consider the possibility that threat point bundles are not observed.
This obtains testable conditions for the Nash bargaining model that can be used in
non-experimental (e.g. household consumption) settings, which often do not contain
information on individual consumption bundles in threat points.
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1 Introduction

Bargaining models describe decision processes that simultaneously involve multiple play-
ers. They define the outcome of such a process by using information on a bargaining set,
which includes all attainable utility levels for every player, and a set of threat (or disagree-
ment) points. In the literature, the Nash bargaining model is by far the most popular
one.1 For example, it has been used for describing household decision making, firm-union
wage negotiations, job-matching and job-search models, international trade and oligopolis-
tic competition. The Nash bargaining solution is then mainly used for its theoretical
convenience: studies usually assume the model without empirical motivation. Somewhat
surprisingly given its widespread use, relatively few studies have actually focused on the
testable implications of the Nash bargaining solution.

In this paper, we concentrate on the testable implications of the Nash bargaining model
for a two-player game involving consumption decisions on bundles of goods. The distin-
guishing feature of our study is that we build on the revealed preference characterization
of the model. As we will discuss below, this revealed preference approach has some partic-
ularly attractive features for empirically testing a specific behavioral model. We demon-
strate the practical usefulness of the approach by an application to experimental data.
We conduct a specially tailored experiment that implies a most powerful analysis of the
Nash bargaining model as a tool for describing decisions on consumption bundles. To our
knowledge, this provides a first empirical test of this model in a consumption setting. Next,
we also discuss the applicability of our revealed preference approach to observational (or
non-experimental) data, which can be useful for household consumption analysis on the
basis of the Nash bargaining model.

Testable implications of the Nash bargaining solution. Starting with Manser and
Brown (1980)’s seminal contribution, a few studies have focused on the testable implica-
tions of the Nash bargaining solution for consumption decisions.2 A common feature of
these studies is that they follow a differential approach, which concentrates on properties of
functions representing the primitives of the decision process (e.g. individual preferences).3

Empirical applications of this approach then usually require some (non-verifiable) a priori
specification of these functions. And, thus, testing consistency of observed behavior with
the Nash bargaining model is always conditional upon this specification. This will imply
a basic difference with our further analysis, which follows a revealed preference approach
rather than a differential one.

1Other frequently used models are the generalized Nash bargaining model Harsanyi and Selten (1972),
the Raiffa-Kalai-Smorodinsky model (Raiffa (1953), Kalai and Smorodinsky (1975)), the egalitarian model
(Kalai (1977), Roth (1979)) and the equal sacrifice model (O’Neill (1982), Aumann and Maschler (1985)).
In this respect, see also our discussion in the concluding section.

2See, for example, Manser and Brown (1980), McElroy and Horney (1981), Ulph (1988), McElroy and
Horney (1990), McElroy (1990), Lundberg and Pollak (1993), Konrad and Lommerud (2000) and Chen
and Woolley (2001).

3The term ‘differential’ then refers to the fact that this approach focuses on properties obtained by
integrating and/or differentiating these functions.
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Another notable difference pertains to the fact that existing studies typically do not
present a characterization of the Nash bargaining model. Rather, they focus on explain-
ing deviations between behavior consistent with the Nash-bargaining model and behavior
consistent with maximizing a single utility function (which follows the so-called ‘unitary’
consumption model, with the well-known Slutsky conditions as a differential character-
ization). In this respect, one notable exception is the study of Chiappori, Donni, and
Komunjer (2011) . These authors do provide a characterization of the Nash bargaining so-
lution. But, again, their analysis differs from ours in that it follows a differential approach.
In addition, Chiappori, Donni, and Komunjer focus on a slightly different setting than we
do: contrary to most of the above mentioned studies, they consider testable implications of
the Nash bargaining solution for the problem of sharing a pie (e.g. budget sharing) rather
than for consumption decisions involving bundles of goods.

When it comes to testable implications of the Nash bargaining solution, threat points
always play a crucial role.4 These threat points are the outcomes of individual players in
the case no agreement is reached, and are also referred to as disagreement points. In this
study, we carry out a specific experiment that naturally allows for obtaining information
on threat point consumption bundles. As we will indicate in Section 4, this entails a very
powerful analysis of the empirical goodness of the Nash bargaining model. Importantly,
in Section 5 we also discuss the possible extension of our basic framework to situations
in which the threat point bundles are not observed. This will obtain testable conditions
for the Nash bargaining model that can be used in non-experimental (e.g. household
consumption) settings, which often do not contain information on individual consumption
bundles in threat points.5

Revealed preferences. We adopt a revealed preference approach in the tradition of
Samuelson (1938), Houthakker (1950), Afriat (1967), Diewert (1973) and Varian (1982).
In contrast to the differential approach, this approach does not require any functional
specification prior to the analysis. It obtains testable conditions that can be verified by
(only) using a finite set of consumption observations (i.e. prices and quantities). This
avoids that a particular behavioral model (such as the Nash bargaining model) is rejected
because of an erroneous specification (while the actual consumption behavior is consistent
with the model).

Another advantage of the revealed preference approach is that it can be meaningfully

4See Chiappori (1988), McElroy and Horney (1990), McElroy (1990), Chiappori (1990) and Xu (2007)
for a thorough discussion of this point. In the sequel, we will follow the most common practice to consider
threat points as the outcome of individual players when they can spend some individually assigned budget
(under disagreement). Some authors adopt a slightly different viewpoint and assume that players reach a
noncooperative Nash equilibrium in the disagreement case. See, for example, Ulph (1988), Lundberg and
Pollak (1993), Konrad and Lommerud (2000) and Chen and Woolley (2001).

5In some real life settings, information on the position of threat points (and corresponding testable
implications) can be retrieved from environmental variables (e.g. prices, incomes and the so called extra-
environmental parameters (EEP) as termed by McElroy and Horney (1981) or distribution factors in the
terminology of Browning, Bourguignon, Chiappori, and Lechene (1994)). But we do not follow this route
here.
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applied to small data sets. For our setting, this means that we can fruitfully use our
revealed preference conditions for testing the Nash bargaining model even with only a few
consumption observations. As such, we avoid (often debatable) preference homogeneity
assumptions across individual players. Specifically, in Section 4 we will show that our
revealed preference tests have satisfactory discriminatory power for (only) 9 consumption
observations per dyad (i.e. two-player group).

Our study also complements a recent strand of literature that focuses on revealed
preference analysis of decision processes with multiple players. More specifically, Cherchye,
De Rock, and Vermeulen (2007, 2011a) derived a revealed preference characterization of
the collective model, which assumes a Pareto optimal solution, and Cherchye, Demuynck,
and De Rock (2011b) provided a revealed preference characterization of noncooperative
behavior, which assumes a noncooperative Nash equilibrium. In fact, an important focus in
our following analysis will be on comparing the testable implications of the Nash bargaining
model with the ones of the collective model. Indeed, we believe that the collective model
provides a natural comparison partner for the Nash bargaining model, because it imposes
less prior structure.6 Our analysis shows that this structural difference effectively translates
into different empirical restrictions.

One preliminary remark is in order with respect to our following revealed preference
analysis. Our specific focus will be on the characterization of the Nash bargaining model,
and testing consistency of observed behavior with the model. If observed behavior is
consistent with a particular model, then a natural next question pertains to recover-
ing/identifying the primitives of the underlying decision model (e.g. individual prefer-
ences). For compactness, we will not consider such recovery here. However, it is worth
emphasizing that our revealed preference characterization does allow for subsequent re-
covery analysis. For example, Varian (1982) and, more recently, Blundell, Browning, and
Crawford (2008) and Cherchye, De Rock, and Vermeulen (2011a) studied such recovery
(based on revealed preferences) for closely related consumption models. The analysis of
these authors can be extended to the current setting when starting from the revealed
preference characterization established below.

Paper outline. Let us summarize our main points developed further on. Section 2
sets the stage by introducing the revealed preference approach on which we focus here.
Specifically, it briefly recaptures the revealed preference characterizations of individual
rationality (i.e. individual utility maximization) and collective rationality (i.e. rational
dyad behavior in terms of the collective model). This will be instrumental for our discussion
in the following sections.

Section 3 then derives the revealed preference characterization of the Nash bargaining
model for the case with observed threat point bundles. As we will show, verifying consis-
tency of observed consumption behavior with this characterization requires solving a set

6Specifically, the collective model only assumes Pareto efficiency, whereas the Nash bargaining model
additionally assumes symmetry, invariance with respect to affine transformations of the utility functions,
and contraction independence. See also our discussion in Section 3.
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of inequalities that are nonlinear in unknowns. Such nonlinear conditions are difficult to
use in empirical applications. Therefore, we establish (separate) necessary and sufficient
conditions that are linear in the unknowns, which are easily testable.

In Section 4, we demonstrate the practical usefulness of our theoretical results by means
of an application to experimental data. It has been argued before that revealed preference
testing tools are especially useful within an experimental context; see, for example, Sippel
(1997), Harbaugh, Krause, and Berry (2001), Andreoni and Miller (2002) and Bruyneel,
Cherchye, and De Rock (2010).7 Moreover, the controlled environment of the lab allows us
to obtain data on threat point consumption bundles as well as on the bargaining outcomes.
As such, this provides an ideal setting to verify consistency of dyad consumption behavior
with the Nash equilibrium solution.

As far as we know, this experimental analysis is the first one that actually tests the
validity of the Nash bargaining solution for decisions on consumption bundles. Existing
tests in the experimental literature typically do not consider consumption decisions. In ad-
dition, they often imply a double hypothesis that imposes a particular preference structure
in addition to the Nash bargaining solution.8 By its very nature, our revealed preference
analysis does not require such additional preference assumptions.

In Section 5, we focus on situations in which threat point bundles are not observed. Our
main argument here will be that the Nash bargaining solution may have stronger testable
implications than the collective consumption model even in such situations. Specifically,
we show that this is the case as soon as either threat points are assumed to be the same in
different decision situations or if individual incomes (rather than individual consumption
bundles) at the disagreement points are known. As also indicated above, these findings
may be relevant for applications to observational (e.g. household) data.

In Section 6 we conclude and suggest some avenues for further research. The Appendix
contains our proofs.

2 Revealed preference characterization of individual

and collective rationality

This section introduces notation and some basic concepts and results that will be useful for
our following discussion. We first define individual rationality and present the correspond-
ing revealed preference characterization and, subsequently, we do the same for collective
rationality.

7See also Cox (1997) for an extensive discussion on the use of revealed preference methodology in
combination with experimental data. In particular, this author indicates the implicit assumption that
decisions in the experiment are separable from other decisions of the same decision makers. Given our
experimental design (see Section 4), we believe that we can reasonably assume that this condition of
separability is met (at least by approximation).

8For example, two most frequently cited tests of the Nash bargaining model are reported by Siegel and
Fouraker (1960) and Roth and Malouf (1979). Siegel and Fouraker work with linear utility functions and
the results of Roth and Malouf rely on the assumption that individuals are expected utility maximizers.
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2.1 Individual rationality

Throughout, we will consider consumption decisions on bundles with |N | goods. Our
analysis starts from a finite set of |T | decision situations, with T = {1, ..., |T |}. Each

situation t ∈ T is characterized by prices pt ∈ R|N |
++ and income Yt. In the sequel, we will

assume utility functions that are continuous, concave, non-satiated and non-decreasing in
their arguments. As for now, suppose the individual is endowed with a utility function U .
This individual is rational if, for each t, (s)he selects a bundle qt ∈ R|N |

+ that solves the
following problem (OP-IR:)

qt ∈ arg max
q

U(q) s.t. ptq ≤ Yt.

Consider a data set S = {pt,qt}t∈T . We obtain the following condition for individual
rationality.

Definition 1. Let S = {pt,qt}t∈T . We say that S is individually rationalizable if there
exists a utility function U such that, for all t ∈ T , we have that qt solves OP-IR given
the utility function U , prices pt and income Yt = ptqt.

Varian (1982), based on Afriat (1967), provided the revealed preference characterization
of individual rationality. It is contained in the next theorem.

Theorem 1. Consider a data set S = {pt,qt}t∈T . The following conditions are equivalent:

(i) S is individually rationalizable.

(ii) For all t ∈ T , there exist numbers Ut ∈ R+ and λt ∈ R++ such that, for all t, v ∈ T ,

Ut − Uv ≤ λvpv(qt − qv).

In this result, the equivalence between statements (i) and (ii) means that there exists
a rationalizing utility function U if and only if the set S satisfies a number of inequalities
defined in the unknowns Ut and λt. These inequalities are commonly referred to as Afriat
inequalities. Intuitively, these Afriat inequalities allow for an explicit construction of the
utility levels (Ut) and the marginal utilities of income (λt) associated with each observation
t. We remark that these inequalities are linear in unknowns. Thus, we can use standard
linear programming techniques to verify if S is individually rationalizable.

2.2 Collective rationality

Consider a dyad (or two-player group) consisting of A and B, with utility functions UA

and UB. Like before, in each decision situation t the dyad spends an income Yt on a set of
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|N | goods. We will assume that all goods are privately consumed and that each individual
only cares for her/his own consumption.9

Collective rationality means consistency with the collective consumption model, which
assumes a Pareto optimal solution of the multi-player (in casu two-player) game. Based on
the second welfare theorem, Chiappori (1988, 1992) has shown that a collectively rational
consumption decision can be represented as if it were the outcome of a two-step procedure.
At each observation t, the first step divides the income Yt into individual incomes Y A

t and
Y B
t (with Yt = Y A

t +Y B
t ). In the second step, the individuals A and B subsequently choose

consumption bundles (qA
t , q

B
t ∈ R|N |

+ ) that solve the following optimization problems (OP-
CR):

qA
t ∈ arg max

q
UA(q) s.t. ptq ≤ Y A

t ;

qB
t ∈ arg max

q
UB(q) s.t. ptq ≤ Y B

t .

Now consider a data set S = {pt,q
A
t ,q

B
t }t∈T . We get the following condition for

collective rationality.

Definition 2. Let S = {pt,q
A
t ,q

B
t }t∈T . We say that S is collectively rationalizable if there

exist utility functions UA and UB such that, for all t ∈ T , we have that qA
t and qB

t solve
OP-CR given the utility functions UA and UB, prices pt and incomes Y A

t = ptq
A
t and

Y B
t = ptq

B
t .

Using the result in Theorem 1, this definition directly obtains a characterization of
collective rationality, which is given by the next theorem.

Theorem 2. Consider a data set S = {pt,q
A
t ,q

B
t }t∈T . The following conditions are

equivalent:

(i) S is collectively rationalizable.

(ii) For all t ∈ T , there exist numbers UA
t , U

B
t ∈ R+ and λAt , λ

B
t ∈ R++ such that, for all

t, v ∈ T ,

UA
t − UA

v ≤ λAv pv(q
A
t − qA

v ); (CR-i)

UB
t − UB

v ≤ λBv pv(q
B
t − qB

v ). (CR-ii)

9For simplicity, we will abstract from modeling public goods or consumption externalities and we will
focus on two-player groups. However, our following analysis can readily be extended to groups with more
than two players. It is also fairly easy to extend the theoretical models and the corresponding revealed
preference characterizations presented in this and the following sections to account for public goods and
externalities. For example, see Cherchye, De Rock, and Vermeulen (2011a) for dealing with public goods
and externalities in revealed preference analysis of the collective consumption model.

7



Just like for individual rationality, collective rationality requires finding a solution for
Afriat inequalities, which are linear in unknowns. In this case, we obtain a set of inequali-
ties for both A and B. As before, these inequalities allow for an explicit construction of (in
casu player-specific) utilities (UA

t and UB
t ) and marginal utilities of income (λAt and λBt ).

It will be interesting to compare this characterization with the revealed preference char-
acterization that applies to the Nash bargaining model. As indicated in the Introduction,
the Nash bargaining model differs from the collective model by assuming more than just
Pareto efficiency for the within-dyad decision process.

3 Nash bargaining model

This section first defines the Nash bargaining solution and introduces the corresponding
revealed preference characterization. As we will discuss below, this characterization is non-
linear in unknown variables, which makes it difficult to use in practical applications. Given
this, we subsequently present necessary conditions and sufficient conditions for consistency
with the Nash bargaining model that are linear in unknowns. These conditions will be
used in our following application for empirical verification of the Nash bargaining model.

3.1 Revealed preference characterization

We again consider a setting with two players (A and B) who, in each situation t, spend the
income Yt on a set of |N | private goods. Like before, each individual only cares for her/his
own consumption. However, as is standard in the literature, we assume that the individuals’
preferences are (possibly) different under agreement and disagreement. Specifically, A and
B have utility functions V A and V B if no agreement can be reached, while they have
utilities UA and UB in case of agreement (which means that the Nash bargaining solution
is implemented).

Let us first consider the within-dyad allocation when no agreement is reached. In this
case, total income Yt is replaced by two individual incomes Y A

t and Y B
t . Importantly,

the sum of individual incomes at the disagreement point should not necessarily equal the
available income under agreement (i.e. we may have Y A

t + Y B
t < Yt). This reflects the

possibility that disagreement can be costly, which actually implies an additional incentive
for effectively obtaining an agreement. Under disagreement, the individual players A and
B then select the threat point bundles (xA

t ,x
B
t ∈ R|N |

+ ) that solve the following problems
(OP-TP):

xA
t ∈ arg max

x
V A(x) s.t. ptx ≤ Y A

t ,

xB
t ∈ arg max

x
V B(x) s.t. ptx ≤ Y B

t .

Next, if the players come to an agreement, then the dyad allocation coincides with the
Nash bargaining solution. For the given income Yt and prices pt, this solution maximizes
the product of the individuals’ excess utility (i.e. utility under agreement minus utility
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under disagreement). As shown by Nash (1950), this is the unique bargaining outcome
that satisfies the axioms of Pareto optimality, symmetry, invariance with respect to affine
transformations of the utility functions, and contraction independence. We remark that
these four axioms usually lead to a unique outcome of the decision process. This implies
an important difference with the collective consumption model. As indicated above, this
last model only assumes Pareto efficiency, which generally characterizes a continuum of
possible outcomes.

Formally, the Nash bargaining solution defines individual consumption bundles (qA
t ,q

B
t ∈

R|N |
+ ) that solve the next problem (OP-NB):

{qA
t ,q

B
t } ∈ arg max

qA,qB

(
UA(qA)− V A(xA

t )
) (
UB(qB)− V B(xB

t )
)

s.t. pt(q
A + qB) ≤ Yt,

UA(qA) > V A(xA
t ),

UB(qB) > V B(xB
t ).

To obtain our testable implications of the Nash bargaining solution, let us assume
that we have a data set S = {pt,q

A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . We note that this set S includes

consumption information on both the bargaining outcomes and the threat points. We will
get back to this below. Using the set S, we can define the following Nash bargaining
rationality condition.

Definition 3. Let S = {pt,q
A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . We say that S is Nash bargaining ratio-

nalizable if there exist utility functions V A, V B, UA and UB such that, for all t ∈ T , we
have that

(i) xA
t and xB

t solve OP-TP for the utility functions V A and V B, prices pt and incomes
Y A
t = ptx

A
t and Y B

t = ptx
B
t , and

(ii) qA
t and qB

t solve OP-NB for the utility functions UA and UB, prices pt, income
Yt = pt(q

A
t + qB

t ) and threat points V A(xA
t ) and V B(xB

t ).

As shown in the Appendix, we get the next revealed preference characterization of Nash
bargaining rationalizability.

Theorem 3. Consider a data set S = {pt,q
A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . The following conditions

are equivalent:

(i) S is Nash bargaining rationalizable.

(ii) For all t ∈ T , there exist numbers UA
t , UB

t , V A
t , V

B
t ∈ R+ and λAt , λBt , δAt , δ

B
t ∈ R++
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such that, for all t, v ∈ T ,

UA
t − UA

v ≤ λAv pv(q
A
t − qA

v ), (NB-i)

UB
t − UB

v ≤ λBv pv(q
B
t − qB

v ), (NB-ii)

V A
t − V A

v ≤ δAv pv(x
A
t − xA

v ), (NB-iii)

V B
t − V B

v ≤ δBv pv(x
B
t − xB

v ), (NB-iv)

UA
t > V A

t UB
t > V B

t , (NB-v)

λAt
λBt

=
UA
t − V A

t

UB
t − V B

t

. (NB-vi)

Similar to Theorems 1 and 2, the inequalities (NB-i)-(NB-iv) are Afriat inequalities.
Like before, these inequalities allow us to construct (player-specific) utilities and marginal
utilities of income (in casu for both the bargaining outcomes and the threat points). More-
over, it follows from Theorem 2 that the inequalities (NB-i)-(NB-ii) guarantee that the
bargaining outcome is Pareto efficient. Next, the constraints (NB-v) correspond to the last
two constraints of OP-NB.

Finally, constraint (NB-vi) essentially captures the requirement that each bargaining
outcome must maximize the product of the individuals’ excess utility; see the objective
function of OP-NB. This constraint (NB-vi) is the crucial one for obtaining testable
implications that are particular to the Nash bargaining solution. More specifically, as
indicated above, the constraints (NB-i)-(NB-v) imply the existence of utility functions
V A, V B, UA and UB as well as Pareto efficiency. Thus, constraint (NB-vi) guarantees
consistency with the remaining axioms underlying the Nash bargaining solution.

Unfortunately, the constraint (NB-vi) is nonlinear in the unknowns (UA
t , UB

t , V A
t , V

B
t ,

λAt and λBt ). This makes it difficult to verify this constraint in practical applications. In
the next subsection, we will introduce necessary conditions and sufficient conditions for
consistency with the characterization in Theorem 3. These conditions will be linear in
unknowns and, thus, do allow for empirical verification.

To conclude, two remarks are in order with respect to our use of the data set S =
{pt,q

A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . Firstly, this implicitly assumes that individuals always reach an

agreement, since we observe the corresponding bargaining outcomes. We could relax this
constraint by introducing additional notation. However, this would only complicate our
exposition without really adding new insights. Secondly, for each decision situation t we
need to observe not only the consumption bundles in the bargaining outcomes (qA

t and qB
t )

but also the threat point bundles (xA
t and xB

t ). Obviously, this may seem to be a stringent
data requirement. Still, as we will show in Section 4, such threat point information can
fairly easily be obtained in an experimental setting. Next, in Section 5 we will provide
testable implications of the Nash bargaining solution that imply weaker data requirements
and, therefore, can be useful in (non-experimental) settings where exact information about
the threat point bundles is lacking.
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3.2 Empirical verification

The characterization in Theorem 3 implies conditions that are both necessary and suffi-
cient for consistency of observed consumption behavior with the Nash bargaining model.
However, because the constraint (NB-vi) turns out to be nonlinear in unknowns, these
conditions are difficult to apply. In what follows, we will present necessary conditions
and sufficient conditions for Nash bargaining rationality that are linear and, thus, easily
testable. As we will indicate, these necessary and sufficient conditions do not coincide,
which means that a particular data set may pass the necessary conditions but not the
sufficient conditions. However, in Section 4 we will show that the conditions do obtain a
conclusive answer for most data sets in our application. In our opinion, this suggests that
these conditions constitute a useful starting point for empirically assessing Nash bargaining
rationality. In general, we may expect their empirical implications to be fairly close to each
other.

To obtain the conditions, we start from an equivalent reformulation of the constraint
(NB-vi) in Theorem 3. Specifically, consider αt ∈]0, 1[ such that

1− αt

αt

=
λAt
λBt

=
UA
t − V A

t

UB
t − V B

t

.

Then, for every t ∈ T , there exist UA
t , U

B
t , V

A
t , V

B
t , λAt and λBt that meet (NB-vi) if and

only if there exist an αt ∈]0, 1[ that satisfies the following two constraints:

αt(U
A
t − V A

t )− (1− αt)(U
B
t − V B

t ) = 0 and αtλ
A
t − (1− αt)λ

B
t = 0 (NB-vi-a)

Sufficient conditions. Evidently, the constraints (NB-vi-a) remain nonlinear in the
unknowns (UA

t , UB
t , V A

t , V
B
t , λ

A
t , λBt and αt). However, they do suggest a natural sufficient

condition for Nash bargaining rationality. Essentially, this sufficient condition implies a
grid search on a finite set A that contains a series of possible values for the variable αt in
the above constraints. Specifically, consider a finite set A = {a1, a2, . . . , aK} containing K
numbers from the unit interval ]0, 1[. Then, we get the next result.

Proposition 1. Let S = {pt,q
A
t ,q

B
t ,x

A
t ,x

B
t }t∈T and A = {a1, . . . , aK} ∈ ]0, 1[K. The

set S is Nash bargaining rationalizable if, for all t ∈ T , there exist numbers UA
t , UB

t ,
V A
t , V

B
t ∈ R+, λAt , λBt , δAt , δ

B
t ∈ R++ and αt ∈ A that satisfy (NB-i)-(NB-v) and, in

addition,

αt(U
A
t − V A

t )− (1− αt)(U
B
t − V B

t ) = 0, (NB-vi-b)

αtλ
A
t − (1− αt)λ

B
t = 0. (NB-vi-c)

Thus, for a given set A, this result provides sufficient conditions for Nash bargaining ra-
tionality, which replace the nonlinear constraint (NB-vi) in Theorem 3 by the constraints
(NB-vi-b)-(NB-vi-c). Clearly, for a given specification of {α1, . . . , α|T |} the constraints

11



(NB-vi-b)-(NB-vi-c) are linear in the unknowns (UA
t , UB

t , V A
t , V

B
t , λ

A
t and λBt ). The

practical implementation of these sufficient conditions requires checking these linear con-
straints (together with (NB-i)-(NB-v)) for each possible specification of {α1, . . . , α|T |}. In
our empirical application in Section 4 we use K = 9 and A = {0.1, 0.2, . . . , 0.9}.

Necessary conditions. Our necessary conditions again start from a finite set A as
defined above. Still, unlike the sufficient conditions in Proposition 1, which focus on
specific values αt ∈ A for each t, the necessary conditions consider all ak ∈ A. At the
outset, it is worth indicating that these necessary conditions will be rather technical ones,
which have a less obvious intuition in terms of Nash bargaining rationality than our starting
characterization in Theorem 3. However, our empirical application in Section 4 will show
that they do have substantial practical usefulness. Actually, as also mentioned before, a
main result will be that the empirical implications of these necessary conditions are situated
fairly closely to those of the sufficient conditions in Proposition 1.

The starting point of our necessary conditions is that, given (NB-vi-a), for each ak ∈ A
and t ∈ T we must have

λAt
λBt

=
UA
t − V A

t

UB
t − V B

t

≤ 1− ak
ak

or
λAt
λBt

=
UA
t − V A

t

UB
t − V B

t

>
1− ak
ak

.

Clearly, the equality constraints in these expressions are nonlinear in the unknowns (UA
t ,

UB
t , V A

t , V
B
t , λ

A
t and λBt ).Therefore, our necessary conditions distinguish between the

following two cases for each ak ∈ A and t ∈ T :

UA
t − V A

t

UB
t − V B

t

≤ 1− ak
ak

and
λAt
λBt
≤ 1− ak

ak
, (NB-vi-d)

or
UA
t − V A

t

UB
t − V B

t

>
1− ak
ak

and
λAt
λBt

>
1− ak
ak

. (NB-vi-e)

Now consider a binary variable R(k, t) ∈ {0, 1}. Let R(k, t) = 0 correspond to scenario
(NB-vi-d) and R(k, t) = 1 to scenario (NB-vi-e). Then, we can show that the constraints
(NB-vi-a) are met only if there exist R(k, t) ∈ {0, 1} such that, for C ≥ max{(UA

t − V A
t ),

(UB
t − V B

t ), λAt , λBt },10

ak(UA
t − V A

t )− (1− ak)(UB
t − V B

t ) ≤ R(k, t)C, (NB-vi-d1)

akλ
A
t − (1− ak)λBt ≤ R(k, t)C, (NB-vi-d2)

ak(UA
t − V A

t )− (1− ak)(UB
t − V B

t ) > (R(k, t)− 1)C, (NB-vi-e1)

akλ
A
t − (1− ak)λBt > (R(k, t)− 1)C, (NB-vi-e2)

If R(k, t) = 0, then (NB-vi-d1)-(NB-vi-e2) comply with scenario (NB-vi-d). Else, if
R(k, t) = 1, then (NB-vi-d1)-(NB-vi-e2) comply with scenario (NB-vi-e). See the proof
of Proposition 2 for a detailed argument.

The following proposition captures these necessary conditions for (NB-vi) to hold.

10By rescaling the Afriat inequalities (NB-i)-(NB-iv) it is always possible to find a suitable value for C.
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Proposition 2. Consider a data set S = {pt,q
A
t ,q

B
t ,x

A
t ,x

B
t }t∈T and A = {a1, . . . , ak} ∈

]0, 1[K. The data set S is Nash bargaining rationalizable only if, for every s ∈ T , there
exist numbers UA

s , UB
s , V A

s , V
B
s ∈ R+ and λAs , λBs ∈ R++ with

UA
s − V A

s = UB
s − V B

s , (NB–vi-f1)

λAs = λBs , (NB–vi-f2)

such that, for all t ∈ T\{s}, there exist numbers UA
t , UB

t , V A
t , V

B
t ∈ R+ and λAt , λBt ,

δAt , δ
B
t ∈ R++ that satisfy (NB-i)-(NB-v) and, in addition, for all k ≤ K there exist binary

numbers R(k, t) ∈ {0, 1} for which

ak(UA
t − V A

t )− (1− ak)(UB
t − V B

t ) ≤ R(k, t)C, (NB–vi-d1)

akλ
A
t − (1− ak)λBt ≤ R(k, t)C, (NB–vi-d2)

ak(UA
t − V A

t )− (1− ak)(UB
t − V B

t ) > (R(k, t)− 1)C, (NB–vi-e1)

akλ
A
t − (1− ak)λBt > (R(k, t)− 1)C, (NB–vi-e2)

The constraints (NB–vi-d1)-(NB–vi-e2) have been explained before. The additional
constraints (NB–vi-f1) and (NB–vi-f2) imply a normalization that is required for the nec-
essary conditions to have bite (i.e. to be rejectable); see the proof of Proposition 2 for a
more detailed discussion. As we require the test to be independent of the identity of s, we
verify this set of inequalities for each possible s ∈ T . In the end, our necessary conditions
imply constraints that are linear in unknowns, with some binary integer variables (i.e.
the variables R(k, t)). These conditions are easily tested by mixed integer programming
solvers. In general, the finer the grid that defines the set A (i.e. the larger K), the more
stringent this necessary test will be.

4 Experimental analysis

We conducted an experiment to illustrate the practical usefulness of the testable im-
plications in Propositions 1 and 2. This experiment obtained a collection of data sets
S = {pt,q

A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . We will first provide details on our experimental design.

Subsequently, we will present our main empirical findings.

4.1 Experimental design

We conducted our experiment at the University of Leuven (a Belgian University). Par-
ticipants of our experiment were first year business economics students (116 in total, 39
females). The experiment consisted of three sessions, which each contained around 40
participants. In each session, participants were divided over two computer rooms with 20
PCs each. Every participant was seated in front of a computer. Decision problems were
presented on the computer. Before the actual experiment, each participant had to fill in
a short questionnaire. The most important question was to choose between three kinds of
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beverage items (a soda, a light version of the same soda and orange juice) and three kinds
of food items (potato chips, chocolate and grapes). All items were shown in front of the
class room. We asked the participants to pick their preferred beverage and food items.
This should avoid that, during the experiment, participants had to choose between one or
more items they actually did not like: participants had to make allocation decisions that
involved (only) the selected beverage and food items (i.e. |N | = 2).

The actual experiment began after filling out the questionnaire. It consisted of two
parts. In a first part, each participant had to make 9 (= |T |) individual consumption
decisions, which defined the threat point bundles xA

t and xB
t .11 Each decision situation

involved a number of tokens (defining the individual incomes Y A
t or Y B

t ) and prices (pt)
for the food and beverage items they had selected before. Prices were expressed per 10
centiliters for the beverage item and per 10 grams for the food item. Participants could
select their consumption quantities by using a scroll-bar, which implies a high degree of
accuracy. They had to spend the full budget, i.e. savings were not allowed. Table 1 presents
the prices (pt) and individual income levels (Y A

t and Y B
t ) for the 9 decision situations.12

We note that the price-income situations in our experiment imply a high discriminatory
power of our rationality tests (i.e. a high probability of detecting irrational behavior),
because there is little variation in income but a lot of variation in prices.13 Below, we will
provide empirical measures for the power of our tests. Table 2 provides summary statistics
on the budget shares of the food and beverage items for the individual decisions that we
observed.

For the second part of the experiment, participants were matched randomly 2 by 2. For
our sample, this obtained 7 female-female, 26 male-male and 25 male-female dyads. Each
dyad again had to make 9 (in casu joint) consumption decisions. Each such joint decision
corresponded to an individual decision in the first part of the experiment. Specifically, if the
individual decision was associated with incomes Y A

t and Y B
t and prices pt, then the dyad

decision was characterized by a joint income Yt = Y A
t +Y B

t +10 and the same prices pt; see
again Table 1. (We gave the dyads 10 extra tokens to provide them with an incentive to
effectively find an agreement.) In every joint decision, participants had to account for the
consumption quantities xA

t and xB
t that were chosen in the associated individual decision

situations: these individual choices could no longer be changed and figured as threat (or
disagreement) points for the joint decisions. In the case of a dyad decision, the subjects
were asked to agree on a division of the joint income Yt over bundles qA

t and qB
t . In

addition, for each consumption decision both participants had the possibility to default on
the agreement (by clicking a radio button). This resulted in 48 dyads that always found
an agreement. Below, we will only report results for these 48 dyads (and 96 individual
players). Table 2 provides summary statistics on the dyads’ choices.

11In particular, this assumes that the disagreement utility functions V A and V B coincide with the
utility functions under individual decision making. We believe this to be a plausible assumption for our
experimental setting.

12The order of the decision problems was randomized over the participants.
13For example, Blundell, Browning, and Crawford (2003) apply a similar idea in their ‘maximum power

sequential path’ procedure for maximizing the power of their revealed preference tests.
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Table 1: The 9 price regimes and corresponding (individual and joint) income levels

Observation price good 1 price good 2 Y A
t Y B

t Yt
1 3 5 12 22 44
2 4 4 14 24 48
3 5 3 13 23 46
4 3 5 18 18 46
5 4 4 17 17 44
6 5 3 19 19 48
7 3 5 24 14 48
8 4 4 23 13 46
9 5 3 22 12 44

Table 2: Summary statistics for the budget share spent on the beverage
mean var min 1st quartile median 3rd quartile max

individual decisions 0.483 0.052 0 0.35 0.5 0.62 1
collective decisions 0.475 0.039 0 0.4 0.5 0.58 1

To enhance the external validity of our experiment, we told the participants beforehand
that they would actually receive one of the consumption bundles they selected. The knowl-
edge that each choice ostensibly had the same chance of being implemented was supposed
to give economic significance to otherwise merely hypothetical decisions, thus providing
participants with an incentive for making choices that truly represented their preferences.
More specifically, at the beginning of the second part of the experiment we explained that,
if we picked a decision exercise from this second set of (joint) decisions, we would first check
whether each player preferred it to the default option. If this was effectively the case, then
participants received the bargaining outcome qA

t and qB
t . In the other case, if at least one

player preferred the disagreement option, then we gave the threat point bundles xA
t and

xB
t . The goods were handed over in a separate room immediately after the experiment,

and they were given in packages that induced immediate consumption.

4.2 Results

We present results for the testable conditions in Theorem 1 (individual rationality), The-
orem 2 (collective rationality) and Propositions 1 and 2 (Nash bargaining rationality). A
specific focus will be on comparing the empirical performance of the Nash bargaining model
with that of the collective model. In this comparison, we will consider goodness-of-fit (cap-
tured by pass rates) as well as discriminatory power (measured as rejection probability for
the given data) of the corresponding conditions. Indeed, we believe a fair comparison of
different behavioral models must complement a goodness-of-fit analysis with a power anal-
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ysis: favorable goodness-of-fit results, indicating few violations of the testable conditions,
have little meaning if the behavioral implications have low power, i.e. the conditions could
hardly be violated for the data at hand.

Specifically, our following analysis will quantify the adequacy of different models by
adopting a recent proposal of Beatty and Crawford (2010). These authors propose a pre-
dictive success measure to evaluate the overall empirical performance of specific behavioral
models in the context of revealed preference analysis. As we will explain, this measure
simultaneously accounts for goodness-of-fit and discriminatory power.

One further remark is in order. The tests defined above are ‘sharp’ tests: they only
tell us whether behavior is exactly optimizing in terms of the behavioral model that is
under evaluation. Clearly, this is a demanding premise. In fact, one may argue that exact
optimization is not a very interesting hypothesis, but that we rather want to know whether
the behavioral model under study provides a reasonable way to describe observed behavior.
Therefore, in our empirical analysis we will also consider extended versions of the basic
(sharp) tests that account for optimization error; these extended tests focus on nearly
optimizing behavior rather than exactly optimizing behavior. See also Varian (1990) for
a general discussion on the usefulness of considering such nearly optimizing behavior in
empirical revealed preference analysis.

To deal with optimization error, we adapt an original proposal of Afriat (1973) (for
revealed preference tests in a unitary setting). In particular, we capture optimization error
by a so-called Afriat index e ∈ [0, 1]. For a given value of e, the extended tests then
replace the observed quantity bundles qA

v ,q
B
v ,x

A
v ,x

B
v in our above rationality conditions

by the adjusted bundles eqA
v , eq

B
v , ex

A
v , ex

B
v . For example, in the extended test of Nash

bargaining rationality the inequality (NB-i) becomes

UA
t − UA

v ≤ λAv pv(q
A
t − eqA

v ).

(The other rationalizability constraints have a straightforwardly similar construction.)
Clearly, if the Afriat index e = 1, then the extended tests coincide with the original sharp
tests. Lower values for e account for optimization error, which generally implies weaker
conditions to be tested. Considering e < 1 allows us to analyze the impact of optimization
error on our goodness-of-fit, power and predictive success results.

Pass rates. Figure 1 presents the pass rates for the different tests under consideration:
Individual Rationality (IR in what follows), Collective Rationality (CR) and Nash Bargain-
ing Rationality (NBR). For each test, pass rates are measured as the fraction of participants
or dyads that meet the associated rationalizability conditions. The figure shows pass rates
as a function of the Afriat index e. We note that the figure contains 2 curves for Nash
bargaining rationality: the lower curve corresponds to the sufficient conditions in Proposi-
tion 1 and the upper curve to the necessary conditions in Proposition 2. Table 3 provides
exact pass rates for selected values of e.

Let us first consider individual rationality. The IR curve in Figure 1 pertains to the 96
individuals (in 48 dyads) that found an agreement for all decisions (see the discussion of our
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experimental design). For each individual, we verify if the associated data set {pt,x
M
t }t∈T

(M = A or B) satisfies the conditions in Theorem 1. Generally, we find that individual
rationality is well supported: pass rates are close to 1 even for high values of e. We conclude
that individual rationality seems to be a reasonable assumption.

Next, the CR curve pertains to the 48 dyads that reached agreement. For each dyad,
we checked if the data set {pt,q

A
t ,q

B
t }t∈T meets the conditions in Theorem 2. As explained

above, this verifies whether Pareto efficiency is a tenable assumption for the joint decisions
that we observe. The CR curve displays a similar pattern as the IR curve: pass rates are
high, also when e gets close to 1. Similar to before, we can argue that collective rationality
(or Pareto efficiency) appears to be a plausible assumption.

These findings for individual and collective rationality make it interesting to consider
Nash bargaining rationality. In this case, our rationality tests apply the conditions in
Propositions 1 and 2 to the sets S = {pt,q

A
t ,q

B
t ,x

A
t ,x

B
t }t∈T . As for the associated NBR

curve in Figure 1, we observe three remarkable facts. Firstly, the pass rates for the necessary
and sufficient conditions are generally close to each other. This suggests that the empirical
implications of the two conditions almost coincide. Also, when we decrease e, the pass rates
for the two tests increase at a similar pace. In our opinion, this suggests that combining
the two sets of conditions does form a useful basis for empirical analysis. This seems all
the more true when taking into account that we considered a fairly basic grid search (with
K = 9; see Section 3); a finer grid search can only bring the necessary and sufficient
conditions closer to each other.

Secondly, we find that pass rates are quite low if we consider the ‘sharp’ Nash bargaining
rationality test: for an Afriat index e = 1, we get a pass rate between (only) 0.25 (sufficient
conditions) and 0.27 (necessary conditions). However, pass rates increase very rapidly if
we allow for some optimization error. For example, for e = 0.90 we obtain that no less
than 92% of all dyads in our sample pass the Nash bargaining conditions (both necessary
and sufficient). This suggests that the Nash bargaining model effectively does provide an
adequate description of observed dyad behavior as soon as we account for nearly optimizing
behavior instead of exactly optimizing behavior.

Our final observation is directly related to the second one. Specifically, if we exclude
optimization error, then pass rates for the Nash bargaining test are substantially below
those for the collective rationality test: for e = 1, the difference in pass rates is no less
than 50%. However, and in line with our previous observation, this difference decreases
rapidly with the Afriat index e. For example, if we consider e = 0.90, the difference is no
more than 4%. Thus, when allowing for small optimization error, the goodness-of-fit of
the Nash bargaining model (almost) coincides with the one of the collective model.

At this point, it is important to remark that lower pass rates for the Nash bargaining
test can be expected a priori. Indeed, because the Nash bargaining solution imposes consid-
erable structure on top of Pareto efficiency (see Section 3), pass rates for Nash bargaining
rationality will always be situated below the pass rates for collective rationality. As such,
the lower pass rates for the Nash bargaining model may also signal more discriminatory
power rather than a worse model per se. This directly motivates our following exercises,
which consider power of the different tests in addition to the mere pass rates.
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Figure 1: Pass rates
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Table 3: Pass rates for different values of optimization error

Afriat Index (e)
1 0.95 0.9 0.85 0.8

Nash Bargaining Rationality
Lower bound 0.25 0.75 0.92 0.96 0.98
Upper bound 0.27 0.75 0.92 0.96 0.98

Collective Rationality 0.77 0.96 0.96 0.96 0.98

Individual Rationality 0.78 0.91 0.96 0.99 1
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Power and predictive succes. As argued before, pass rates are only one part of the
story. Generally, favorable goodness-of-fit results (i.e. high pass rates) for a specific be-
havioral model provide convincing support for the model only if the associated test has
high discriminatory power, i.e. a high probability of detecting behavior that is inconsistent
with the model (which we will call irrational behavior).14 Therefore, Beatty and Crawford
(2010) proposed a predictive success measure that combines the pass rate and power of a
test into a single metric. It is defined as follows:15

predictive success = power - (1 - pass rate).

Because pass rates and power values lie between 0 and 1, the value of this predictive
success measure is always situated between −1 and 1. A value close to 1 indicates a model
with approximately 100% power and 100% fit, i.e. the best possible scenario. This means
that (almost) all data pass the rationality test, even though the test effectively detects
(almost) any deviating (i.e. irrational) behavior. By contrast, a value close to -1 implies a
model with approximately 0% power and 0% fit, i.e. the worst possible scenario. In this
case, the test effectively allows for (almost) any observed behavior and yet the data fail to
pass. Finally, a value of 0 corresponds to a model with a rejection rate for the observed
behavior (= 1 - pass rate) that exactly equals the expected rejection rate if behavior were
irrational (= power). Essentially, this means that the rationality test does not allow for
distinguishing observed behavior from irrational behavior.

To compute the predictive success rate of a particular behavioral model, we first need to
measure the power of the model. As mentioned above, power stands for the probability of
detecting irrational behavior (i.e. behavior that is inconsistent with the model). Following
Bronars (1987), we model irrational behavior by randomly drawing a quantity bundle for
each price regime. In particular, in our application we conducted Monte Carlo simulations
with 1000 iterations, which obtained 1000 random data sets of 9 observations. Our power
measure then equals the probability that our tests reject rational behavior for this simulated
random/irrational behavior.

Before presenting the predictive success rates of the different models, we have a quick
look at the power results. For the four models under evaluation, Figure 2 sets out power as
a function of the Afriat index e; Table 4 gives power estimates for a selection of values for
e. Not surprisingly, we find that power decreases with e for all models under evaluation.

Next, and more importantly, we observe a substantial difference between the NBR and
CR curves.16 In general, the discriminatory power of the Nash bargaining test is much

14See Beatty and Crawford (2010), Bronars (1987) and Andreoni and Harbaugh (2008) for a detailed
discussion of this point.

15We note that this predictive success measure actually assigns an equal weight to discriminatory power
and goodness-of-fit. This equal weighting may seem arbitrary to some. Interestingly, however, Beatty
and Crawford (2010) show that this weighting scheme has an interesting axiomatic characterization. We
believe this provides a convincing theoretical foundation for our focus on the equally weighted predictive
success measure.

16In fact, the same applies when comparing the NBR and IR curves, but this difference is less relevant
here.
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above the one of the collective rationality test, and the difference remains more or less
constant for different values of e. In addition, we find that the Nash bargaining test has no
less than 100% power for e close to 1. In fact, power remains very high (i.e. close to 100%)
for e = 0.90. Overall, this suggests that the Nash bargaining model is a very powerful one.

Figure 2: Power
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Let us then consider the predictive success rates of the different models. Figure 3
displays predictive success rates as a function of the Afriat index e, and Table 5 gives
predictive success rates for specific values of e. These results bring together our earlier
goodness-of-fit and power results. Firstly, if we look at the IR and CR curves, we find
that predictive success generally increases with e. The best performing model specification
corresponds to e = 0.99 (collective rationality) or 1 (individual rationality). In both cases,
predictive success is about 0.60. Because this is far above 0, we conclude that both models
can be categorized as ‘good’ models for the application at hand.

Next, it is interesting to compare the CR curve with the NBR curve. Here we find
that the Nash bargaining model with a little optimization error largely outperforms the
collective model. For example, for e = 0.90 the predictive success of the Nash bargaining
model amounts to no less than 0.90. This is very close to the maximum of 1, which indicates
this specification of the Nash bargaining model as a ‘very good’ one for the setting under
study.

At a more general level, we believe that these results provide a convincing empirical
argument pro the Nash bargaining model. The model imposes considerable structure on
joint decision processes, which gives it substantial discriminatory power. Interestingly,

20



Table 4: Power for different values of optimization error

Afriat Index (e)
1 0.95 0.9 0.85 0.8

Nash Bargaining Rationality
Lower bound 1.00 1.00 0.96 0.77 0.45
Upper bound 1.00 1.00 0.98 0.88 0.55

Collective Rationality 0.84 0.66 0.44 0.23 0.10

Individual Rationality 0.81 0.61 0.41 0.24 0.12

even though it implies much prior structure, the model does provide a good empirical fit
of the observed consumption behavior (if we account for a small amount of optimization
error). In our opinion, these two attractive features together, which imply a high degree of
predictive success, strongly suggest the model as a most valuable alternative for describing
consumption decisions involving multiple players.

Table 5: Predictive success for different values of optimization error

Afriat Index (e)
1 0.95 0.9 0.85 0.8

Nash Bargaining Rationality
Lower bound 0.25 0.75 0.88 0.73 0.43
Upper bound 0.27 0.75 0.90 0.84 0.53

Collective Rationality 0.61 0.62 0.39 0.19 0.08

Individual Rationality 0.59 0.52 0.36 0.23 0.12
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Figure 3: Predictive success
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5 What if threat point bundles are not observed?

Our above application demonstrates the usefulness of the revealed preference approach
for analyzing experimental data in terms of the Nash bargaining model. A natural next
question is whether this approach can also be useful for analyzing observational (i.e. non-
experimental) data. After all, consumption models are often applied for analyzing house-
hold behavior on the basis of observational data.

In this respect, an important concern is that observational data often do not contain
information on threat point bundles (xA

t and xB
t in Theorem 3). For example, as thoroughly

discussed by Chiappori (1988), McElroy and Horney (1990), McElroy (1990) and Chiappori
(1990), exact information on threat points is usually lacking in household consumption
applications. In this section, we consider the extension of our previous characterization
towards (e.g. household) settings with unobserved threat point bundles.

Preliminary discussion. As a starting observation, we note that the testable impli-
cations of the Nash bargaining model coincide with the ones of the collective model if
threat point bundles are not observed (i.e. we have a data set S = {pt,q

A
t ,q

B
t }t∈T ) and

we make no further assumption. Specifically, this case does not impose any restrictions on
the consumption bundles at the threat points (i.e. xA

t and xB
t for all t ∈ T ). As such, we

can also freely choose the values of V A
t and V B

t . Given this, it is easily verified that the
corresponding testable implications of Theorem 3 are equivalent to the ones of Theorem 2.
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As a result, the Nash bargaining model is empirically indistinguishable from the collective
consumption model.17

Given this, our following analysis will make particular assumptions about the threat
points. Specifically, we will show that the Nash bargaining model obtains specific restric-
tions if we assume either that the same threat points apply to different decision situations
or that the individual incomes (rather than individual consumption bundles) at the dis-
agreement points are known. As we will show, in each case the Nash bargaining model has
stronger testable implications than the collective consumption model.

Our focus on these two specific assumptions is motivated by our belief that they may
be particularly relevant for analyzing observational data on household consumption. For
example, in such a setting it may effectively be a reasonable hypothesis that threat points
remain constant over a given period of time. Next, knowledge of the divorce legislation
can help to simulate the income distribution in case of disagreement. We will return to
possible applications on household data in the concluding Section 6.

Constant threat points. Consider a data set S = {pt,q
A
t ,q

B
t }t∈T , i.e. the threat

point bundles xA
t and xB

t (t ∈ T ) are not observed. Under the assumption of constant

threat points, we have that there exist values V
A

and V
B

such that V A(xA
t ) = V

A
and

V B(xB
t ) = V

B
for all t ∈ T . As a specific instance, this applies if xA

t = xA and xB
t = xB

for some bundles xA and xB, i.e. the threat point consumption bundles are the same for
each observation.

In this case, we get the next condition for Nash bargaining rationalizability.

Definition 4. Let S = {pt,q
A
t ,q

B
t }t∈T . We say that S is Nash bargaining rationalizable

under constant threat points if there exist xA
t ,x

B
t ∈ R|N |

+ , utility functions V A, V B, UA and

UB and numbers V
A

and V
B

such that, for all t ∈ T , we have that V A
(
xA
t

)
= V

A
,

V B(xB
t ) = V

B
and, in addition,

(i) xA
t and xB

t solve OP-TP for the utility functions V A and V B, prices pt and incomes
Y A
t = ptx

A
t and Y B

t = ptx
B
t , and

(ii) qA
t and qB

t solve OP-NB for the utility functions UA and UB, prices pt, income
Yt = pt(q

A
t + qB

t ) and threat points V A(xA
t ) and V B(xB

t ).

We now obtain the following characterization of Nash bargaining rationality under
constant threat points.

Proposition 3. Consider a data set S = {pt,q
A
t ,q

B
t }t∈T . The following conditions are

equivalent:

(i) S is Nash bargaining rationalizable under constant threat points.

17See also Chiappori, Donni, and Komunjer (2011) for a similar conclusion.
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(ii) For all t ∈ T , there exist numbers UA
t , UB

t ∈ R+ and λAt , λBt ∈ R++ such that, for all
t, v ∈ T ,

UA
t − UA

v ≤ λAv pv(q
A
t − qA

v ), (NBfix-i)

UB
t − UB

v ≤ λBv pv(q
B
t − qB

v ), (NBfix-ii)

UA
t > 0 UB

t > 0, (NBfix-iii)

λAt
λBt

=
UA
t

UB
t

. (NBfix-iv)

Two observations apply to this result. Firstly, this proposition includes the conditions
for Pareto efficiency (or collective rationality); see (NBfix-i) and (NBfix-ii). But it imposes
the additional constraint (NBfix-iv). This constraint makes that the Nash bargaining model
is empirically distinguishable from the collective rationality model under constant threat
point bundles. Secondly, the constraint (NBfix-iv) is nonlinear in the unknowns (UA

t , UB
t ,

λAt and λBt ). This nonlinearity parallels the one of constraint (NB-vi) in Theorem 3. As
such, it can be solved in a similar manner (using analogues of Propositions 1 and 2).

Known individual incomes under disagreement. Let us then consider the case in
which we know the individual income levels Y A

t and Y B
t under disagreement (but not the

bundles xA
t and xB

t ). The relevant data set now becomes S = {pt,q
A
t ,q

B
t , Y

A
t , Y

B
t }t∈T .

Then, we can obtain testable implications by considering indirect indirect utility functions
WA and WB that apply under disagreement (instead of the direct utility functions V A and
V B). Formally, for any prices p and incomes Y A and Y B, we have the following relations
between the functions WA and WB and the corresponding functions V A and V B:

WA(p, Y A) = max{V A
(
xA

)
|xA ∈ R|N |

+ : pxA ≤ Y A},
WB(p, Y B) = max{V B

(
xB

)
|xB ∈ R|N |

+ : pxB ≤ Y B},

In what follows, we will use that the functions WA and WB are convex.
We now get the following condition of Nash bargaining rationality.

Definition 5. Let S = {pt,q
A
t ,q

B
t , Y

A
t , Y

B
t }t∈T . We say that S is Nash bargaining ra-

tionalizable for known individual incomes under disagreement if there exist direct utility
functions UA and UB and, in addition, indirect utility functions WA and WB that corre-
spond to direct utility functions V A and V B such that, for all t ∈ T , we have that

(i) there exist xA
t , xB

t ∈ R|N |
+ that solve OP-TP for given V A and V B, prices pt and

incomes Y A
t = ptx

A
t and Y B

t = ptx
B
t , and

(ii) qA
t and qB

t solve OP-NB given the functions UA and UB, prices pt, income Yt =
pt(q

A
t + qB

t ) and threat points V A(xA
t ) and V B(xB

t ).

We can establish the next characterization.
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Proposition 4. Consider a data set S = {pt,q
A
t ,q

B
t , Y

A
t , Y

B
t }t∈T . The following condi-

tions are equivalent:

(i) S is Nash bargaining rationalizable for known individual incomes under disagreement.

(ii) For all t ∈ T , there exist numbers UA
t , UB

t , WA
t ,W

B
t ∈ R+, λAt , λBt ∈ R++ and

zA
t , z

B
t ∈ R|N |

++ such that, for all t, v ∈ T ,

UA
t − UA

v ≤ λAv pv(q
A
t − qA

v ), (dual-i)

UB
t − UB

v ≤ λBv pv(q
B
t − qB

v ), (dual-ii)

WA
t −WA

v ≥ zA
t (pt/Y

A
t − pv/Y

A
v ), (dual-iii)

WB
t −WB

v ≥ zB
t (pt/Y

B
t − pv/Y

B
v ), (dual-iv)

UA
t > WA

t UB
t > WB

t , (dual-v)

λAt
λBt

=
UA
t −WA

t

UB
t −WB

t

. (dual-vi)

It is useful to compare this proposition with Theorem 3. The main difference is that the
inequalities (dual-iii) and (dual-iv) replace the original inequalities (NB-iii) and (NB-iv) in
our earlier theorem. These new inequalities are so-called dual Afriat inequalities. Similar
to the Afriat inequalities that we considered before, these dual inequalities allow us to
provide an explicit construction of the indirect utility levels (WA

t and WB
t ) associated with

each observation t. The vectors zA
t and zB

t are then collinear with the consumption bundles
at the threat points. See Brown and Shannon (2000) for a more detailed discussion of these
dual Afriat inequalities.

The same two observations apply as to Proposition 3. In particular, an analogous
argument as before obtains that the Nash bargaining model again imposes stronger empir-
ical restrictions than the collective consumption model. Next, the constraint (dual-vi) is
nonlinear in the unknowns (UA

t , UB
t , WA

t , W
B
t , λAt and λBt ), but this nonlinearity can be

resolved similarly as before (for constraint (NB-vi) in Theorem 3).
One final remark is in order. Because the characterization in Proposition 4 implies a

weaker data requirement than the characterization in Theorem 3, it has a wider appli-
cability. However, the counterpart is that its empirical implications generally have less
discriminatory powerful. Therefore, if the threat point bundles are effectively observed, we
recommend focusing on the characterization in Theorem 3 rather than the one in Propo-
sition 4.

6 Concluding discussion

We have studied the testable implications of the Nash bargaining model for a two-player
game involving consumption decisions on bundles of goods. The distinguishing feature of
our study is that we followed a revealed preference approach. We have argued that this
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approach is particularly useful for verifying the empirical validity of the Nash bargaining
model. Specifically, we have derived a revealed preference characterization of the Nash
bargaining model both when threat point bundles are observed and when threat point
bundles are not observed. We have shown that this can be used for practical tests of
consistency of observed behavior with the Nash bargaining model. We also demonstrated
the usefulness of these tests by means of an application to experimental data. This provided
a first empirical test of the validity of the Nash bargaining model as a tool for describing
consumption decisions. In addition, it showed that a specially tailored experiment can
obtain a very powerful analysis of the Nash bargaining model as a tool for describing
consumption decisions.

Our analysis also allows us to draw some further theoretical and empirical conclusions.
From a theoretical point of view, our results shed light on the different testable implications
of the Nash bargaining model and the collective consumption model. In this respect, a
first observation is that the Nash bargaining model has stronger empirical implications
than the collective model if we can observe the threat point bundles. These additional
implications reflect the fact that the Nash bargaining model imposes more prior structure
on the consumption decisions than the collective model, which only maintains Pareto
efficiency as an assumption. More interestingly, however, we have also demonstrated that
the Nash bargaining model can have stronger implications even if the threat point bundles
are not observed. Specifically, we have shown that this is the case as soon as threat points
are assumed to be constant over different decision situations or if individual incomes at
the disagreement point are known by the empirical analyst. As discussed in Section 5, we
believe that these last findings may have practical usefulness for analyzing observational
data (e.g. on household consumption) in terms of the Nash bargaining model.

At an empirical level, our application to experimental data has shown that the Nash
bargaining model may effectively provide a good description of multi-player consumption
decisions. In particular, we obtained that the testable implications of the model have much
discriminatory power (e.g. when compared to collective consumption model). Importantly,
even though it has considerable power, the model also provides a very good empirical fit of
the observed consumption decisions in our experiment. In our opinion, these two attractive
features together strongly suggest the Nash bargaining model as a most valuable alternative
for empirically analyzing joint consumption decisions.

We see different avenues for follow-up research. Firstly, given the favorable results for
the Nash bargaining model in our experimental setting, we believe a natural next step con-
sists of bringing the testable implications developed in this paper to household consumption
data. Indeed, multi-player consumption models are often applied for the empirical analysis
of household behavior. As indicated above, such an analysis can start from our revealed
preference characterization that does not require observed threat point bundles. In this re-
spect, one important remark pertains to the fact that all our testable conditions need that
individual consumption bundles in bargaining outcomes are observed. This is often prob-
lematic in a household context: household data sets usually only contain information on the
aggregate household consumption and not on the individual consumption. Interestingly,
however, data sets with individual consumption information are increasingly available in
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the literature. See, for example, Browning and Gortz (2006), Bonke and Browning (2009),
and Cherchye, De Rock, and Vermeulen (2010). For such data sets our testable conditions
are directly applicable, which may thus obtain a powerful revealed preference analysis of
household consumption behavior.

Next, follow-up research can also focus on other bargaining solutions that are fre-
quently considered in the literature, such as the generalized Nash bargaining solution, the
Raiffa-Kalai-Smorodinsky solution, the egalitarian solution and the equal sacrifice solu-
tion. Essentially, these models differ from each other in terms of the axioms they impose
on the bargaining solution. In fact, by adopting a similar reasoning as in this paper, it is
possible to derive the revealed preference characterizations of these alternative bargaining
models. One can then use these characterizations to compare the empirical performance
of the different models (and the underlying axioms). For example, such a comparison may
carry out an experimental analysis similar to ours.
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Appendix A: proofs

Proof of Theorem 3

We will use the following lemma.

Lemma 1. Let UA, UB, ŪA, ŪB ∈ R. Then for any V A, V B ∈ R, for which V A <
min{UA, ŪA} and V B < min{UB, ŪB}, we have that

UA +

(
UA − V A

UB − V B

)
UB ≥ ŪA +

(
UA − V A

UB − V B

)
ŪB implies (1)

(UA − V A)(UB − V B) ≥ (ŪA − V A)(ŪB − V B). (2)

Proof. We prove this by contradiction. Assume that (2) does not hold, i.e.

(UA − V A)(UB − V B) < (ŪA − V A)(ŪB − V B). (3)

We can rewrite (1) to obtain the following equivalence statements:
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UA +

(
UA − V A

UB − V B

)
UB ≥ ŪA +

(
UA − V A

UB − V B

)
ŪB

⇔ UA(UB − V B) + UB(UA − V A) ≥ ŪA(UB − V B) + ŪB(UA − V A)

⇔ (UB − V B)(UA − V A − ŪA + V A) + (UA − V A)(UB − V B − ŪB + V B) ≥ 0

⇔ 2(UB − V B)(UA − V A) ≥ (ŪA − V A)(UB − V B) + (ŪB − V B)(UA − V A)

⇔ 2 ≥ ŪA − V A

UA − V A
+
ŪB − V B

UB − V B
.

Next, (3) implies
ŪA − V A

UA − V A
>
UB − V B

ŪB − V B
, (1)

so that we obtain

2 >
UB − V B

ŪB − V B
+
ŪB − V B

UB − V B

⇔ 2 >
(UB − V B)2 + (ŪB − V B)2

(ŪB − V B)(UB − V B)

⇔ 0 >

(
(ŪB − V B)− (UB − V B)

)2
(ŪB − V B)(UB − V B)

.

By assumption the right hand side in this last inequality is positive, which yields the
wanted contradiction. This proves the lemma.

We can now prove Theorem 3.

Proof. Necessity. Take any t ∈ T . The first order conditions of the optimization programs
OP-NB and OP-TP are given by:

UA
qA
t

=
λt

UB(qB
t )− V B(xB

t )
pt,

UB
qB
t

=
λt

UA(qB
t )− V A(xA

t )
pt,

V A
xA
t

= δAt pt,

V B
xB
t

= δBt pt,

with λt, δ
A
t and δBt the respective Lagrange multipliers. Note that UC

qC
t

(V C
xC
t

) is a suitable

subdifferential for the function UC (V C) at the bundle qC
t (xC

t ), with C = A,B. The
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functions UA, UB, V A and V B are concave and, thus, for all t, v ∈ T , we have

UA(qA
t )− UA(qA

v ) ≤ UA
qA
v

(qA
t − qA

v ),

UB(qB
t )− UB(qB

v ) ≤ UB
qB
v

(qB
t − qB

v ),

V A(xA
t )− V A(xA

v ) ≤ V A
xA
v

(xA
t − xA

v ),

V B(xB
t )− V B(xB

v ) ≤ V B
xB
v

(xB
t − xB

v ).

For all t ∈ T , let UA
t = UA(qA

t ), UB
t = UB(qA

t ), V A
t = V A(xA

t ), V B
t = V B(xB

t ). This
ensures that the constraint (NB-v) is satisfied. Next, take

λAt =
λt

UB
t − V B

t

and λBt =
λt

UA
t − V A

t

,

which implies that the constraint (NB-vi) is satisfied. Substituting all this in the above
conditions gives

UA
t − UA

v ≤ λAv pv(q
A
t − qA

v ),

UB
t − UB

v ≤ λBt pv(q
B
t − qB

v ),

V A
t − V A

v ≤ δAv pv(q
A
t − qA

v ),

V B
t − V B

v ≤ δBv pv(q
B
t − qB

v ).

This shows that the remaining constraints (NB-i)-(NB-iv) are also satisfied.
Sufficiency. Similar to Varian (1982), we define the following utility functions:

UA(qA) = min
t∈T

UA
t + λAt pt(q

A − qA
t ),

UB(qB) = min
t∈T

UB
t + λBt pt(q

B − qB
t ),

V A(xA) = min
t∈T

V A
t + δAt pt(x

A − xA
t ),

V B(xB) = min
t∈T

V B
t + δBt pt(x

B − xB
t ).

Varian (1982) showed that the utility functions V A and V B make sure that, for all t ∈ T ,
xA
t and xB

t solve OP-TP. Moreover he obtained that UA
t = UA(qA

t ), UB
t = UB(qB

t ),
V A
t = V A(xA

t ) and V B
t = V B(xB

t ).
It only remains to show that qA

t and qB
t are a solution for OP-NB for the utility

functions UA, V B, V A and V B. Take any t ∈ T and consider any qA,qB ∈ R+ such
that pt(q

A + qB) ≤ pt(q
A
t + qB

t ). Observe that we need qA,qB with U(qA) > V A
t and

U(qB) > V B
t . By construction, we have

UA(qA) +
λAt
λBt

UB(qB) ≤ UA
t +

λAt
λBt

UB
t + λAt

(
pt(q

A − qA
t ) + pt(q

B − qB
t )
)

≤ UA
t +

λAt
λBt

UB
t .
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The constraint (NB-v) guarantees that UA
t > V A

t and UB
t > V B

t . Given this, the
constraint (NB-vi) and Lemma 1, imply

(UA
t − V A

t )(UB
t − V B

t ) ≥ (UA(qA)− V A
t )(UB

t (qB)− V B
t ).

Proof of Proposition 1

The result follows directly from our argument in the main text.

Proof of Proposition 2

Proof. If 0 < ak(UA
t −V A

t )− (1− ak)(UB
t −V B

t ), then (NB–vi-d1) implies R(k, t) = 1 and,
because of (NB–vi-e2), 0 < akλ

A
t − (1− ak)λBt . As such, we obtain

UA
t − V A

t

UB
t − V B

t

>
1− ak
ak

⇒ λAt
λBt

>
1− ak
ak

. (2)

A similar reasoning implies

UA
t − V A

t

UB
t − V B

t

≤ 1− ak
ak

⇒ λAt
λBt
≤ 1− ak

ak
. (3)

Given this, the constraint (NB-vi) in Theorem 3 can only hold if the constraints
(NB–vi-d1)-(NB–vi-e2) are met for any k ≤ K: if the constraints were violated for some k,
then we can never obtain (NB-vi-a) (or, equivalently, (NB-vi)). However, the constraints
(NB–vi-d1)-(NB–vi-e2) have no bite (i.e. are not rejectable) by themselves: without addi-
tional conditions, it is always possible to rescale the Afriat numbers UA

t , UB
t , V A

t , V
B
t and

λAt , λBt such that (2) (or, similarly, (3)) is met for any value of ak.
To obtain necessary conditions that are rejectable, it suffices to normalize these Afriat

numbers for some observation s. This is guaranteed by the constraints (NB–vi-f1) and
(NB–vi-f2). One can easily verify that such a normalization does not interfere with feasi-
bility of the constraints (NB-i)-(NB-v). In fact, if the set S satisfies the characterization
in Theorem 3, then feasibility of the constraints (NB–vi-d1)-(NB–vi-e2) and (NB–vi-f1)
and (NB–vi-f2) (in addition to (NB-i)-(NB-v)) must be independent of the identity of s.
Therefore, we have to check the same constraints for each possible s ∈ T .

Proof of Proposition 3

Proof. Without loss of generality, we can use V A
t = V B

t = V and xA
t = xB

t = x for all
observations t ∈ T (i.e. threat point bundles are always the same). Then, because xA

t = xA
v

and V A
t = V A

v , any δAt > 0 automatically solves (NB-iii) in Theorem 3, i.e. we can drop
the corresponding constraints as redundant in Proposition 3. Of course, the same applies
to individual B and condition (NB-iv). Finally, observe that the empirical implications
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of conditions (NB-i) and (NB-ii) remain unaffected if we add a common term to all UA
t

or UB
t . Hence, redefining UA

t and UB
t by subtracting the common term V for all t ∈ T

effectively gives conditions (NBfix-i) - (NBfix-iv).

Proof of Proposition 4

Proof. Theorem 1 of Brown and Shannon (2000) shows that (dual-iii) and (dual-iv) provide
a revealed preference characterization of the indirect utility functions WA

t and WB
t for the

given set S. Using this, the proof of the result is directly similar to the one of Theorem
3.
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