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This paper discusses some of the failings of expected utility including the Allais paradox
and expected utility’s inadequate one dimensional characterization of risk.  Three
alternatives to expected utility are discussed at length; weighted expected utility, rank
dependent utility, and cumulative prospect theory.  Each alternative is capable of
explaining Allais paradox type problems and permits more sophisticated multi
dimensional risk preferences.

Keywords: Expected utility, weighted expected utility, rank dependent utility,
cumulative prospect theory, Allais paradox

Introduction

Expected utility is the standard model for analyzing decision making under uncertainty.
Expected utility is well known to economists and is relatively easy to work with, most in
the field are not even aware of the alternatives.  Despite it’s popularity there are problems
with expected utility that suggest it is not a suitable model of human behavior.  Expected
utility suffers from Allais paradox type problems that suggest, experimentally, that agents
weight payoffs AND probabilities in decision making.  Also, the manner in which risk is
characterized in expected utility leads to absurd conclusions, this was recently pointed
out by Rabin and Thaler (2000).  In light of these shortcomings with expected utility we
present three alternatives that mitigate the problems mentioned above.  The alternatives
are weighted expected utility, rank dependent utility, and cumulative prospect theory.

Section 1: Expected Utility
1.1 Expected Utility

Expected utility is characterized by

(1) u(L) = p1u(x1) + (1-p1)u(x2).

Where L is a lottery that pays prize x1 with probability p1 and x2 with probability p2.  The
utility of the lottery is the expected utility of the prizes.  von Neumann and Morgenstern
(1944) show that expected utility can be derived from a series of seemingly innocuous
axioms.

Consider a lottery that pays L1 with probability p and pays L2 with probability 1-p, where
L1 and L2 are themselves lotteries.   The axioms are as follows:

A.1:Completeness: For any two sets of lotteries L1 and L2, L1 L2 or L2  L1or L1 ~ L2.

A.2: Transitivity: For any three sets  of lotteries if L1 �  L2 and L2 � L3 then L1 � L3.

The first two axioms permit the existence of lotteries and preferences.  That is, they
ensure that an agent can specify which states of nature he prefers and that these
preferences are logically consistent.  Together A.1 and A.2 imply that preferences can be
ordered.
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A.3: Continuity:  For three sets of lotteries such that L1 �  L2 � L3 there exists
some p such that (L1, p; L3, 1-p)~L2, the right hand side of this relation is a compound
lottery (or mixture) that results in L1 with probability p and L2 with probability 1-p.

The continuity axiom is necessary to ensure that agents’ preferences can be modeled with
a continuous function.

A.4: Independence:  If L1 �  L2 then (L1, p; L3, 1-p) �  (L2, p; L3, 1-p).

The final axiom, A.4, is the most important and controversial of the axioms.  Without the
independence axiom it would not be possible to invoke the most appealing characteristic
of expected utility, the utility of a lottery is the expected utility of the lottery’s payoffs.

One characteristic of (1) is that it is linear in probabilities.  It is this characteristic that is
questioned by skeptics of expected utility.  Another implication of (1) is that the expected
utility function is monotonic, which in turn implies stochastic dominance preference.
Agents are better off by increasing the probability of high payoff events, this is the
probabilistic counterpart to the “more is better” implication of traditional utility functions
(Machina, 1987).  Expected utility also seems to permit a wide range of attitudes towards
risk.  If u(.) is a concave function then the agent is risk averse; agents prefer a sure payoff
to a lottery with equal expected value.  Expected utility also permits risk neutral and risk
seeking agents.  Concave u(.), which are typically employed, exhibit diminishing
marginal utility for money.

1.2 Triangle Diagrams

Before discussing the problems with expected utility and the prominent alternatives a
graphical explication of expected utility will be presented using triangle diagrams.  This
method of analysis will be useful for comparing the non-expected utility theories to
expected utility.  Marschak (1950) pioneered the use of triangle diagrams although it was
Machina (1982) who made widespread use of them.

Consider a lottery with three outcomes ordered lowest to highest x1, x2, and x3 with
associated probabilities p1, p2, and p3.  The probabilities sum to one.  Although this is a
three dimensional lottery it can be depicted in a two dimensional diagram (below).  This
can be accomplished because p2 = 1 – p1 – p3.  By solving,

3

1 1 2 1 3 3 3
1

(2) ( ) ( ) ( )(1 ) ( )i i
i

u u x p u x p u x p p u x p
=

= = + − − + ,

where u  is a constant, for different u indifference curves can be generated.  The
solutions to (3) form parallel straight lines in p1-p3 space.
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Figure 1: Triangle Diagram with Expected Utility Indifference Curves

Movements along the vertical axis increase the likelihood of x3 at the expense of x2.
Movements along the horizontal axis increase the likelihood x1 at the expense of x2.  At
the origin the probability of observing x1 and x3 is zero so the probability of observing the
middle outcome, x2, is one.  Expected utility indifference curves are straight, parallel
lines in the triangle diagram with movement to the North-West yielding greater utility,
i.e. the probability of the large payoff is higher at the expense of the low payoff
(Machina, 1987).

Figure 2: Triangle Diagram with Expected Utility Indifference Curves and iso-Expected
Value lines.

In Figure 2 the triangle diagram is augmented with iso-expected value lines (dotted).
Along a given iso-expected value line the expected payoff of a prospect does not change.
However moving along the line in a North-East direction increases the probability of x3 at
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the expense of x2, so we increase the risk of the prospect.  The points on a given iso-
expected value line represent a mean preserving spread or a pure increase in risk.

In figure 2 notice that the expected utility indifference curves are steeper than the iso-
expected value lines. If we move along a iso-expected value line in the North-East
direction we cross indifference curves that are progressively lower as we move.  As we
increase the risk of a gamble, we lower the utility of the gambler.  Therefore the
indifference curves shown here are for a risk averse agent.  A risk seeking agent would
have indifference curves that are flatter then the iso-expected value lines.

Section 2: Problems With Expected Utility
2.1 Allais Paradox

Violations of expected utility were first widely recognized as a result of work by Allais
(1953).  The Allais Paradox is based on empirical observations that imply agents weigh
both expected outcomes and the probabilities associated with expected outcomes.
Weighting probabilities is a clear violation of expected utility theory, which requires that
expected utility functions be linear in probabilities.

Consider the following situation.  You, as the agent, must choose between hypothetical
lotteries.  There are two different choice sets; for each choice set there are two lotteries
from which you can choose.  In each lottery there are three payoffs and their
corresponding probabilities. (Note, m denotes million.)

Choice 1
lottery1: A = ($5 m, 0; $1 m, 1; $0, 0) OR B = ($5 m, .10; $1 m, .89; $0, .01)

Choice 2
lottery 2: A= ($5 m, 0; $1 m, .11; $0, .89) OR B = ($5 m, .10; $1 m, 0; $0, .90)

For example, in lottery 1A you are guaranteed a payoff of $1 million and there is zero
probability of winning $5 million or $0.  In lottery 1B there is a .10 probability of
winning $5 million, a .89 probability of winning $1 million, and a .01 probability of
winning $0.  You must choose between 1A and 1B, and between 2A and 2B.  It may be
helpful to note your decision.

Many, if not most, agents prefer lottery 1A to lottery 1B and prefer lottery 2B to lottery
2A.  This empirical tendency directly contradicts expected utility theory.   Specifically,
the independence axiom is violated.  If you are an expected utility maximizer then you
must either prefer 1A to 1B and 2A to 2B, or 1B to 1A and 2B to 2A.   Agents may prefer
1A to 1B because they like the idea of becoming a millionaire with certainty, implying
risk aversion.  But in choice set 2 the gambles are quite different with a high probability
in each lottery of not winning any money.  So, the agent may simply say, “what the heck,
I’ll just go for 2B because my chance of winning $5 million is very similar to my chance
of winning $1 million and $5 million is much more.”  Unfortunately for expected utility,
this plausible line of reasoning violates the independence axiom.  Basically the typical
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agent responds in a more risk averse manner in choice set 1 and more risk neutral in
choice set 2.

Below is a triangle diagram depicting the Allais Paradox.

Figure 3: Allais Paradox Triangle Diagram

The four gambles are shown.  If an agent prefers gamble 1A to 1B then that suggests that
his indifference curves are relatively steep.  Note the steep indifference curve through
1A.  If you prefer 1A to 1B then your expected utility indifference curve is similar to I1.
However, I2 is parallel to I1, as required by expected utility theory, but I2 forces the agent
to prefer 2A to 2B.  Preferring 2B to 2A violates expected utility.  Simply put, it is not
possible to generate expected utility indifference curves that support most agents’
preferences over the gambles. For the indifference curve to accurately represent most
agents’ preferences, line I2 must be flatter than I1.  This is called “fanning out.”

The Allais paradox exists, in all likelihood, because agents place weights on the
probabilities of expected outcomes.  The weighting of probabilities is intuitively linked to
individual’s attitudes towards risk.  It seems plausible that people weight catastrophic
(low probability) losses or gains (as in the Allais paradox) differently than they weight
normal losses or gains.  What constitutes catastrophic and normal is difficult to
characterize mathematically.  Because this type of behavior is so prevalent researchers
have attempted to develop new utility theories that account for  the Allais paradox.

Machina (1987) argues that many violations of expected utility, including the Allais
Paradox, exist because indifference curves fan out for most agents.  Basically fanning out
requires that indifference curves become steeper as they move from the lower right to the
upper left of the triangle diagram (Figure 4).
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Figure 4: Fanning Out

The Allais paradox is not a paradox at all for agents with indifference curves I1 and I2,
although it is not possible to generate these indifference curves with expected utility.

There are numerous examples of Allais paradox type violations of expected utility.  The
empirical evidence is typically gathered through experiments in which participants
choose between choice sets similar to the examples presented here.  Some of the notable
evidence can be found in Allais (1953,1979), Camerer (1989), Ellsberg (1961), and
Kahneman and Tversky (1979).   Interestingly it has been shown that animals also violate
the axioms of expected utility (Battalio, Kagel, and Mac Donald, 1985).

The most obvious way to reconcile the Allais paradox and many other problems with
expected utility is to  allow the agent to weight the probabilities associated with the
relevant outcomes. Violations of expected utility are the result of requiring indifference
curves to be linear and parallel in probability space.  In Section 3 we discuss some of the
various ways researchers have attempted to loosen this rigid requirement.

2.2 Risk Aversion

In expected utility the attitude of the agent towards risk depends entirely on the curvature
of the valuation function.  Preference for risk is quantified by the coefficient of absolute
risk aversion, often referred to as the Arrow-Pratt measure which was developed
independently by Pratt (1964) and Arrow (1965).  The measure is based on the first and
second derivatives of the utility function with respect to the choice variable.  The
measure is,
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the negative of the second derivative divided by the first derivative.  The second
derivative alone determines if the function is concave and hence the agent risk averse.
But by normalizing the measure by dividing by the first derivative the measure is
invariant to changes in scale.   A positive r(x) corresponds to a risk averse agent.

Rabin and Thaler (2001) make a compelling argument that expected utility takes too
simplistic a view towards risk.  Agents’ risk attitudes are determined entirely by the
shape, i.e. concavity, of the utility function.  Suppose there is a risk averse agent that
rejects a 50-50 gamble with payoffs of $11 and -$10.  Now the agent is offered a 50-50
bet with payoffs of $x and -$100, how large does x have to be for the agent to accept the
bet?  Using a theory developed by Rabin (2000) they show that this agent will not accept
the second bet no matter how large x is for any initial level of wealth.  This is obviously
ludicrous although plausible under expected utility and its definition of risk aversion.
Basically, the agent’s aversion to the small bet suggests that his marginal utility for
wealth must decline very rapidly; hence, he will not participate in the second bet because
he gains so little utility for additions to wealth.  The nonsensical results are caused by
expected utility’s dependence on a single measure of  risk aversion that fails to allow
certain plausible behavior. This deficiency of expected utility causes Rabin and Thaler to
question why economists are so attached to the paradigm.

Rabin (2000) shows that by only assuming increasing and concave utility functions that
agents will behave absurdly  to large stakes bets if they act risk averse to more moderate
bets.   So if we use expected utility to model agents in situations where the payoffs are
non negligible but small we are necessarily implying that these agents act in absurd ways
if the stakes are large.

In the following section we will show that the alternatives to expected utility do not rely
on a single risk aversion measure.  The alternatives to expected utility we will discuss
have two or more ways of characterizing agent’s risk preferences.

Section 3: Alternatives to Expected Utility
3.1 Introduction

The most obvious way to improve expected utility is to relax the independence axiom and
allow the probabilities to enter the function in a nonlinear manner. If probabilities are
allowed to be nonlinear then the agents’ indifference curves need not be linear nor
parallel.  In the remainder of this section five non-expected utility theories will be
discussed, of which three appear to be promising alternatives to expected utility:
weighted expected utility, rank dependent utility, and cumulative prospect theory.  Two
other non-expected utility theories, decision weighted utility and prospect theory, will be
discussed because they represent important intermediate theories that led to rank
dependent utility and cumulative prospect theory respectively.

3.2 Weighted Expected Utility
Weighted expected utility, sometimes referred to as weighted linear utility, is a tractable
generalization of expected utility that permits Allais paradox type behavior.  A weighted
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expected (WEU) utility function was developed by Chew and MacCrimmon (1979a,
1979b) and Fishburn (1983).  The functional form of WEU is as follows,

( )
(4) ( ) ,

( )
=

ii
i

i i
i

u x p
V L

w x p

where u(.) is the valuation function, pi is the probability of observing xi, and w(.) is a
weighting function.  Weighted expected utility reduces to expected utility if w(.)  is a
constant.

The primary axiomatic difference between expected utility and weighted expected utility
is that the latter has a weakened independence axiom. This axiom was developed by
Chew and Waller (1986) the interpretation below is by Camerer (1989):

A.4.2 Weak Independence:  For each probability p′  there is another probability p′′  for
which L1~L2 implies p′ L1 + (1- p′ )L3 ~ p′′  L2 + (1- p′′ )L3.

The strong independence axiom of expected utility forces p p′ ′′= , but in weak
independence they are not necessarily equal allowing the agent a certain amount of
latitude in his preferences.  The most important implication is that an agents’ preferences
are not necessarily “irrational” if the agent considers common consequences in stating
preferences.  The weighted expected utility function (4) satisfies the weakened
independence axiom.

Recall equation (1), which defines the utility of a lottery as the expected utility of the
payoffs.  A similar but more complex statement can be made for weighted expected
utility,

1 1 1 1 2 2

1 1 1 2

( ) ( ) (1 ) ( ) ( )(5) ( )
( ) (1 ) ( )

+ −=
+ −

p w x u x p w x u xV L
p w x p w x

The numerator of (5) is similar to the expected utility function (1) except that the
probabilities are weighted by the weighting function, w(.).  The denominator of (5)
normalizes V(.) by the expected weighting function.  Collectively the numerator and
denominator of (5) permit a non-linear weighting of probabilities.

Below (Figure 5) is a triangle diagram that depicts weighted expected utility.
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Figure 5: Weighted Expected Utility Triangle Diagram

Note that the indifference curves are linear but fan out thus permitting Allais paradox
type behavior.  Because the indifference curves are not parallel they must intersect at
some point.   Weighted expected utility indifference curves all intersect at a single point
called the hub, this point of intersection can lie inside or outside of (p1,p3) space.

By combining the Allais paradox triangle diagram with a weighted expected utility
diagram it is possible to show how there is no paradox in weighted expected utility.  This
can be seen graphically in figure 4; the indifference curves I1 and I2 could have been
generated by a weighted expected utility model.

In expected utility the agent’s attitude toward risk is measured by (3) the Arrow-Pratt
measure of absolute risk aversion.  For weighted expected utility there are two measures
used to characterize risk: sensitivity and eccentricity.  These measures were developed by
Hess and Holthausen (1990) and this discussion is based on their work.  Suppose an agent
has a wealth level of x  and an additional uncertain source of wealth, e, with expected
value µ and variance 

2

σ .  Define the risk premium, Π , needed to make the agent
indifferent between paying the premium and avoiding the risk implied by the uncertain
source of wealth,

u(x ) E[u(x e)](6) .
w(x ) E[w(x e)]

µ
µ

+ − Π +=
+ − Π +

Hess and Holthausen then take first order Taylor series expansions of u(.) and w(.) on the
left side in µ- Π , and they take second order Taylor expansions of the left side in e.
Solving for Π,

0 1

1

p1

p3
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2 2

S E(7) 2( ) E

uw '' u ''w(8) S
u 'w w 'u
u 'w '' u ''w '(9) E
u ' w w'u

µ

σ µ

+Π =
+

+
−=
−
−=
−

where the arguments in the functions u(.) and w(.) have been suppressed.  Chew (1983)
defines (8) as the measure of absolute risk sensitivity.  Note that if w(.) is a constant then
(8) reduces to the Arrow-Pratt measure.  Unlike expected utility there is an additional
measure of risk when w(.) is not constant, E.  Hess and Holthausen (1990) define E as
eccentricity, which measures the extent to which an agent deviates from expected utility.
If an agent has zero eccentricity then he is an expected utility maximizer.  Note that the
more sensitive the agent the higher the premium must be to accept the risk.  However,
eccentricity is in the numerator and denominator so it is not as obvious how eccentricity
affects the risk premium.

3.3 Decision Weighted Utility

There are other plausible means of constructing utility functions that are nonlinear in
probabilities.  Consider the following utility function,

(10) ( ) ( ) ( )π= i i
i

V L p u x ,

where π is a probability weighting function such that π (1) = 1 and π (0)=0.  The
decision weighted utility approach is based on work by Edwards (1955, 1962), with
subsequent refinement by Handa (1977).  By modeling decision weights with π (pi) it is
possible to reflect a wide range of preferences, based on the choice of π (pi), which
accounts for some of the empirical contradictions found with expected utility.

However, this model has a major flaw initially pointed out by Fishburn (1978).  The only
choice of π (.) that will maintain general monotonicity is to set ( )π ip  = pi, if this is done
then (6) reduces to an expected utility function. Because of the flaw detected by Fishburn
decision weighted utility is considered a research dead end, but its development and
subsequent failure did lead to a more satisfying but different approach, rank dependent
utility.

3.4 Rank Dependent Utility

Rank dependent utility functions, developed by Quiggin (1982), look similar to decision
weighted utility functions at first glance.  As with all of the non-expected utility theories,
rank dependent utility permits nonlinear weighting of probabilities.  A slight adjustment



12

to the definition of the relevant gambles is needed.  The gamble has the form (xi;pi) for i
= 1 to n where the vector of payoffs and associated probabilities are sorted in order from
lowest to highest.   In rank dependent utility the value of an outcome depends on the
probability of realizing that outcome and the ranking of the outcome relative to the other
possible outcomes.  The rank dependent utility function is as follows,

1

(11) ( ) ( )

(12) ( ... ) ( ... )
( )

π π
π

+

=

= + + − + +
=

i i
i

i i n i n

n n

V L w u x

w p p p p
w p

where wi(.) is a weighting function and π (.) is a transformation of cumulative
probabilities, mapping [0,1] into [0,1].  The value π (pi+...+pn) is the subjective weight
attached to the probability of getting a payoff at least as good as xi, while the value
π (pi+1+...+pn) is the subjective weight attached to the probability of receiving a payoff
strictly better then xi.  The net result of these transformations is that the weighting
function preserves monotonicity of V(.).  The valuation functions, u(.), are typically the
same as those used in expected utility, strictly increasing and concave.

The use of cumulative probabilities in the manner specified by (12) has an appealing
property relative to decision weighted utility models.  Suppose there is an outcome with
probability pj; in decision weighted models the weight attached to this outcome will
always be the same, but in rank dependent utility, by virtue of (12), the weight will reflect
how “good” or “bad” a particular outcome is relative to the other outcomes (Starmer,
2000).   This is an intuitively pleasing property; agents weight the value of a payoff
relative to the other payoffs available.  Under some circumstances a payoff xj with
probability pj may seem appealing compared to other payoffs, but under different
circumstances the prospect (xj,pj) may be a unappealing payoff.  How the agent weights
the prospect depends on how it is ranked relative to the other prospects.

Obviously the choice of π (.) is critical in specifying a rank dependent utility function. If
π (.) is concave then π (p) ≤  p for all p, this implies pessimism (Quiggin, 1993).  A
pessimistic agent over-weights lower ranked outcomes and under-weights higher ranked
outcomes.  So a pessimistic agent is more worried about bad states of nature, hence he
places greater weight on relatively worse outcomes.  An agent with a convex π (.) is
optimistic, he over-weights the higher ranked outcomes.

When discussing risk in rank dependent utility two factors must be kept in mind, the
shape of the utility function (concavity implies risk aversion) and what type of
transformation function is used.  A pessimistic agent with a concave utility function will
behave in a universally risk averse manner.  A risk seeking agent, with convex u(.), that is
sufficiently pessimistic will also behave in a risk averse manner.  In this way rank
dependent utility is similar to weighted expected utility, concave utility functions imply
risk aversion but the shape of the utility function alone does not dictate an agent’s risk
preferences.
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Risk becomes slightly more complicated when one considers inverted S shaped (hereafter
referred to as S shaped) transformation functions.  An S shaped function necessarily
crosses the 45 degree line, as in figure 7.

Figure 7: S Shaped Transformation Function

At π (p*) = p* the probability is not distorted; below p* the agent is pessimistic and above
p* the agent is optimistic. The logic behind the S shaped transformation is that agents will
over-weight low probability events and under-weight high probability events.  The agents
worry more about the more obscure, rarer, states of nature.  This characteristic is
intuitively pleasing; agents place greater weight on the less likely events for which they
are less experienced and consequently more anxious.  The S shaped transformation is
favored by Quiggin and has found empirical support (Prelec, 1998).  Quiggin favors an  S
shaped curve with p* = .50.  This property permits the observed violations of expected
utility and it has the appealing property that 50-50 gambles are not affected by probability
weighting (Stramer, 2000).  Prelec (1998) finds that the p* is closer to 1/3.  In any event
convex and S shaped cumulative probability transformations allow rank dependent utility
to explain many violations of expected utility including the Allais paradox.  If the
transformation function is linear with slope one,  the 45 degree line, then rank dependent
utility reduces to expected utility.

In terms of triangle diagrams rank dependent utility functions appear as in Figure 8
(Camerer, 1989).

π(p)

pπ(p*) = p*
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Figure 8:Rank Dependent Utility Triangle Diagram

The indifference curves are concave and parallel on the hypotenuse of the triangle  and
fan out West to East.  The indifference curves become less steep and fan in from the
South to North.  Unlike weighted expected utility the curves are not parallel; however,
they are capable of explaining Allais paradox behavior.

The axioms supporting rank dependent utility are essentially the same as the axioms for
expected utility except for the independence axiom.  The rank dependent utility analog to
the independence axiom is called co-monotonic independence (Wakker, Erev, and
Weber, 1994).  Basically, co-monotonic independence asserts that preferences do not
depend on common consequences unless the common consequence, substituting one
common consequence for another, alters the rankings of the outcomes.

Expected utility is embodied by a relationship that is intuitively appealing - the utility of
a gamble is the expected utility of the gamble’s payoffs.  Weighted expected utility has a
similar but less aesthetically pleasing relationship -- the utility of a gamble is the ratio of
the weighted expected utility of the gamble and the expected weighting function.    Rank
dependent utility is characterized by (Camerer, 1989)

1 1 1 2(13) ( ) ( ) ( ) (1 ( )) ( )= + −V L w p u x w p u x ,

the utility of a gamble is the subjectively weighted sum of the payoffs.  So, (13) is similar
to (1) except that cumulative probabilities are transformed by a subjective weighting
function that is specified such that monotonicity and stochastic dominance are preserved.

0 1

1
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3.5 Prospect Theory

Weighted expected utility and rank dependent utility are designed to accommodate
empirical deviations from expected utility without sacrificing expected utility’s desirable
properties.  Agents have underlying preference functions and behave as if they are trying
to maximize the functions.   Prospect theory was initially developed by two
psychologists, Kahneman and Tversky (1979), to be consistent with human thought
processes.  Prospect theory applies only to gambles for which there are two possible
outcomes.   This fact makes prospect theory impossible to apply to situations where there
are many possible outcomes.  Cumulative prospect theory is an extension of prospect
theory that is suited for analyzing hedging.

Prospect theory is a procedural theory in which agents make decisions in a two-stage
process.  In the first stage the agent studies the various lotteries and edits them using
decision heuristics.  Supporters of prospect theory believe this process to be consistent
with how agents actually behave.  Instead of using all available information, which
maybe overwhelming, agents use “tried and true” decision rules to help them sort out the
various states of nature.  In the second stage the agent behaves as if the edited lotteries
enter a preference function.  Stage two is similar to the more traditional approaches but
stage one has no counterpart in expected, weighted, or rank dependent utility.

In prospect theory gains and loses are measured according to a reference point.  Within
the context of hedging the reference point might be current wealth.  So the agent is not so
much concerned with the payoff of a gamble but the deviation of the gamble from the
reference point.  The use of a reference point gives rise to another unique feature of
prospect theory, the shape of the valuation function.  Below the reference point are the
losses where the shape of the function is typically convex.  In the gains region above the
reference point, the function is concave.  At the reference point the function is kinked.
Another key feature of the valuation function is that it is steeper in the convex (loss)
portion of the domain.  Figure 9 depicts the shape of a valuation function (Starmer,
2000).

Figure 9:  Prospect Theory Valuation Function

  

Losses   Gains
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Tversky and Kahneman (1992) argue that the shape of the valuation function depicted in
figure 8 has two desirable properties with respect to observed human behavior -
diminishing sensitivity and loss aversion.  If an agent’s behavior exhibits diminishing
sensitivity then marginal changes relatively farther from the reference point, or kink, are
psychologically less important than marginal changes near the reference point.
Diminishing sensitivity implies diminishing marginal utility right of the kink and
diminishing marginal disutility left of the kink (Starmer, 2000).  Agents that exhibit loss
aversion will not be attracted to gambles that have a 50 percent change of winning $x and
a 50 percent chance of losing $x.

The probabilities are transformed into decision weights in a nonlinear manner.
Kahneman and Tversky suggest an increasing w(pi), sub-additive, and discontinuous at
the end points.  A prospect theory triangle diagram is included in Figure 10 taken from
Camerer (1989).

Figure 10:  Prospect Theory Triangle Diagram

The prospect theory diagram is quite exotic compared to the ones considered thus far.
The exotic nature is due to the kinked nature of the prospect theory valuation function
and because the weighting function is not continuous at the end points.  Despite the
peculiar look of the figure it is capable of explaining Allais paradox violations of
expected utility.

The editing phase is what really differentiates prospect theory from the alternatives to
expected utility discussed so far.  The editing phase can include different heuristics by the
decision maker.  For one thing, the agent must decide what the reference point is and then
analyze the possible outcomes and conclude, based on the reference point, which
outcomes are gains and which are losses.   There is also a dominance heuristic that
requires the agent to eliminate stochastically dominated outcomes if they are detected by

0 1

1

p1

p3
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the agent.  It is possible that the gambles are sufficiently complicated making it difficult
to edit out all dominated prospects, so it is possible for dominated prospects to survive
the editing phase.

Because the preference function is not linear and there is a possibility that dominated
outcomes will not be edited out it is possible that transitivity will be violated.  The
violations would be indirect as follows: L1  L2, L2 L3, but L3  L1.  So, in general,
prospect theory does not imply transitive or monotonic preferences.

The editing phase makes it difficult to concisely summarize prospect theory in a
convenient manner comparable to equations (1), (5), and (13).

3.6 Cumulative Prospect Theory

Cumulative prospect theory (Tversky and Kahneman, 1992) can be loosely thought of as
a combination of rank dependent utility and prospect theory.  The evolution from
prospect theory to cumulative prospect theory is interwoven with the development of
rank dependent utility.   Quiggin was impressed with prospect theory but thought it too
limiting, he did not like the potential intransitivities implied by prospect theory, so he
went on to develop rank dependent utility.  Tversky and Kahneman were impressed with
rank dependent utility but they preferred a model with payoffs that are measured as
deviations from a reference point, so they developed cumulative prospect theory.

In cumulative prospect theory there is no editing phase and there can be any number out
outcomes in the lotteries.  Another advantage of cumulative prospect theory over regular
prospect theory is that transitivity and monotonicity are maintained thus assuring
stochastic dominance preference.  The important aspects of prospect theory that are
retained include the measurement of payoffs relative to a reference point and consistency
with diminishing sensitivity and loss aversion.  (Please note that the definition of
“sensitivity” is similar but not the same as the definition of sensitivity in weighted
expected utility theory.)

The decision weighting function is different for gains then it is for losses in the model
summarized below.  The superscripts + and - reflect gains and losses.  So { ix+ } is equal
to {xi} for values above the reference point and 0 otherwise and { ix− } consists of {xi}
values below the reference point and 0 otherwise.  The + and – superscripts can also be
applied to functions.  A function f+(x) is evaluated over the range of { ix+ }, defined
above.    Within each category, gain or loss, the prospects are sorted into ascending order.
The functions have the following form,
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where xi are the payoffs relative to the reference point.  One other caveat is that  v(.) is
strictly increasing and v(0)=0. The prospects from 0 to n are the gains and the prospects
from -m to 0 are the losses. The weighting functions are as follows,
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where (.)π is the nonlinear probability transformation function that is strictly increasing
and maps [0,1] to [0,1].  Furthermore (0) 0π =   and (1) 1π = .  Equations (17) to (20)
capture the cumulative distribution transformation process used in rank dependent utility
adjusted for prospect theory.    The adjustment explicitly takes into account the decision
maker’s differing psychological interpretations of gains and losses.

Tversky and Kahneman recommend, in addition to the limitations mentioned above, that
the function v(.) be chosen to yield diminishing sensitivity and loss aversion (1992).  To
ensure diminishing sensitivity, v(.) is concave above the reference point, v (x) 0′′ ≤  when
x ≥ 0, and convex below the reference point, v (x) 0′′ ≥ when x < 0.  Loss aversion is
ensured by requiring that v (x) v ( x)′ ′< −  for x ≥ 0.  Loss aversion is a characteristic that
Rabin and Thaler (2001) argue is essential for realistically specifying agent risk aversion.
Collectively these requirements greatly limit the choices of v(x); for instance, many of
the functional forms used in expected utility such as negative exponential do not meet
these requirements.   The choice of v(.) will be discussed in greater detail in the next
section.  Diminishing sensitivity is also affected by the choice of (.)π .  Tversky and
Kahneman, (1992) require that (.)π  be concave near zero and convex near 1.  This can be
accomplished by using an S shaped transformation function.

With respect to risk how are these requirements interpreted?  In cumulative prospect
theory the agents’ attitudes towards risk are more deliberately built into the models.
Cumulative prospect theory was conceived in terms of diminishing sensitivity and loss
aversion, which are fairly particular requirements. So, to a certain extent there is less
flexibility in specifying attitudes towards risk.  In this sense cumulative prospect theory is
more deliberate compared to the other specifications; it is designed to fit what its creators
have found to be typical agent behavior.
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Summarizing equations (14) to (20), the value of cumulative prospects is equivalent to
the rank dependent utility of the gains using the gain probability weighting function plus
the rank dependent utility of the losses using the loss probability weighting function.
Cumulative prospect theory can then be summarized as,

1 1 1 2 1 1 1 2(21) ( ) [ ( ) ( ) (1 ( )) ( )] [ ( ) ( ) (1 ( )) ( )]− − + +− − + += + − + + −u L w p u x w p u x w p u x w p u x

where ix−  and ix+  are defined as before.

The axiomization of cumulative prospect theory relevant to this research can be found in
Chateauneuf and Wakker (1999).  The axioms include, weak ordering, continuity,
stochastic dominance preference, and tradeoff consistency.   The tradeoff consistency
axiom is the most distinguishing.  It is similar to the co-monotonic independence axiom
of rank dependent utility.  Basically it states that gains should be co-monotonic
independent from one another and losses should be co-monotonic independent of one
another.

Cumulative prospect theory and rank dependent utility are very similar, indeed, it can be
shown that, mathematically, rank dependent utility is a special case of prospect theory.  If
the following relation is true,

(22) ( ) 1 (1 )π π− += − −p p

cumulative prospect theory simplifies to rank dependent utility.  So when π −  is the dual
of π +  cumulative prospect theory is equivalent to rank dependent utility (Chateauneuf
and Wakker, 1999).  Although, mathematically, rank dependent utility is a special case of
prospect theory, qualitatively it seems the other way around.  Rank dependent utility does
not require diminishing sensitivity or loss aversion, so in a sense, it is a more flexible
specification.  Hence one could argue that, intuitively, cumulative prospect theory is a
special case of rank dependent utility, one that restricts v(.) and (.)π  to support
diminishing sensitivity and loss aversion.

3.7 Summary of the Alternatives

Weighted expected utility, rank dependent utility, and cumulative prospect theory are
three prominent alternatives to expected utility.  Each is capable of accommodating the
common consequence effect and thus able to explain the Allais paradox.  Although the
three non-expected utility theories are very different in some respects they have at least
one feature in common: the probabilities of the various outcomes enter the utility
function in a nonlinear manner.

Weighted expected utility and rank dependent utility are axiomatically based on
weakening the independence axiom of expected utility.  Prospect theory is quite different
it is based on the presumption that utility is best modeled in a two stage process, an
editing phase and then an optimization phase that is similar to the basic economic
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approach.  The crucial difference is that in the expected utility type approaches we
economists say “agents behave as if such an underlying model exists.”  The prospect
theory approach is more hands-on; they, the psychologists, are trying to develop a model
that is more consistent with how agents actually do behave, hence the perceived need for
editing.  This difference is also apparent in the requirement that agents exhibit
diminishing sensitivity and loss aversion.

The waters are muddier with cumulative prospect theory because it does not have an
editing phase and looks pretty much like the expected utility type models.  The only
crucial difference is the payoffs, which in prospect theory and cumulative prospect theory
are measured as deviations from some status quo reference point.  The founders of
cumulative prospect theory also built into the models diminishing sensitivity and loss
aversion.

The following figure is intended to summarize how the various theories fit together.

Figure 10: Relationships Between Theories

The left side of the figure depicts theories based on gambles and are, for the most part,
developed by economists.  The common ancestor to all of these candidates is expected
utility; each new theory is designed to accommodate violations of expected utility.  The
theories to the right include the prospect theory models, which use deviations from a
reference point as the relevant payoff.  Starmer (2000) refers to these theories as
procedural because prospect theory includes an editing phase.  However, cumulative

Expected Utility Prospect Theory 

Weighted Expected 
Utility 

Decision Weighted 
Utility 
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Traditional Approaches 
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prospect theory does not include an editing phase so it is a bit misleading to refer to it as
a procedural theory.  The construction of the diagram is somewhat arbitrary in that there
are numerous possible constructions depicting the links between the theories.  This
construction is favored because the branches end with the theories that will ultimately be
used in this paper’s analysis; weighted expected utility, rank dependent utility, and
cumulative prospect theory.

Weighted expected utility is a viable choice because it is a relatively simple
generalization of expected utility that yields indifference curves that fan out.  Fanning out
appears to a great many violations of expected utility, including the common
consequence effect.  Furthermore, weighted expected utility maintains transitive
preferences and stochastic dominance preference, some of expected utility’s desirable
characteristics.  Compared to the alternatives, weighted expected utility is tractable and
easy to work with.  Starmer (2000) argues that the major problem with weighted expected
utility is that the weak independence axiom is un-intuitive, designed only to generate a
model with fanning out.  This is a plausible argument, requiring that the indifference
curves intersect South-West of the triangle diagram is entirely arbitrary.  Nevertheless,
weighted expected utility’s attributes are attractive enough to warrant its consideration.

Rank dependent utility  and prospect theory are very similar and considered the leading
alternatives to expected utility (Starmer, 2000).  The biggest drawback to rank dependent
utility and cumulative prospect theory is that they are far more complicated to implement
empirically than expected utility and weighted expected utility.  Although the analysis is
not complete yet, the models will in all likelihood take days to optimize in Matlab.
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