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Abstract   This paper has two main objectives. The first is to develop a dynamic
model of commercial fisheries different from most existing models that assume
optimizing behavior. The industry is assumed to have a well-defined index of
performance. Based upon this index, the decision to invest or not is made. We do
not, however, assume that the industry or firm is efficient or optimal in its op-
erations. The second is that a new approach of fitting model dynamics to time
series data is employed to simultaneously estimate the poorly known initial con-
ditions and parameters of nonlinear fisheries dynamics. The approach is a data
assimilation technique known as the variational adjoint method. Estimation of
the poorly known initial conditions is one of the attractive features of the varia-
tional adjoint method.

Key words   Data assimilation, index of performance, nonlinear dynamics, open
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Introduction

The most common approaches of modeling the dynamics of a natural resource sys-
tem are the routine application of the sophisticated techniques of the calculus of
variations or optimal control theory and dynamic programming (Kamien and
Schwartz 1984; Clark 1990). The economic theory of an optimally managed fishery
has been advanced by several researchers. For example, Clark (1990) discussed
various models in some detail. Sandal and Steinshamn (1997a,b,c) made some of the
most recent contributions in this area. This framework explicitly assumes that agents
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are optimal and efficient. However, most real-world fisheries have historically not
been optimally managed.

Commercial models of fisheries have previously been discussed by Crutchfield
and Zellner (1962) and Smith (1969). The latter provided a model of theoretical na-
ture, which transforms specific patterns of assumptions about cost conditions, de-
mand externalities, and biomass growth technology into a pattern of exploitation of
the stock. Smith also discussed the three main features of commercial fishing and
mentioned the various types of external effects representing external diseconomies
to the industry. In two earlier papers, Gordon (1954) and Scott (1955) noted that all
of these externalities arise fundamentally because of the unappropriated “common
property” character of most ocean fisheries (Smith 1969).

In this paper, we develop a commercial fishing model that does not necessarily
assume optimal behavior of fishers. The goal is to develop a model that is quite gen-
eral and has potentially broader applications.

This paper also focuses on a very important aspect of fisheries management that
has largely been ignored. Deacon et al. (1998) noted that much of the information
managers need is empirical; i.e., measurements of vital relationships and judgments
about various impacts. This area of the economics of fishing has not been ad-
equately explored by economists, probably due to lack of data and computational
power in the past. Much of the research effort was used in search of qualitative an-
swers to management problems. This paper employs an efficient method of ad-
vanced data assimilation, known as the variational adjoint technique, to analyze real
fisheries data (Smedstad and O’Brien 1991). In data assimilation, mathematical or
numerical models are merged with observational data in order to improve the model
or its predictions. The former application is known as model fitting. Using the varia-
tional adjoint technique, appropriate initial conditions and parameters of the nonlin-
ear fisheries dynamics are estimated. Nonlinear fisheries dynamics are highly sensi-
tive to the initial conditions and the parameters, which are often exogenously given
inputs to the system. These inputs are very crucial in simulation studies. Researchers
who conduct simulation analysis often rely on previous estimates for most of their
input parameters. This work will provide some of these estimates for the North East
Arctic cod, which may enhance future simulation results.

Data assimilation problems are often ill-posed; i.e., they are characterized by
nonuniqueness and instability of the identified parameters (Yeh 1986). Thus, it may
be worthwhile to search for best initial and/or boundary conditions when using these
models in analysis. The reader may have noticed that this approach has major ad-
vantages compared to conventional methods. It allows us to estimate initial condi-
tions of the model dynamics as additional control variables on equal footing as the
model parameters. Thus, treating the initial biomass level and the initial harvest rate
as uncertain inputs in the system. Most recent models and traditional approaches
consider the initial biomass and harvest amounts as known and deterministic. It also
provides a more efficient way of calculating the gradients of the cost or loss func-
tion with respect to the control variables compared with the finite difference ap-
proach. To enhance the results of the data assimilation, we provide bootstrap esti-
mates of the standard errors (Efron and Tibshirani 1993). The bootstrap is a com-
puter-based method for estimating standard errors.

The structure of the remainder of the paper is as follows. The next section is a
detailed discussion of the dynamics of the commercial fishing model. It presents a
more general model without assuming any optimizing behavior. In the following
section, we briefly discuss data assimilation, and some basic concepts of the tech-
niques are defined. All technical details appear in the Appendix. The final section is
an application to the North East Arctic cod stock (NEACS). It discusses the results
and summarizes the work.
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Dynamics of Commercial Fishing

The dynamics of the fishing industry are developed and discussed in detail in this
section. The population dynamics are described by:

dx

dt
f x y= −( ) , (1)

where x is the biomass and y is the harvest in weight.1 The growth of the stock is
represented by f(·). Several forms of the growth model exist. For some species, the
empirical law of growth is asymmetric. In this paper, however, we will use the logis-
tic growth law. The Schaefer logistic function takes the form f = rx(1 – x/K), where r
is the intrinsic growth rate, and K is the carrying capacity of the biological species if
the population is not exploited. It is symmetric about K/2 and has the following
properties, f(0) = f(K) = 0, f(k/2) = max f (Schaefer 1967).

To model the fishing industry, we define the following relationship between the
rate of increase or decrease of the exploitation of the fish biomass, y, and a function,
Φ(x,y), such that:

dy

dt
y x y= γ Φ( , ), (2)

where γ is an adjustment parameter, and Φ is a certain well-defined value function
to be discussed shortly. The constant of proportionality reflects the rate at which
capital is being put in or removed from the industry or firm. The adjustment param-
eter has been discussed in detail in Smith (1969). For instance, if Φ is positive one
may expect an increase in capital investment in the fishery and a decrease otherwise.
The function defined by Φ can take different parametric forms reflecting our hy-
potheses about the operation of the industry. It may represent short- or long-run av-
erage costs of fishing vessels, the marginal or average net revenues of a firm, etc.

Let p be the unit price of fish and c be a proportionality constant (see Clark
1990). Assume that costs of fishing are linear in the harvest and inversely related to
the stock. Then, the average net revenue is given by:

Φ( , ) .x y p c x= − (3)

The average cost of harvesting is assumed to depend explicitly on the size of the
stock. This takes into account the stock externalities; i.e., fishing costs decrease as
the fish population increases. Note that the total costs are given by the function cy/x,
which is nonlinear in stock and linear in harvest and reflects the fact the cod is a
dermersal species. Given a set of observations on the costs of harvest, it is possible
to estimate c for this specification. An implicit assumption made in this model is
that the fishery is one of many sources in the market that characterizes an open-ac-
cess regime consistent with the period of interest (1946 through 1977). In other
words, the market is competitive. Otherwise, price should depend on yield; that is,
p = p(y) where p(·) is the inverse demand function.

1 Gordon (1954) assumed that harvest depends on stock and efforts, while Smith (1969) assumed that
harvest is a function of the number of identical firms and the stock. Here, no such disaggregation has
been made.
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From the previous definitions of Φ and the industry model, equation (2), it is
obvious that the rate of harvesting from the stock for the industry is perceived to
vary in proportion to the net revenue; that is, the difference between total revenues
and total costs. Put another way, the output growth rate ẏ y  of the industry is pro-
portional to the average or marginal net revenues. Thus, it may be perceived that
once the stock is increasing, profit margins will also increase, inducing firms to in-
crease production. Substituting equation (3) in equation (2) and combining with the
population dynamics model, equation (3), the industry dynamics model is derived.
This system of equations, (1)–(2), constitutes a coupled nonlinear ordinary differen-
tial equations (ODEs):

dx

dt
f x y K y= −( , , ) (4)

dy

dt
p c x y= −γ ( )

The term (p – c/x)y is the annual total profit (total revenues minus total costs). Ow-
ing to the linearity of the net revenue in the harvest, the average net revenue is equal
to the marginal net revenue.

Incorporated in the model are the hypotheses about the costs and revenues. If
the firms are optimizers, they should at least operate at a level where average or
marginal profits are positive. In the construction of such a behavioral model, an im-
plicit assumption about the harvest rate being proportional to the number of firms or
fishing vessels is made (Smith 1969).

The system of equations contains these input parameters (r, K, γ, p, c). By rede-
fining the parameters; i.e., θ = γp and τ = γc, we now have these parameters (r, K, θ, τ)
to estimate. Note that a more parsimonious model is achieved, thus reducing the
chances of overfitting the model. Also, no data on costs and prices are necessary in
order to fit the model.

Notice that Gordon (1954) assumed that harvest depends on stock and efforts,
while Smith (1969) assumed that harvest is a function of the number of identical
firms and the stock. Here, no such disaggregation has been made. The reason being
that catch data are more readily available than that on the number of firms, and it
may be more suitable for this analysis. In following section, we shall focus on the
main goal of this paper, which is the introduction and application of data assimila-
tion in bioeconomics. The technique will be presented and an application to a real-
world fishery will also be demonstrated.

Data Assimilation Methods

Data assimilation methods have been used extensively in meteorology and oceanog-
raphy to estimate the variables of model dynamics and/or the initial and boundary
conditions. These methods include the sequential techniques of Kalman filtering
(Kalman 1960) and the variational approach (Bennett 1992). The variational adjoint
method has been proposed as a tool for estimation of model parameters. It has since
proven to be a powerful tool for fitting dynamic models to data (Smedstad and
O’Brien 1991). The methods have recently been used to estimate parameters of the
predator-prey equation (Lawson et al. 1995) and also some high-dimensional eco-
system models (Spitz et al. 1998; Matear 1995). The basic idea is that, given a set of
observations, a solution of the model that is as close as possible to the data is sought by



Dynamics of Commercial Fishing 39

adjusting the model parameters, such as the initial conditions. The variational
method is an automation of the brute force approach, where the model is manually tuned
to fit the data. This becomes tedious very quickly, even with a single parameter.

The variational adjoint method has three parts: the forward model, the backward
model derived via the Lagrange multipliers, and an optimization procedure.2 These
components and all of the mathematical derivations are discussed in the Appendix.
An outline of the technique is also presented for those who may be interested in
learning the advanced and efficient method of data analysis.

An Application to the North East Arctic Cod Stock (NEACS)

The commercial fishing model developed in this paper is applied to the NEACS.
The fishery has a long history of supporting a large portion of the Norwegian and
Russian coastal populations. Data on catches and estimated stock biomass have been
collected since immediately after World War II and are published by the Interna-
tional Council for the Exploration of the Sea (ICES) (Anon. 1998). Different tech-
niques for stock assessments exist in fisheries management. The stock size for the
NEACS is measured using the statistical Virtual Population Analysis (VPA) method
(Anon. 1998). As a result, the catch data and biomass estimates obtained by the VPA
runs may be somewhat correlated. This issue will not be dealt with in this paper.
From this point forward, actual or real data will refer to the measurements from the
ICES 1998 report. See Anon. (1998) for details of the data. The data used in this
work are aggregates of total catch and total estimated biomass.

The history of this fishery is similar to other commercial fisheries around the
world. It has been managed based on the common policy of maximum sustainable
yield (MSY), which is the most commonly employed method over the majority of
the last century. The historical data show a decreasing trend for both the stock biom-
ass and the yield (figure 1). Note that the vertical scales are different in figure 1 for
the stock and harvest. It is also observed that the data fluctuate a great deal, which
depicts the inherent stochastic feature of a fishery resource. The data available on
NEACS date back to 1946 (Anon. 1998). It is, however, intuitive to divide the pe-
riod into pre-quota (1946–77) and quota (1978–96) periods, which represent differ-
ent management regimes. The first period may be dubbed the open-access period,
and the second the regulated, open-access (total allowable catch [TAC]) period. We
will apply our model to analyze the data for the first period. To analyze the second
period, additional constraints, such as quota restrictions and minimum safe biomass
levels, which reflect the regulations imposed by the management authorities are re-
quired (Homans and Wilen 1997). We shall, however, concern ourselves with the
first period.

In this study, we combine the nonlinear dynamics model developed in the pre-
ceding section and the time series of observations to analyze the NEACS. The tech-
nique provides a novel and highly efficient procedure for data analysis. Model ini-
tial conditions, as well as parameters of the dynamics, are estimated using the varia-
tional adjoint method. First, artificial data generated from the model itself using
known initial conditions and known parameters were used to test the performance of
the adjoint code.

All the parameters were recovered to within the accuracy of machine precision.
Both clean and noisy data were used to first study the model. The results are not
shown in this paper.

2 See Lawson et al. (1995) for a straightforward derivation of the adjoint system.
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Figure 1. Graph Showing the Time Trends in Estimated Stock and
Actual Harvest for the North East Arctic Cod Stock

Source: These data are aggregates of stock and harvest and are taken from
International Council for the Exploration of the Sea (Anon. 1998).

To enhance the results of the data assimilation method, we provide standard er-
rors of the estimates using the bootstrap technique. The bootstrap is a computer-
based method for estimating standard errors (Efron and Tibshirani 1993). The algo-
rithm is described below.

Let:
ˆ ( , )x g x et t t= +β

1. Estimate β using the variational method and calculate the residuals êt .

2. Draw N et
b ’s from {e1, …, eN} with replacement and compute ˆ ( ; ) .x g x et

b
t

b
t= +β

3. Estimate βb using the bootstrap sample data xt
b .

4. Repeat steps 2 and 3, B times and calculate the standard errors.

where, xb is the bootstrap sample, βb is the bootstrap replication, and B is the number
of replications. For this paper, 3,000 replicates (B = 3,000) were estimated.

Next, real data were used to estimate the initial conditions and all the param-
eters of the model dynamics. Starting from the best guesses of the parameters, the
optimization procedure uses the gradient information to find the optimal initial con-
ditions and the model parameters that minimize the penalty function. Note that the
observed initial values were taken as the best guesses, and the weights were all set
equal to unity.
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Estimates of initial conditions, the parameters, and the bootstrap standard errors
are tabulated below (table 1). The units are r per year, x0, y0, and K in kilotons.

All the estimated parameters are reasonable and as expected. This is because
they all have the right signs; i.e., they are positive. The intrinsic growth rate and the
carrying capacity are both within an acceptable range. Note that the carrying capac-
ity is about 20% above the initial stock estimate available to us; i.e., the 1946 esti-
mate (4.2 million tons). Also, statistical tests of significance at the 5% level on all
parameters indicate that they are different from zero. These estimates should provide
prior guesses for the important parameters (r, K) in the growth model for future re-
search. They may be used as inputs by researchers who develop simulation based
models for the NEACS. Since the focus of this paper is the application of the dy-
namic parameter estimation, we will leave that issue to future research.

Summary and Conclusion

This paper has addressed two major questions in bioeconomic analysis and fisheries
management. It developed a dynamic fisheries model in a way that is rare in the lit-
erature and employs a powerful approach of efficiently combining the model with
available observations collected over a given time domain. The variational adjoint
method is used to simultaneously estimate the initial conditions and input param-
eters of the commercial fishing model.

It is observed that the technique used in this paper has an added virtue com-
pared to the conventional ones used in the literature. Initial conditions of the model
dynamics are estimated on equal footing as the model parameters. It is highly versa-
tile in that it enables researchers to include as much information as is available.

The estimates were all reasonable and as expected for the NEACS. Estimates of
the intrinsic growth and carrying capacity are both within acceptable ranges and sta-
tistically significant. However, caution must be exercised when interpreting the re-
sults due to the deterministic nature of the model and the large measurement errors
in the data. It has been demonstrated here that dynamic resource models can be
combined with real data in order to obtain useful insights about real fisheries. Bio-
logical parameters, such as the carrying capacity and economic parameters entering
the objective functions of the industry, are identified. These, again, can be used for
dynamic optimization in order to improve the economic performance of the fishery.
The variational adjoint method has proven to be very promising and deserves further
research efforts—not only in resource economics, but economics in general.

Table 1
Model Parameter Estimates and the Bootstrap Standard Errors

Parameters Estimates (Standard Error)

r 0.4410 (0.2040)
K 5,150.40 (222.43)
θ 0.1863 (0.0984)
τ 738.80 (108.12)
x0 3,687.11 (573.39)
y0 902.83 (209.78)

Note: The weights are all set to unity.
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Appendix

Data Assimilation — Background

This section formulates the parameter estimation problem and presents the math-
ematical aspects of the variational adjoint technique. Numerical issues have also
been briefly discussed.

The Model and the Data

For the sake of mathematical convenience, we use compact notation to represent the
model dynamics as:

dX

dt
F X Q= ( , ) (A1)

X X X( ) ˆ0 0 0= + (A2)

Q Q Q= +0
ˆ (A3)

ˆ ,X X= + ε (A4)

where X = (x,y) is the state vector, X0 is the best guess initial condition vector, X̂  is
the measurement vector, X0 is the vector of initial misfits, Q is a vector of param-
eters, and Q̂  is the vector of parameter misfits. The dynamics are assumed to ex-
actly satisfy the constraints, while the inputs (the initial conditions and the param-
eters) are poorly known.

The Loss or Penalty Function

In variational adjoint parameter estimation, a loss function which measures the dif-
ference between the data and the model equivalent of the data is minimized by tun-
ing the control variables of the dynamical system. The goal is to find the parameters
of the model that lead to model predictions that are as close as possible to the data.
A typical penalty function takes the more general form:

J X Q T Q Q W Q Q dt
f

T

T

Q

f

[ , ] ( ) ( )= − −∫1
2 0

0

0 (A5)

+ −[ ] −[ ] + − −∫ ∫
1

2
0 0

1

20

0

0

0
T

X X W X X dt X X W X X dt
f

T

T

T

Tf f

( ) ( ) ( ˆ ) ( ˆ ) ,
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where the period of assimilation is denoted by Tf and T is the matrix transpose op-
erator. The W’s are the weight matrices, which are optimally the inverses of the error
covariances of the observations. They are assumed to be positive, definite, and sym-
metric. The first and second terms in the penalty function represent our prior knowl-
edge of the parameters and the initial conditions, and ensure that the estimated val-
ues are not too far away from the first guesses. They may also enhance the curvature
of the loss function by contributing positive terms to the Hessian of J (Smedstad and
O’Brien 1991). The variational adjoint technique determines an optimal solution by
minimizing the loss function J, which measures the discrepancy between the model
predictions and the observations. Note that the loss is defined in a more general
form. However, for this application, we will assume that all the weighting matrices
are identity matrices. This formulation is the ordinary least squares and conforms to
the assumption that the errors are white noise. Hence, our estimates are equivalent
to the maximum likelihood estimates.

The constrained problem can efficiently be solved by transforming it into an un-
constrained optimization problem (Luenberger 1984). Several algorithms for solving
the unconstrained nonlinear programming problem are available (Smedstad and
O’Brien 1991). Statistical methods, such as the simulated annealing (Matear 1995)
and the Markov Chain Monte Carlo (MCMC) (Harmon and Challenor 1997), have
recently been proposed as tools for parameter estimation. The most widely used
methods are the classical iterative methods, such as the gradient descent and the
Newton’s methods (Luenberger 1984).

The Variational Adjoint Method

Construction of the adjoint code is identified as the most difficult aspect of the data
assimilation technique (Spitz et al. 1998). One approach consists of deriving the
continuous adjoint equations and then discretizing them (Smedstad and O’Brien
1991). Another approach is to derive the adjoint code directly from the model code
(Lawson et al. 1995; Spitz et al. 1998).

To illustrate the mathematical derivation, we use the first approach. Formulating
the Lagrange function, L , by appending the model dynamics as strong constraints,
we have:

L X Q J M
dF

dX
dt

Tf

[ , ] ,= + ∫1
2

0

(A6)

where M is a vector of Lagrange multipliers, which is computed in determining the
best fit. The original, constrained problem is thus reformulated as an unconstrained
problem. At the unconstrained minimum, the first order conditions are:

dL

dX
= 0 (A7)

dL

dM
= 0 (A8)

dL

dQ
= 0. (A9)



Dynamics of Commercial Fishing 45

It is observed that equation (A7) results in the adjoint or backward model, equation
(A8) recovers the model equations, while (A9) gives the gradients with respect to
the control variables. Using calculus of variations or optimal control theory, the ad-
joint equation is derived by forming the Lagrange function via the undetermined
multipliers M(t). The Lagrange function is:

L J M
X

t
F X Q dt

Tf

= +
∂
∂

−








∫ ( , ) ,

0

(A10)

perturbing the function L (A11):

L X X Q J M
X X

t
F X X Q dt

Tf

[ , ]
( )

( , ) ,+ ∂ = +
∂ +

∂
− +









∫

1

2
0

δ
δ (A11)

which implies:

L X X Q J J X M
X

t
F X Q dtX

T

T f

[ , ] ( , )+ = + +
∂
∂

−








∫δ δ∆

0

(A12)

−
∂
∂

−
∂
∂







+∫2
0

2M
X

t

F

X
X dt O XT

Tf δ
δ δ( ).

Taking the difference (L[X + δX, Q] – L[X,Q]):

∂ = −
∂
∂

−
∂
∂







+∫L J X M
X

t

F

X
X dt O XX

T T

Tf

∆ δ
δ

δ δ2 2

0

( ). (A13)

Requiring that ∆L be of order O(δX2) implies:

∆ X
T T

T

J X M
X

t

F

X
X dt

f

δ
δ

δ−
∂
∂

−
∂
∂







=∫ 0
0

. (A14)

By integrating the second term of the LHS by parts and rearranging, we have:

∂
∂

+
∂
∂









 = −

M

t

F

X
M W X X

T

( ˆ ) (A15)

M Tf( ) .= 0

which is the adjoint equation together with the boundary conditions and from equa-
tion (A8), the gradient relation is:
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∆Q

T

QJ M
dF

dQ
dt W Q Q= − + −∫

0

0

0

( ). (A16)

The term on the RHS in equation (A15) is the weighted misfit, which acts as a forc-
ing term for the adjoint equation. It is worth noting here that we have implicitly as-
sumed that data is continuously available throughout the integration interval. Equa-
tions (A7) and (A8), above, constitute the Euler-Lagrange (E-L) system and form a
two-point boundary value problem.

The algorithm is outlined below:

• Choose the first guess for the control parameters.
• Integrate the forward model over the assimilation interval.
• Calculate the misfits and, hence, the loss function.
• Integrate the adjoint equation backward in time forced by the data misfits.
• Calculate the gradient of L with respect to the control variables.
• Use the gradient in a descent algorithm to find an improved estimate of the control

parameters, which makes the loss function move towards a minimum.
• Check if the solution is found based on a certain criterion (for example, J ≤ δ, ∆J

≤ δ may be appropriate convergence criteria).
• If the criterion is not met, repeat the procedure until a satisfactory solution is found.

The optimization step is performed using standard optimization procedures. In this
paper, a limited memory quasi-Newton procedure is used (Gilbert and Lemarechal
1991).

The success of the optimization depends crucially on the accuracy of the com-
puted gradients. Any errors introduced while calculating the gradients can be detri-
mental and the results misleading. To avoid this, it is always advisable to verify the
correctness of the gradients (Smedstad and O’Brien 1991; Spitz et al. 1998).


