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Abstract This paper presents a Poisson model of expected angler catch dur-
ing a sportfishing trip and employs the expected catch in a random utility
model of site choice. The approach permits greater heterogeneity in expected
catch and in individual welfare estimates from policies such as creel limits.
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Introduction

In modelling the demand for recreation, the random utility maximization (RUM)
model has some appealing features. These stem in part from its stochastic struc-
ture and the modelling of recreation as a generic good. Sites are assumed to be the
same except for qualities which are measurably different across them. The dif-
ferent qualities or attributes become arguments in the indirect utility function, and
their effects on site selection are estimated as part of the model. Policies can
influence people through changing quality attributes. The convenient form of the
probability functions follows from the extreme value assumption for the errors.

The effectiveness of the RUM in modelling the impact of policy on quality
variables depends on the choice and construction of the quality variables. Many
types of variables have been used to measure the quality of recreational re-
sources. For all of the measures of quality, the individual's choices should be
guided by ex ante beliefs about quality—that is, quality is not known until the
individual gets to the site. The good cannot be examined and then rejected, as one
might a car or an orange. For fishing and hunting, expectations of quality should
vary among individuals. Because of innate skills, such as sight or touch, good
anglers will on average catch more fish than less talented ones. In addition,
predetermined or exogenous influences on quality differ among individuals. For
example, some hunters are more experienced than others and expect higher bags.
Finally, the quality attribute varies across people who purchase different inputs
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for the activity, such as an angler hiring a guide or a hunter renting a premium
goose blind.

While RUM models can be used to measure the value of access to recreational
sites, they have frequently been employed to measure the scarcity of resource
stocks. In fisheries, this scarcity may be induced with pollution, which injures the
stocks, or by excessive commercial or recreational harvest. The pathway by
which policy remedies these effects typically starts with the making of regula-
tions. These alter the behavior of polluters or harvesters which in turn changes the
size and composition of the stocks of the relevant species, which then change the
attractiveness of the sites. When the recreation quality improves at various sites,
people choose the improved sites more frequently, revealing welfare measures
through these changes in behavior. Consequently, the quality variable plays a
critical role. Resource policies ultimately make their impact on recreation through
this variable.

RUM models that have been estimated on marine sports fishing have con-
tained simple treatments of catch rates and other measures of the trip's quality.
Catch rates have typically been constant across anglers. That is, the catch rate
varies from one site to another, but different anglers at the same site expect the
same catch rate. This use of constant measures of quality may be traced to
modelling constraints improved by data. Typically, only central tendencies of
catch by site, not by individual, are available. Table 1 shows the measurement of
the different quality variables for many studies of recreational fishing. These
studies measure fishing success at a site that is represented by the central ten-
dency of catch per trip or other unit of time.

Catch rate and success variables can be classified into three types: historic,
sample-specific, and subjective. The historic variables are usually based on a creel
survey such as the NMFS intercept survey.' This survey was designed to measure
catch per trip for the "representative" trip, by mode, species and season. The
NMFS survey also allows the calculation of the percent of successful anglers.
Bockstael et al. (1989), Morey et al. and Thomson use this type of quality vari-
able. The sample-specific catch rate is derived from catch statistics which are
gathered during the same sampling process that secures the basic trip and cost
information. Such surveys ask anglers about their trip, socioeconomic variables
and catch. The catch data can be used individually or averaged across sites. The
Milon, Kaoru, and Arndorfer and Bockstael studies use this type. The subjective
type is simply an index, created by persons knowledgeable about the sites and the
activities that take place there. The Wegge et al. and Bockstael et al. (1986)
studies use a subjective index. In modelling the effects of a quality variable, there
is a tradeoff between subjective perceptions of quality objective measures of qual-
ity. Perceptions motivate actions. Indeed, all sources of knowledge filter through
perceptions. But policy actions are easier to link empirically to objective mea-
sures of quality.

Of the studies in Table 1, only Bockstael et al. (1989) use an objective measure
of quality which varies among individual anglers. They interact a mean historic
catch with an individual-specific dummy variable associated with a species. But
this only assures that the correct mean catch rate applies to an angler seeking a

' The MRFSS intercept survey (Marine Recreational Fishing Statistical Survey) samples
anglers on site which they are fishing.
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Table 1
Approximate Measures of Success in Random Utility Models of

Recreational Fishing

Authors Measure of Quality

Arndorfer and Bockstael

Bockstael, Graefe, Strand
and Caldwell (1986)

Bockstael, McConnell and
Strand (1989)

Kaoru

Milon

Morey, Rowe and Shaw''

Thomson

Wegge, Carson, and
Hanemann

Actual catch rates are reported although there is a
discussion of preliminary regressions which
used expectations.

Expectations of catch at different artificial reef
sites. Also expectations of the likelihood of
being skunked.

Catch rate from NMFS survey" for one of four
species/mode group interacted with dummy
variable which determined whether angler
sought a species within the group.

Average number of fish actually caught by anglers
interviewed at each site, from North Carolina
recreational fisheries survey which generated
trip data.

Mean pounds of fish (kept or released) per unit
fishing effort for each site from mail survey of
Dade County Florida; coefficient of variation
for pounds of fish per unit effort, from mail
survey of Dade County, Florida; survey also
generated choice data.

Mean catch per angler by species group, from
NMFS data; Mean catch per angler catching the
species, from NMFS data; Mean catch per
angler targeting the species, from NMFS data.

Percent of anglers In NMFS survey targeting
species who caught at least one of the species,
by mode and area; Percent of all anglers, by
mode and area, who land at least one fish of
any species, from NMFS survey.

An index of the quality of fishing for each species
group, by site and week; A site rating for
species at the site.

Notes
"All data in this table which are described as NMFS survey data come from the NMFS

intercept survey.
''As defmed in Rowe et al., page 4-24.

particular species group. Catch rates are the same for anglers seeking a given
species at a given site.

In this paper, we model several critical aspects of the catch rate. By consid-
ering catch to be an expectation formed by a Poisson process, we allow the catch
to be random. By allowing attributes of anglers to influence the mean, we allow
for systematic variation of catch across anglers. When attributes of anglers are
used to predict the distribution of catch among them, the differential effects of
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constraints on catch {e.g. creel limits) can be estimated for different classes of
anglers. Welfare effects should be rather widely dispersed when angling ability is
crucial to catching fish. And, as we show below, the specification provides an
intuitively appealing pathway to analyze the effects of changes in populations of
fish. We apply the model to smallgame fishing in Maryland.

Combining Site Choice with the Poisson Process

The RUM approach to modelling choice among marine recreational fishing sites
assumes that anglers know the costs and qualities for each site in their choice set.
They then choose which site to visit on the basis of the utility that each site
generates. Assume that the angler's indirect utility is given by

u(yj - Ci, qij) = v(yj - Ci, qij) -f eij (1)

where yj is income for the jth angler, Ci is the cost of visiting the ith site, qij is
quality that the j " " angler expects to find at the i'̂  site, and eij is a term known to
the angler but random to the researcher. The workings of this model are well
known. (For a description of the model, see Bockstael et al., 1989). As we have
argued, the qij may reasonably conceived to vary across anglers who have differ-
ent information and expectations about sites, different skills for exploiting oppor-
tunities at the site, and different expenditures on inputs used to catch fish. The
latter source of variation implies a household production function process, and
while it is an intuitively attractive way to explain the behavior in marine sport-
fishing in that way, it becomes empirically intractable when the budget constraint
is imposed. (See Bockstael and McConnell, 1981, 1983).

We propose a simple alternative to the household production function. The
angler combines his time with the stock of fish at the site to infiuence the distri-
bution of the number of fish caught per trip. The RUM is normally applied on a
"per trip" basis, without regard for past and future trips. Thus, the difficulties
that are outlined in Bockstael and McConnell (1981, 1983) are eliminated because
the budget constraint is not invoked directly. Further, the time that goes into the
production process itself is predetermined in the decision to go fishing. Thus, this
process allows the intuitive appeal of describing how fish are caught without the
econometric difficulties that accompany nonlinear budget constraints and endog-
enous prices.

In this process, the number of fish caught is a random variable whose distri-
bution depends on policy variables and individual attributes. An explicit random
form allows direct calculation of expected utility and it permits a more precise
modelling of policies which infiuence the distribution of catch. For example, bag
limits work by truncating the distribution from above. This truncation affects all
the moments of the distribution, so that the use of a distribution would allow the
modelling of risk averters as well as risk neutral agents. In the standard approach
using mean catch rate, it is difficult to model the effect of a bag limit. To model the
effect of the bag limit on the mean, one needs the distribution of catch. The major
disadvantage is the imposition of an explicit functional form which may not refiect
reality.

An angler's catch offish per trip is influenced by many factors. The abundance
offish, the mode of fishing {e.g. boat, shore or pier), type of gear and baits, the
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tidal situation, the weather, water clarity and temperature, the age and experience
of an angler, and the hours fished all influence catch. Our survey was not designed
to model this production process, and hence we have measured only a few of
these factors. We control for mode by using only shore fishing. For the skill of an
angler, we use the experience of the angler. Hours fished is a proxy for effort, and
historic catch rates measure stock abundance.

The empirical application combines two surveys: a household survey of rec-
reational fishing activity and the MRFSS intercept survey. Combining the surveys
enables us to model the fish catching activities of anglers on individual trips. We
concentrate on anglers who have targeted small game and who are fishing in
Maryland. (A complete description of the study and the surveys can be found in
Strand et al.).

We model the total number offish caught per trip, Q, but assume that utility
depends on the catch rate, q, the number of fish caught per hour, Q/h. This
specification gets the essential ingredients, fish and time, into the utility function.
Yet the assumption that time on site is exogenous eliminates a conceptual difficult
joint optimization problem—site selection by maximizing utility and choosing the
optimal quantity of time.

We assume that the distribution of fish caught is Poisson:

P(n) = Q"e-Q/n! for n = 0, 1, . . . , oo (2)

where P(n) is the probability of catching n fish and Q, the mean total catch
depends on household and site characteristics. The specific form is

Qij = exp(ao + "lCrj + ajlnChj) + ajSj) (3)

where

Qij = number of fish caught at site i by angler j ;
crj = mean catch rate at site i from NMFS historic intercept data;
hj = hours spent at the site by angler j ;
Sj = skill or experience in saltwater fishing by angler j .

When a2 = a3 = 0, individual differences do not influence catch. However, the
finding that additional time spent fishing is not rewarded, on average, with more
catch is especially unlikely.

This specification works best if ahj/Scrj = 0. That is, hours fished should be
exogenous. If time on site responds to the catch rate, parameter estimates are
subject to simultaneous equation bias. Time constraints on individuals and the
fixity of tidal cycles and daylight make it more difficult for anglers to adjust their
hours fished as their catch changes. Further, casual experience from Kathryn
Chandler Associates failed to find a systematic relationship between time spent
fishing and the catch rate.^ Moreover, the effect of simultaneous equation bias is
slightly offset because the hours fished remain the same across sites and some of

^ During the late 197O's, researchers from KCA under contract with NMFS tried to deter-
mine whether anglers interviewed in the middle of a trip would stay longer if they were
catching fish more frequently. Results were inconclusive.
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the effect would be diminished. Endogenous on-site time is a potential problem
and some work on it has begun (McConnell, 1992).

The Poisson is a discrete distribution for count data. The Poisson process
describes the frequency of an event per period of time. In the production process
we model fish caught per trip, which is an integer. Catch rate is not an integer and
cannot be modeled via a count process. The arrival offish per trip is conditioned
on the number of hours per trip, the historic catch rate at the site and the expe-
rience of the angler. The distribution of catch per trip naturally varies with the
number of hours per trip. When an angler spends more time fishing, the arrival
rate ought to be higher. If the coefficient a2 is not significantly different from I,
then we can assert that the arrival rate is proportional to the hours spent on site.
The assumption that aj = 1 implies that

or

That is, the catch rate (Qy/hj = qy = catch per hour at site i for angler j) is
independent of the number of hours spent fishing and is determined by historic
catch rate at the site and the individual's experience. In general, Qy = hj"' exp
(ao + otjcri + a3Sj). The catch per hour increases with hours if a, > 1. We
consider this most likely due to the fixed set up time of starting to fish. The
specification in (4) allows the influence of policy variables such as stock enhance-
ment through the historic catch rate crj.

In this specification of the Poisson, one of the conditioning factors is the hours
spent on site. This deserves additional explanation. In this framework, having
decided to fish, the angler allocates a fixed amount of time to spend at the site
fishing. This is part of the decision to go fishing, and the site choice is made
conditional on this decision. Call this time hj, the time on site for the j " ' angler.
Conditional on this hj, the angler decides which site to visit, a decision in which
the implicit or explicit cost of travel time is relevant. It is explicit if the angler
could have worked, implicit if the cost of time is simply the opportunity cost of the
discretionary time. When anglers spend more time on site, they presumably get
higher utility, other things equal. The utility function for those anglers who can
trade time for money at the wage rate {i.e., who have flexible working hours) can
be described by

Vij = Vij(yj - Ci - tyWj, qy, hj) (5)

where ty is the travel time for angler j going to site i, Wj is the opportunity cost
(wage rate) for angler j , and hj is the hours spent on site for angler j . For anglers
without flexible hours, where travel time has an implicit cost, the conditional
indirect utility function becomes

Vy = Vy(yj - Ci, qy, Dj - ty - hj). (6)
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where Dj is the angler's discretionary time. In this formulation of the utility
function, travel time is costly (and perhaps brings utility, if the utility it brings is
the same to all sites) while on-site time brings only utility. This is due to the
conditional nature of the indirect utility function. It is conditional on the decision
to go fishing already having been made, and with the hours devoted to the activity
(but not to travel) having been fixed prior to the choice of site. Site selection is
determined on the basis of the difference between the indirect utility at the dif-
ferent sites.

Some specifications of (5) and (6) imply that time on site will not influence the
choice of site. Suppose that the utility function for angler j is

u(yj - Ci - tyWj, qy, hj) = (3(yj - Ci - tyWj) + 7qy + \hj + ey (7)

for anglers who can choose their work hours and

u(yj - Ci, qy, tj) = 3(yj - Ci) + 7qy + 8(Dj - ty - hj) + ey (8)

for anglers who cannot choose their hours of work. Maximum likelihood estimates
of the parameters under the assumption that the ey are distributed as extreme
value depend on differences of indirect utility among sites. For individual j who
cannot choose hours of work, the probability of choosing site k is

1
Prob (choose k) =

1 + 2 exp[3(Ci - Ck) + 7(qij - qkj) + 8(tij - tkj)
i

This shows that the discretionary time and time on site variable fall out. Conse-
quently, time on-site influences site choice only through the catch rate variable qy.
Of course, one can specify more complicated models from nonlinear utility func-
tions in which the time spent fishing does not drop out of the utility difference.

Integrating the Poisson production process and the random utility model il-
luminates how the model combines technology and tastes. Write the deterministic
part of the utility function (dropping subscripts) as

v(y - c, q) = P(y - c) + ^q

and q, the mean catch rate, is determined by

q = exp(ao + ajcr + a2ln(h) + a3s)/h.

When this is substituted into the utility function, we have

v(y - c, q) = P(y - c) + 7[exp(ao + aicr + a2ln(h) + a3s)/h]

= p(y - c) + eexp(aicr) (9)

where 9 = pexp(ao + a2ln(h) + a3s)] is a parameter which varies across indi-
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viduals. The parameter 9 may be interpreted as a parameter of the utility function
or part of the production process. The model in (9) has two equivalent interpre-
tations. In its initial form, it is a model of constant tastes defined on the quality
variable, q, determined for each individual. In the form as written in (9), it is a
model of variable tastes, defined on the historic catch rate, cr, where variations in
tastes are systematically explained. When we express the model as in equation
(9), it is clear that there is a very thin line between tastes and technology. One can
approximate the model with explicit production by allowing the parameter 9 to
vary systematically across individuals.

Data and Data Sources

Two distinct models are estimated: the RUM model of site choice and the Poisson
model which explains the number offish caught per trip. These models are esti-
mated from different datasets, though there is some overlap. The data are de-
scribed in greater detail in Strand et al.

The trip destination data for the RUM model are based on a large survey of
Atlantic Coast anglers conducted for the University of Maryland in 1987 and 1988.
This survey was a phone survey, executed by Kathryn Chandler Associates in
conjunction with the National Marine Fisheries Service (NMFS), and the Marine
Recreational Fishing Statistical Survey (MRFSS). The survey covered the Atlan-
tic Coast from New York through the east coast of Florida, excluding the Keys.
Anglers who were intercepted as the part of the 1988 MRFSS were recruited for
the Maryland survey. They were asked if they would answer an additional tele-
phone survey concerning their household demographics and marine fishing activ-
ities for the entire two month period. (In MRFSS parlance, a two month period is
a wave.) If they agreed to participate, they were then called about their fishing
activity during the preceding wave. As part of the MRFSS intercepts, anglers'
catch are identified by species, counted, weighed and measured. This creel data
set provides the dependent variable of the Poisson model.

The sample of observations used in this paper is a subsample of the larger
University of Maryland East Coast survey. It includes only Maryland residents
who went shore fishing and who targeted small gamefish. Anglers who target
species groups are presumably more knowledgeable than anglers who do not
target, and hence have more predictable behavior. Also shore anglers have greater
latitude for choice of sites than anglers with boats, especially anglers with boats
in marinas. Hence this subsample is more mobile and probably better informed
than a randomly selected subset of anglers from our survey.

The sites for the RUM model are Maryland counties or combinations of coun-
ties. The available sites included the counties of Anne Arundel, Calvert, Worces-
ter, and the combination counties of Baltimore/Harford, Caroline/Kent/Queen
Anne/Talbot, Charles/St. Mary's, and Dorchester/Somerset/Wicomico. The per-
cent of trips to these sites is 5.1%, 1.2%, 2.0%, 7.0%, 22.1%, 35.0%, and 27.6%,
respectively.

The Poisson model for the catch per trip also required use of a different
dataset. Recall the Poisson mean is postulated as

+ a3Sj). (10)
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For estimation, this model requires information on catch per trip at site i by angler
j , historic catch rate at site i, and skill levels for angler j . The time on site (hj) and
experience (ij) come from the University of Maryland survey, which also provided
the dependent variable. The historic catch rates by site are computed from
MRFSS historical datasets for the period 1980-1988, based on specific sites. The
NMFS sites were aggregated to the county level sites and the mean catch per day
of small game for the period 1980-1988 was calculated. The primary species
sought north of Cape Hatteras are bluefish {Pomatomus saltatrix), striped bass
{Morone saxitilis), and weakfish {Cynoscion regalis). Although these species,
especially bluefish, are also highly sought south of Cape Hatteras, fisherman in
the southern area more often tend to seek mackerel, mostly Spanish {Scombe-
romorus maculatus) and King {Scomberomorus regalis), spotted seatrout {Cy-
noscion nebulosus), and red drum {Sciaenops ocellata). Because the main focus
of the study is on Maryland's anglers, only data on individuals intercepted north
of Cape Hatteras were used to estimate the Poisson.

For the Poisson regression, there are 109 observations. The geographic dis-
tribution of anglers by state had New York with 38 percent, Maryland and New
Jersey each with 19 percent and Virginia, North Carolina, and Delaware with the
remainder. Maryland had the second highest percentage of observations in the
sample so that the use of the data for estimating a model for Maryland anglers
does not stretch credulity. The distribution of species is relatively homogeneous
for smallgame fishing in the New Jersey, Delaware, Maryland, and Virginia re-
gion, which accounts for nearly 60% of the sample.

The skill or experience of the angler is measured by the number of years of
fishing. This variable varies from as few as one year to as many as 65. The
individuals ranged in age from 18 to 80, with an average age of 37.9. On average,
anglers have been fishing for half of their lives.

Results of Estimation

There were two models estimated: the Poisson model of the catch process and the
RUM model of site choice (Table 2):

Poisson Regression

The model, as specified in equation (10), was estimated using the 109 anglers who
sought small game from north of Cape Hatteras and who were intercepted in the
NMFS intercept survey. The estimated coefficients in this model are all statisti-
cally different from zero at the 1% level. All variables have the expected positive
effect on catch rate. These coefficients were used to calculate expected catch rate
for each individual at each site. Note that coefficient on log(h) is significantly
greater than one, which supports the modelling of catch per trip, rather than catch
rate.

The RUM Model

All coefficients of the RUM model are also consistent with expectations and
significantly different from zero. The marginal rate of substitution of travel time
for travel costs, inferred from the ratio 8/3, indicates people with fixed working
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Table 2
Estimated Coefficients for Poisson and RUM Choice Models

Poisson Regression for Expected Catch

Variable Parametei

Constant ao

Historical catch a.
rate (cr)

Log hours fished aj
(In h)

Years fishing a.
(s)

Chi-squared

Estimated
Coefficient
(T-statistic)

-3.044
(8.2)
1.775

(6.5)
1.526

(8.7)
.011

(8.2)
538.4

109 observations

RUM

Variable

Travel cost (c)

Travel time (t)

Catch/hour (q)

Model for

Parameter

8

7

122.18

Site Choice

Estimated
Coefficient
(T-statistic)

-0.011
(2.5)
-.008
(5.5)
13.5
(7.9)

258 choice
occasions; 7 sites

schedule would trade about $1.50 to avoid one hour of travel time. This figure is
substantially less than the average wage in the sample.

Modelling Welfare Effects

To demonstrate the effects of using the Poisson to predict the catch rate, we
calculate two types of benefit measures: one based on individual characteristics
and one based on average characteristics of the sample. The latter in effect ignores
differences in individual anglers. The policy variable for the simulation is the
historic site catch rate. This serves as a surrogate for the stock, the variable most
likely to be infiuenced by commercial or recreational fisheries policy or by
changes in pollution levels. We assume a five percent change in the historic catch
rates at each site. This means that the angler's increased expected catch becomes:

Q| = exp(ao + aicri(l -t- k) -I- a2ln(hj) -I- a3Sj) (11)

where the estimates of aj are found in Table 2 and k = .05. The increased catch
rate is the Q*j/hj. The base case is predicted from equation (11) with k = 0. Using
the standard definition of welfare changes in the discrete choice model (see Hane-
mann), we calculate the welfare change for each individual. The mean increase in
benefits is $9.42. This is the mean amount per trip occasion that angler would pay
to have the index of abundance, historic catch rates at the site, increase by five
percent.

This estimate may be judged as being toward the high end of estimates of
values from increases in catch rates from other studies. Freeman has summarized
many such studies. For a 20-25% increase in catch rates, the estimate are $13.40,
$11.05 and $7.10 for various species. Even a 100% increase in salmon and striped
bass catch rates was valued only at $33.

To see the impact on welfare estimates of permitting individual variation of the
catch rate vis-a-vis a change for the representative angler, we use the same pa-
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rameters as before, but instead of calculating the catch per trip for each individual
according to equation (11), we predict the increased expected catch as

Qf = exp(ao + aicrj(l -I- k) -I- a2nih + a-ims) (12)

where mh is the mean log hours fished and ms is the mean skill level and k = .05.
The catch rate per individual is then Q| divided by mean hours per trip. The
pre-change catch is calculated with k = 0. Using the same approach to calculating
benefits as before, we find a mean increase in willingness to pay per trip of $8.15.

The difference between the sample mean calculated with individual heteroge-
neity (11) and at sample means (12), is about 13% of $9.42. The relative closeness
of the two estimates of sample mean benefits does not tell the whole story. The
variation comes from the sample, not the estimation. There is more dispersion in
the welfare effects calculated from the individual catch rates. Table 3 shows some
simple statistics for the welfare measures. The main consequence of allowing
individual variation in the catch rate (while holding the parameters constant) is to
increase the variation in the individual welfare estimates. This change in the
model increases the realism of the application, but does not substantially change
this sample's estimate of the aggregate welfare effects. An analysis of a bag limit
reveals quite a different story.

Modelling the Effects of a Bag Limit

One of the most widely used tools in managing recreational fisheries is the creel
or bag limit. This policy instrument works by constraining the number offish kept
per angler to be less than or equal to a given target per outing. Note that the bag
limits typically restricts the number offish kept, not the number caught. Bag limit
restrictions are written in terms of the number offish possessed by the angler. The
bag limit does not infiuence the distribution of the catch of fish. The logic of the
regulation holds if anglers get utility from keeping their catch. Without bag limits,
the distribution of catch and of fish kept would be the same for desirable species
such as small game. Since ex ante the angler does not know exactly what the catch
will be, one way to model the effect of the bag limit is to allow it to truncate the
distribution of fish kept, thus changing the distribution and the mean catch.

For the Poisson catch, the original distribution is given by P(n) = Q"e~^/n! for

Table 3
Welfare Effects of a Five Percent Increase in Catch Rates (1988 dollars)

Sample Mean
Model Assumption Welfare Effect Standard Minimum Maximum

Individual fishing
characteristics
(equation 11) $9.42 9.05 4.40 39.10

Mean fishing
characteristics
(equation 12) $8.15 7.70 .86 25.40
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n = 0, 1, . . . , 00. When the bag limit is imposed, at k fish, the distribution offish
kept becomes

P*(n) = Q"e-Q/n! for n = 0, . . . , k - 1

P*(k) = Prob(n > k) = 2 Q"e-<3/n! (13)

Then the expected number offish kept is lowered, and as long as anglers are risk
neutral with respect to fish, only the expected number matters. The expected
number of fish kept is calculated using the standard definition of expected value
with the distribution in (13). It will be less the individual's expected mean catch
for the unconstrained Poisson mean as long as the limit is effective in a stochastic
sense, that is Prob(n > k) > 0. As with P*(n), the expected number kept will vary
across anglers. The bag limit will have a greater impact on better anglers, where
Prob(n ^ k) is high. For many anglers, Prob(n ^ k) will be zero, so that the bag
limit will have no impact.

For the Poisson catch model given by the parameters in Table 2, we have
imposed the bag limit that the number kept be four or less small gamefish, most
of which are bluefish for our sample. We can find the welfare effects of this policy
by calculating the individual's implied mean kept and mean per hour. We hold the
historic catch rate constant, recognizing the reason for creel limits is to improve
catch. (Naturally one would hope for an increase in stock abundance from this
policy, but we do not know how this truncation would affect catch rates in the
long-run). We then calculate the compensating variation of this catch rate com-
pared with the base catch rate. The compensating variation is the amount of
money that the angler would pay to have the bag limit removed because of its
effect on the mean catch. When Prob(n s= k) is quite small, as it is for some
anglers, the bag limit will have no effect. Then P*(n) = P(n).

The estimated welfare effects from the establishment of a creel limit, shown in
Table 4, however, are quite dramatic, especially when compared with the almost
negligible effect of the "heterogeneous" model on the estimated value of catch
rate. The effect of a bag limit is felt most strongly by anglers who would expect to
catch quite a lot offish. For some the effect is negligible, hence the minimum of
zero. For others, the effect is substantial. The range from 0 to $287.49 represent
the infiuence of heterogeneity. In this case, it would those anglers who had fished
long hours, substantial experience, or who lived near sites which had high historic
catch rates.

Welfare Effects

Variable

Compensating Variation

Table 4
of a Bag Limit of Four

Mean

$16.78

Standard
Deviation

$18.58

(1988 dollars)

Minimum

$0.00

Maximum

$237.49
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An example using two hypothetical but plausible anglers illustrates the effect
of a bag limit of four fish per day. Assume that there are two anglers, one (called
A) is a far more ardent and experienced angler and the other (called B) is a novice.
Assume that angler B has only fished for two years, goes fishing for two hours and
chooses a site with a catch rate of one fish per hour. On the other hand, angler A
has fished for 20 years, goes fishing for four hours and chooses a site which has
an average catch rate of 1.5 fish per hour. Using the parameters in Table 2, we can
calculate the mean number kept for A as 7.05 and for B as .83. Now consider a bag
limit of four. Virtually all of B's probability lies to the left of four, so the trunca-
tion has an indiscernible effect on the mean number kept. However, Prob (n ^ 4)
is .92 for A, so the distribution of expected catch is changed dramatically, as does
the mean, from 7.05 to 3.9. The mean for B remains virtually unchanged. These
results are shown in Table 5.

Modelling the effect of bag limits with the Poisson handles two elements of
catch: randomness and heterogeneity. There are critical aspects of recreational
catch. If there is no randomness, then the bag limit can be modelled simply by a
proportionate reduction in individual catch. But the heterogeneity of individual
anglers gives the randomness extra power. Differences in the distribution of catch
are greater than differences in the mean catch. Imposing a limit on a fishery in
which the catch is both random and heterogeneous gives the dramatic results. We
caution that our model assumes risk neutrality. If anglers are risk-averse or if
there is demanding marginal utility of fish kept, then the difference in welfare
effects should be less.

Conclusion

This paper has demonstrated, in the context of the RUM model, the use of a
production process resembling the household production function for catching
fish. This process is modelled as a Poisson process. This model of angling has
several implications. First, a random process like the Poisson models the effect of
regulations on individual behavior much more realistically. Policy actions can be
modelled as infiuencing the distribution of catch, not the actual catch. This elim-
inates the awkward modelling assumption that polices such as bag limits deter-
mine endogenous variables such as catch rates. Secondly, we've found that wel-
fare measures when using heterogeneous catch rates appear very responsive to
certain policy instruments. Creel limits, in particular, appear to impose large

Table 5
Comparing the Impact of the Bag Limits on Two Very Different Anglers

Angler

Experience(s)
Hours fished (h)
Historic catch rate (cr)
Mean catch
Truncated mean with bag limit of four
Prob (n ^ 4)

A

20
4
1.5
7.05
3.88

.92

B

2
2
1
.83
.83
.01
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average welfare losses. This bias occurs because there are a few "expert" fish-
ermen who land substantially more than the average fisherman. These people may
have relatively few alternative hobbies and are greatly affected by the limit. It is
these outliers who account for a great deal of the welfare gains and losses gener-
ated by policies towards recreational fishing. Severely restricting them therefore
substantially affects total welfare.

The working of the creel limit within this more realistic framework illuminates
its basic economic fiaw as a policy. By imposing the same constraints on all
anglers, the policy is analogous to the "uniform standards" policy observed in
pollution control. The goal of achieving reduced harvests by least cost can only be
achieved by equating the "marginal" cost of the policy across anglers. Creel
limits by their nature are not likely to be a cost-effective means of achieving
reduced harvests. A tax on harvest or perhaps even higher license fees would
more efficiently achieve the goal of harvest reduction.

An important aspect of catch that we have ignored is the role of expectations.
As we argued at the beginning of this paper, the quality of a recreation site is
unknown until the visitor arrives. In our application, we have estimated the an-
gler's expectation by using experience and the historic number caught at the site,
not the subjective expectation of the angler. A missing link in this area of research
is connecting objective measures like ours with more realistic subjective assess-
ments of quality.
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