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Abstract 

 
 To date, mixed demand systems have been all but ignored in empirical work.  A 
possible reason for the scarcity of such applications is that one needs to know a priori 
which prices and quantities are endogenous in the mixed demand system.  By using a 
directed acyclical graph (DAG), causal relationships among price and quantity variables 
are identified giving rise to a causally identified demand system (CIDS).  A statistical 
comparison is made of the traditional Rotterdam model with a Rotterdam mixed demand 
system identified through the use of a DAG.  In this analysis, the respective Rotterdam 
demand systems consist of five products:  steak, ground beef, roast beef, pork, and 
chicken. 



Introduction 
John Maynard Keynes once wrote in a letter to R. F. Harrod, dated  July 4, 1938, 

“Progress in economics consist almost entirely in a progressive improvement in the 

choice of models...Economics is the science of thinking in terms of models joined to the 

art of choosing models which are relevant to the contemporary world.” 

 This paper is primarily concerned with making appropriate choices for the models 

commonly applied to demand estimation. A scientifically sound methodology is proposed 

to help as a guide in the use of the full duality as it relates to empirical application.  

While economic theory provides the basis used to construct empirical models it is 

often left to the individual analyst justify the appropriate use of the chosen model. The 

correct assignment of the appropriate structure to any given problem is paramount to 

empirical model development and it is at this cross roads that theory and application 

meet. In many cases the choice of model to use to do the empirical work is not 

completely specified by the theory and must be justified in an ad hoc fashion. For 

example theory may indicate which variables a model should include but say nothing of 

the functional form to fit the model. It is the empirical or applied scientist who must push 

the methodology to compensate the theory. 

 The study of demand and consumer behavior is one of the most studied areas of 

economics, and yet there are still many debates on methodology. Two debates that come 

to mind are the functional form issue (Davis), and the inverse or directly specified system 

debate (reference would be good here). Some of the discussion, especially about 

appropriate choice and specification of a specific model could be answered if the 

relationships reflected in the data were known. If the modeler knew the true nature of the 

process whereby the data was generated he would simply apply the specification that was 



representative of that process. Unfortunately in economics we have been left without the 

benefit of the causal identities that comes from using experiments. Most of the economic 

data is secondary, or observational in nature and true experimentation is unavailable to 

help clarify the process where cause and effect can be identified clearly. 

This paper aims to propose a tool that may help to clarify the muddied waters 

created by secondary and observation information. 

When an understanding of the causal relationships of the data are not available 

there is a tendency to be cautious in approach and to use only models that are widely 

accepted and have been traditionally applied. This of coarse is a good thing but it has a 

tendency to limit the use of theory. For example, parts consumption theory has been left 

virtually unapplied in empirical work. Starting with Samuelson it has been recognized 

that demand could be determined by three possible specifications. Most often economists 

have used a singularly dependent model, either one direct demand which is quantity 

dependent, or two an inverse demand which is price dependent. The third type of demand 

is a mixed type where demand is both quantity and price dependent. The literature is full 

of singularly dependent demand estimates, most being quantity dependent, with fewer 

being price dependent, with the use of the mixed demand, both price and quantity 

dependent, limited to a single handful.  

The few examples of mixed demand are rare and are strictly justified by rhetorical 

means. The justifications for those few mixed systems published in the literature are 

based on sound economic reasoning but have no empirical clout and have thus far failed 

to win many converts to a wide use of the mixed demand cause. What is interesting 

however is the recognition by Chavs, Moschini and Vissa, pioneers of mixed demand 



specifications, of the potential value of the mixed demand system. All three authors 

recognized the potential of putting the mixed demand specification into the toolbox of the 

blue collar economist.  Chavas referring to the potential value of mixed demand, stated 

that, “ Since both prices and quantities are endogenous variables at the market level, the 

rational for using quantity dependent demand functions in this context mostly 

disappears.”  Chavas blazed the trail between Samuelson’s Full duality and theoretical 

implication of that duality. He provides the behavioral implications that are consistent 

with consumer theory for a mixed demand specification.  Moschini and Vissa further 

support the implementation and use of the mixed demand specification and declare the 

mixed demand specification as having “obvious potential”. They provide the model 

specification necessary to cope with the direct and indirect utility functions to 

operationalize the theory of mixed demand. However as much as this enables empirical 

economist to move forward with implementation of mixed demand it does not provide a 

method of determining when to appropriately apply full duality. If mixed demand is to 

ever become the powerful tool its conceptors envisioned it to be, it must have a 

theoretically consistent, and empirically viable basis. The intent of this paper is to 

propose such a theoretically and empirically sound basis.  

 

Literature 

The event of mixed dependent demand relationships although recognized as 

possible, has been rarely applied. In 1965 Paul Samuelson introduced his piece in 

Econometrica about full duality demonstrating that utility maximization was possible 

under a mixed utility framework, both price and quantity dependent. However Samuelson 



directed his theory to only the idea of a rationed system in equilibrium. In 1983 Jean Paul 

Chavas built on Samuelson’s work by showing that compensated mixed demand is 

identical to compensated conditional demand. Mixed demand has a Slutsky type 

relationship, including symmetry and negative semi-definite matrices, with symmetrical 

cross effects except in sign. Chavas also showed that conditions of homogeneity, and 

adding up could be imposed on a mixed demand system making it as he says, “very 

attractive for the investigation of consumption decisions since it is obtained without 

sacrificing the elegance of the theory”.  Thus Chavas was the first to show that a mixed 

system or as Samuelson called it “Full Duality” is consistent with accepted demand 

theory and was the bridge between the two polar cases of the singularly dependent, price 

and quantity derived demands. However it was not until Moschini and Vissa in 1993 that 

the first formally published use of a mixed demand system is used in an empirical 

application. In their use of a mixed demand system, Moschinni and Vissa study the retail 

price and quantity relationships in the Canadian meat market. They justify the application 

of the mixed system based on an appeal of rationality.  Moschinni and Vissa indicated the 

mixed system was necessary since chicken, a supply controlled product, was one part of a 

three product market that included two other freely traded commodities, beef and pork. 

However plausible the justification, no other evidence was used to substantiate the 

application of a mixed demand system. While there is no objection to them using this 

mixed demand approach it is a subjective application and leaves room, no matter how 

small, for argument about the appropriateness of the application.  

Some have speculated for the lack of mixed demand applications. Moschini and 

Vissa speculate that so few applications of Samuelson’s full duality stem from the 



condition that the mixed system requires a simultaneous knowledge of indirect and direct 

utility functions necessary to specify the system. However, after the introduction of there 

solution, directly specifying the demand system, which has been available for more than 

10 years, it has yet to be applied by anyone else. This unfortunately leaves the Moschini 

and Vissa paper falling short of the authors expectations. While being a big step forward 

in implementation it is apparently not the only hold back to the common use and 

application of mixed demand systems. However several positive things do come from 

Moschini and Vissa’s work, a demonstration of Chavas’ theoretically sound model, and 

the validation that a mixed demand system results in different estimates of parameters 

and elasticities then the singularly dependent system.  This still leaves the question about 

the limited application of full duality unanswered. 

 The real problem with applying full duality is not theoretical, but is empirical. 

What is needed is a bridge between theoretical concepts and empirical application. Does 

such a bridge exist?  

Judea Pearl in his 1990 book “Causality” boldly states the substance of what 

theories are made “casual machinery that underlies and propels our understanding of the 

world”.  Representative models are in effect the illustration of the causes on the effects.  

Therefore, to fully apply demand theory it is necessary to determine the model’s causes 

and effects. Until recently no scientific and theoretically tenable methodology had been 

accessible to combine with economic theory that reveals the causal relationships from 

observational or non-experimental data. Recent work in statistics and computer science 

has developed techniques to determine causality from simple statistical information. 

Specific application of this new theory is through an algorithm known as PC-algorithm, 



which creates a directed acyclical graph (DAG) from correlation and conditional 

correlations between variables. The primary focus of this paper is to demonstrate how 

this new theory of causality can be applied to clarify the not so clear waters left in the 

wake of theoretical gaps. Had Samuelson, Chavas, and Moschini and Vissa been able to 

provide the road map that connects the lofty peaks of theory to the valley’s of 

empiricism, by being able to identify causality, they may well have seen the fulfillment of 

their expectations for mixed demands.  

 

Methodology  

Overview 

 The creation of the Directed Acyclical Graph (DAG) specified demand system or 

more generally Causally Identified Demand System (CIDS) requires the model to be 

created in a series of stages or steps. The first step, as with most econometric procedures, 

requires the screening and cleaning of the data. The second step entails putting the data 

into the appropriate form so the DAG software used to determine causal relationships 

may be applied. In this case the proper data form is a correlation matrix of the variables 

as they are to be estimated in the demand system.  

The causal relationships, represented by the DAG procedure, are then used as a 

guide in specifying the left-hand and right-hand side variables of the equations in the 

demand system, which may or may not be a singularly dependent or mixed demand 

system. The CIDS model is then estimated. 

 The resulting CIDS estimates are then transformed into elasticities, which will be 

statistically compared singularly and adversely with the elasticities calculated from the 



estimates of a singularly dependent demand system (SDDS). It may happen that the CIDS 

and SDDS models may be identical in which case a comparison would be unnecessary. In 

this later case the extra work of applying the CIDS methodology only serves to enhance 

the robustness of the estimated model.   

 

Data 

 The data used in these model is a subset of the data used in a paper published in 

the American Journal of Agricultural Economics, August 1989 by Oral Capps, Jr.. This 

scanner data contained 138 weekly observations of various Randall Stores located in 

Houston, Texas from January 1986 to June 1987. Of the many (UPC) coded items, five 

where selected as a group. This group called meat was comprised of three beef products, 

steak, ground beef, roast beef, and two general product types, pork, and chicken. This 

data was ideal for the purposes of this study. Scanner data is panel type data, exhibiting 

both cross sectional and time series properties.  

 

The DAG (Directed Acyclical Graph) 

 



 A directed acyclical Graph (DAG) is a picture representing cause and effect 

among a set of variables.  To completely explain the mathematics behind such a 

representation is beyond the intent and scope of this paper.  However a general 

explanation of the DAG and its empirical identification will be given here to facilitate 

understanding of the results. For more details the reader is referred Pearl or Sprites, 

Glymour and Scheimes.   

 DAG is a graphoid that represents causal relationships between variables. It 

contains no cyclical paths. See Figure 1. Arrows are used to show cause and effect flows. 

These do not flow in a cyclical manner.  A      B        A 

.  
DAG’s are constructed from statistical information among and between variables. 

The software, TETRADII, employs PC- algorithm which is a sequential series of steps 

that uses correlations and conditional correlations of the variables and the Fisher Z 

statistic to determine causal relationships. (Sprites, Glymour and Scheimes) 

Three key assumptions are made to make this method of directing edges possible, 

causal sufficiency, Markov conditioning, and the faithfulness condition. Causal 

sufficiency, relates to the completeness of the variables being considered for directing. If 

some variable is missing such that it does, in fact, cause two or more variables included 

in the analysis then the output graph from PC-algorithm will be misleading. The Markov  

 
Figure 1. A Directed Acyclical Graph 

     Variable B 
 
  Variable A     Variable D 
 
     Variable C 
 
 



condition, is that the probability generating variables in the analysis can be written in 

terms of the conditional probabilities where they are only conditional with respect to 

there causal parents. Any effect a grandparent has on a grandchild is through the parent. 

The third assumption, the faithfulness condition, relates to correlation and edges. A zero 

correlation or conditional correlation is observed between two variables it is because 

there is no edge connecting these variables. It is not the case that fundamental structural 

parameters are of  the specific magnitude such that the algebraic combination of them 

cancel one another.   

To help explain the DAG process, in this case PC algorithm, a simple set of four 

variables, ABCD, will be used to illustrate. The first step in the algorithm is to take all 

variables and assume that each are connected to each of the others by drawing a line or 

edges between each and all variables. See figure #2.  

Figure 2. A Complete Undirected Graph 

     Variable B 
 
  Variable A     Variable D 
 
     Variable C 
 

 The connections in figure 2 are represented by lines referred to as undirected edges, 

without an arrow or direction, representing no causality between variables. Each of the 

relationships between each pair of variables is tested for statistically significant 

correlation, those pairs that do not have a statistically significant correlation, using a 

Fisher Z test are removed. When the pair wise comparison is complete and all statistically 

insignificant edges have been removed, edges are tested conditionally on other connected 

variables.  



The conditional correlation between all groups of threes that are connected, have 

edges, is then used to direct the remaining edges.  In this step the concept of D-

separation, is used in conjunction with its relationship to causal forks, inverted forks and 

causal chains and provides the information to direct the undirected edges. For example 

the variables A, B, and C connected by two edges, one between A and B, the other 

between B and C, has only four possible combinations of directed edges. See figure 3. 

 

Figure 3.   Causal Relationships Among Triples, A, B, C. 

A B C  A B C  A B C 
Causal Fork   Causal Chain Right  Inverted Fork 

 

     A B C 
     Causal Chain Left 
     

 

 Of the four possible causal paths, only one can be directly directed by 

conditioning on the common variable. This case occurs when the common variable B, is 

conditioned on the correlation between the two adjacent variables A and C, causes a 

connection between these adjacent variables, that is the adjacent variables are not D-

separated, but are D-connected. D-connected variables have a 1 to 1 representation with a 

causal path type. A set of two variables, A and C, are D-connected by a common 

variable, B, have an inverted fork representation, arrows pointing from the two adjacent 

variables to the common variable as shown in Figure 4.  

Figure 4. Inverted Fork 

A B C 
   Causal Chain Left 



 

If however when the common variable, B, is conditioned on and the correlation 

between the adjacent variables, A and C, disappears then these variables are D-separated 

by the common variable, B, and any other of the three causal path conditions exist. See 

Figure 5. 

Figure 5.   DAGs Where Conditioning in the Middle Variable Removes Partial 
Correlation Between Outside Variables. 
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 In a large set of variables, where variables can be part of more then one set of 

three variables, combinations of the directed edges can be used to direct other edges from 

among those which remain undirected.  

 To clarify how directed edges might direct undirected edges consider our small 

group of four variables, A, B, C, and D. Assume the whole set of four variables has been 

found to have edges between A and B, B and C, C and D, and D and B, all of these edges 

are yet undirected. See figure 6. 

 

Figure 6.  Hypothetical DAG with removed but Undirected Edges 
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 Taking a set of three variables, such as the set ABC with B as the common 

variable and A and C as the adjacent variables, it is found by conditional correlation that 



B, D-connects A and C, therefore the edges are directed as an inverted fork with arrows 

pointing away from A and C towards B. See Figure 7. 

 

 

Figure 7.  Hypothetical DAG, first step B D-connects A and C 

              D 

A                         B   C 

 

 

With further conditioning it is found that all other sets of three are D-separated, 

implying that no more edges may be directly directed and those sets remain undirected by 

conditional correlation. However, the information that the set ABD is D-separated given 

B allows the edge between B and D to be directed. Since the edge between A and B is 

pointing towards B the only possible way the edge between B and D can be directed is 

from B to D (given we know the ABD is D-separated given B. The set ABD is a D-

separated conditioning on B which implies three possibilities, but of the these three 

possibilities the only one possible is a causal chain right directed towards D from B and 

from A towards B. See figure 8.  

 

Figure 8.  Hypothetical DAG, Directed result of D-separation of ABD given B. 
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Not all edges may be directed in all cases, and may require some further use of 

statistical techniques, such as the use of SIC or AIC Criteria to direct those undirected 

edges. The key point here is that the direction of the edges depends on the different 

relationships between various sets of variables and there D-separation and D-connection. 

 

The Demand Model 

 The primary purpose of developing the demand models in this case is to extend 

the currently followed techniques and to enhance the use of theory in the application of 

empiricism. Therefore, it is necessary to understand how the SDDS and a mixed demand 

CIDS model compare.  

 Normally when a demand system is identified the pertinent products are grouped 

by relationship justified by the separability assumption. The separability assumption 

allows for the isolation of individual groups of products from all other commodities and 

the substitution of total expenditure for income. The variables in a mixed demand system 

are specified in a like manner, the difference being the causal relationship between 

specific prices and quantities. 

 In this case a system for meat demand was specified with five individual 

products, three beef, steak, ground beef and roast, a general category for pork, and 

chicken. A directly specified demand system was applied after the fashion of Moschini 

and Vissa.  

The Rotterdam model, which is a directly specified demand system and whose 

application is consistent with the use of scanner data, is the model of choice. The use of 

the Rotterdam model allowed for the imposition of the three classical conditions of 



homogeneity, symmetry, and adding-up.  Two models were generated, a mixed model, a 

result of the causal identification process, and a normally specified model for 

comparison, one without the identification process. Both the mixed and the normal 

demand systems were estimated as non-linear systems and adjusted for autocorrelation 

using Shazam 9.0 software. A full mathematical representation of the standard model is 

shown in figure 1 and the mixed system model can be found in figure 2. A more complete 

description and derivation and explanation for estimating and calculating elasticities 

using the mixed demand system can be found in Moschini and Vissa’s 1993 AJAE paper. 

A general description of the elasticity estimates for the standard and mixed system can be 

found in appendix A. 

 

Figure 1.  Rotterdam Quantity Dependent Demand System Model (SDDS) 

  ωI dln qi = βi dln y + ∑n
j=1 Cij dln pj  

where 
ωiηi =  Bi , 
ωiεij = Cij , 
ωi = budget share of the ith commodity 
 ηi  expenditure elasticity of the ith  commodity 
εij = compensated elasticities of the ith quantity of the jth price 
 

 

Figure 2.  Rotterdam Mixed Demand equations by (CIDS) 

ωI dln qi = αi dln y + ∑m
j=1 τij dln pj + ∑n

k= m+1 γik dln qk 

ωk dln pk =µk  dln y + ∑m
j=1 λkj dln pj + ∑n

s= m+1 δks dln qs 



Where (i )is the quantity dependent variables, (j) the counter for the quantity dependent variable in the ith 
and kth equations, (k) the price dependent variables and (s) the counter for the parables dependent variables 
in the kth equations. In this model m = 4, and  n = 5, i = 1 to 4, j = 1 to 4, k = 5, and s = 5  

ωiηj = αI 
ωiεij  = τij 
ωiψik =  γik , 
ωkθk = µk 
ωkρkj = λkj 
ωkψks = δks 

ωi = budget share of the ith quantity dependent commodity. 
ωk = budget share of the kth price dependent commodity. 
ηi = expenditure elasticity of the ith  commodity. 
εij = compensated “quantity” elasticities of the ith quantity of the jth price. 
ψik = diversion elasticity of the kth quantity on the ith quantity. 
θk = price expenditure elasticity of the kth price. 
ρkj = price competition elasticity of the jth price on the kth price. 
ψks = price flexibility of the sth quantity on the kth price. 
 
Prior to building the mixed demand system the TETRADII program was used to 

determine a DAG for all price, quantity, and expenditure variables. TETRADII uses an 

algorithm as previously described in the DAG procedure section. All of the variables 

used in the TETRADII program were in the same form as they were when used in the 

Rotterdam Models. Both the CIDS, and the SDDS models used all of the same variables 

enabling a direct comparison of the results.   

One of the advantages of using a model such as the Rotterdam model is that the 

elasticities are calculated at a specific point. Given that the two models were built using 

the same data set and have the same common variables it was possible to make a 

statistical comparison of the parameter estimates as well as the elasticities at the same 

specific points.  As is common in many cases the comparison between the two models 

was evaluated at the means.  



 

Results 

Causal Identification (DAG) 

 The Rotterdam model requires that there be variables for price, quantity and 

expenditure. The five meats required a single expenditure variable and five each of the 

price and quantity variables. All 138 weekly observations were used to obtain the eleven 

by eleven correlation matrix. See Table 1.  

 

Table 1.  Correlation Matrix        
 Expend-Price Quantity Price QuantityPrice QuantityPrice Quantity Price Quantity
 iture Ground Ground Roast Roast Steak Steak Chicken Chicken Pork Pork 
Expend 1                    
P Ground 0.0654 1                  
Q Ground 0.3009 -0.776 1                
P Roast 0.0338 0.2145 -0.229 1              
Q Roast 0.1357 -0.145 0.348 -0.912 1            
P Steak -0.064 -0.182 0.1472 0.434 -0.482 1          
Q Steak 0.4429 0.1485 0.148 -0.277 0.4768 -0.824 1        
P Chicken -0.125 -0.233 0.1244 -0.318 0.2828 -0.269 0.1845 1      
Q Chicken 0.7279 0.244 0.0186 0.3196 -0.231 0.2383 0.042 -0.705 1    
P Pork -0.146 -0.167 0.1718 -0.434 0.4394 -0.265 0.2106 0.0086 -0.126 1  
Q Pork 0.8043 0.1605 0.0893 0.3458 -0.221 0.2352 0.1089 0.0504 0.5317 -0.531 1
 

The resulting DAG which is formed at the .20 significance level, the recommended 

statistical level of a sample this size (Sprites, Glymour and Scheimes), is shown in Figure 

9. 

All of the price arrows that are pointing to quantities indicate price is casual to 

quantity. In all cases except one is price causal to quantities, the exception is roast, where 

quantities are causal to price. The expenditure variable is a sink, only has arrows directed 

in. The contributing variable to the expenditure sink are quantity of ground beef, quantity 



of chicken, and quantity of pork. This relationship would indicate that expenditures are a 

result of quantity purchases 

Figure 9. DAG for the five commodity CIDS Model 
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. This result may be due to the nature of the type of data. An individual shopper’s 

expenditure is a result of quantities, which in turn are sensitive to relative prices.  

Another interesting occurrence is the fact that the price of roast is also a sink of the 

quantity of pork, quantity of steak and quantity of roast. The fact that steaks and roast are 

fabricated, in many cases from the same part of the beef carcass, and that many cuts of 

pork are roast or chops that may substituted for beef roast or steaks and that the quantity 

of roast is causal to quantity of ground beef leads to the possibility that this sink 

relationship allows roast price to act as a residual stabilizer for red meat. It is important to 

keep in mind the circumstances under which the data were created. In this case the data 

comes from the store level information and therefore have results that reflect the time and 

space relationships of the individual stores. An increase in roast quantities at the grocery 



store level, beef being perishable and roast being the cheapest cut type, would likely 

cause beef roast price to decline to clear the market. Another possible explanation for this 

relationship would be the use of beef roasts as a leader item, where large quantities are 

moved cheaply to attract shoppers who may make other purchases.   

Increased pork quantities would have the reverse affect on beef roast prices. A 

larger quantity of pork would reduce the freezer space and increase the price of roast by 

limiting quantities of beef roast available for sale. In the case of a sale on pork, increased 

quantity of pork and a higher roast price would be helpful to clear out the pork. Increased 

steak quantities would have a positive effect on roast beef prices. Beef carcass parts can 

be either fabricated into steak or roast, if the number of steaks fabricated increases the 

number of roast fabricated would decline therefore increased steak quantities would 

create less roast and prices would increase. As is true in the case of pork a sale on steak 

could also be accompanied by higher prices of beef roast. Making the relative price 

difference between beef roast and steak can be accomplished by either lowering steak 

price, or raising roast price, or both, thus encouraging increased sales of steak quantities.  

 

Parameter Estimates and Elasticities  

The CIDS model differs from the SDDS model in one variable, beef roast. The 

CIDS model is a mixed demand system with the variable representing beef roast as being 

quantity dependent. The variable representing beef roast as well as all the other ten 

variables are price dependent in the SDDS model.  See figures 1 and 2.  

The statistical analysis for all coefficient and elasticity estimates were preformed 

at the five percent (5%) significance level. 



A summary of the expenditure coefficients for both the SDDS (B1-B5) and CIDS 

(α1-α4, and µ5) models are all statistically significant. See Table 2 and 3. 

The SDDS model coefficients (C11- C25, C51-C55) for the equations ground 

beef, steak, and beef roast were all statistically significant. The SDDS model equation for 

the quantity of chicken coefficients (C32, C33, and C35), were all statistically significant. 

The chicken equation coefficients for price of ground beef and the price of pork (C31, 

C34), which had a p-values of .941 and .061 respectively were not statistically 

significant. The coefficients of C42, C44, and C45 in the quantity of pork equation in the 

SDDS were statistically significant, the price of ground beef and price of chicken 

coefficients (C41, C43) with p-values of .419 and .126 however were not. Again please 

refer to Table 2. 

The CIDS model has coefficients of statistical significance for  (τ11-τ25, τ32-τ34, 

τ44, g15-g45, and λ54) with the coefficient for ground beef equation and chicken 

coefficient (τ31), beef roast equation and pork coefficient (τ44), pork equation and 

ground beef, steak, chicken (λ51-λ53 ), and beef roast (δ55) being insignificant.  



 

Table 2.   SDSS Coefficient Estimates       

  Total Meat Ground Beef Chicken Pork Beef  
Equations Expenditure Beef, j=1 Steak, j=2 General, j=3 General, j=4 Roast, j=5 

 ωi dln qi =  βi dln y  Cij dln pj Cij dln pj Cij dln pj Cij dln pj  Cij dln pj 

Ground Beef, i = 1 B1 C11 C12 C13 C14 C15 
Coeffeicent Estimates 0.101 -0.283 0.049 0.034 0.071 0.027 
P-Values 0 0 0 0.0002 0 0.0001 
Beef Steak, i = 2 B2 C21 C22 C23 C24 C25 
Coeffeicent Estimates 0.109 0.049 -0.381 0.057 0.125 0.039 
P-Values 0 0 0 0 0 0 
Chicken General, i = 3 B3 C31 C32 C33 C34 C35 
Coeffeicent Estimates 0.255 -0.001 0.019 -0.318 0.025 0.018 
P-Values 0 0.94171 0.03625 0 0.06827 0.00052 
Pork General,  i = 4 B4 C41 C42 C43 C44 C45 
Coeffeicent Estimates 0.487 -0.014 0.033 -0.021 -0.512 0.022 
P-Values 0 0.419 0.0424 0.1268 0 0.0118 
Beef Roast, i = 5 B5 C51 C52 C53 C54 C55 
Coeffeicent Estimates 0.048 0.023 0.035 0.026 0.046 -0.18 
P-Values 0 0.0011 0 0 0 0 

 
  It should be noted that all coefficients were tested at the average budget share of 

the commodities. In creating the non-linear systems the algebra used to manipulate the 

right hand sides when gathered by terms including budget shares as part of the 

coefficients. 

 The budget shares are part of the estimated coefficient value and account for 

variation that is not normally associated with a symmetrical matrix of coefficients. A full 

summary of the algebra results and specification of the elasticity conversion equations is 

found in appendix B.    



 

       
Table 3.   CIDS Coefficient Estimates       
 Expenditure Ground Beef Chicken Pork Beef 
Equations Corrficients Beef, j = 1 Steak, j = 2 General, j = 3 General, j = 4 Roast, k = 5 

ωi dln qi = αi dln y τij dln pi τij dln pi τij dln pj τij dln pj γik dln qk
Ground Beef, i = 1 α1 τ11 τ12 τ13 τ14 γ15 
Coefficient Estimates 0.115 -0.28 0.06 0.037 0.067 -0.009 
P-Value 0 0 0 0.0001 0.0003 0.0193 
Beef Steak, i = 2 α2 τ21 τ22 τ23 τ24 γ25 
Coefficient Estimates 0.124 0.061 -0.362 0.061 0.115 -0.011 
P-Value 0 0 0 0 0 0.00264 
Chicken General, i = 3 α3 τ31 τ32 τ33 τ34 γ35 
Coefficient Estimates 0.25 0 0.03 -0.32 0.04 -0.01 
P-Value 0 0.6504 0.0045 0 0.0079 0.0224 
Pork General, i = 4 α4 τ41 τ42 τ43 τ44 γ45 
Coefficient Estimates 0.499 -0.021 0.018 -0.015 -0.485 -0.006 
P-Value 0 0.2552 0.3279 0.2948 0 0.3673 

ωi dln pk = µk dln y λkj dln pj

 
λkj dln pj λkj dln pj λkj dln pk δks dln qs

Beef Roast, k = 5 µ5 λ51 λ52 λ53 λ54 δ55 
Coefficient Estimates 0.012 0.011 0.013 0.014 0.012 -0.04 
P-Value 0.008 0.006 0.0006 0 0.1655 0 

 

   

 

Both the CIDS and the SDDS models compensated and uncompensated own price 

elasticity estimates were all negative and significantly different from zero. All own price 

elasticities for both the compensated and uncompensated demands were greater in 

absolute value than one, making them elastic. See Table 4 and 5. 

 



Table 4   
Compensated Elasticities      

“Hicksian”     
           
Commodity Ground Beef Beef Steak Chicken General Pork General Beef Roast 
            
Model SDDS CIDS SDDS CIDS SDDS CIDS SDDS CIDS SDDS CIDS 
Ground Beef -1.155 -1.138 0.327 0.38 0.252 0.262 0.424 0.415 0.152 0.11 
P-values 0 0 0 0 0 0 0 0 0 0 
Compared P’s * 0.093   0.001   0.007   0.187   0.746   
Beef Steak 0.302 0.351 -1.448 -1.37 0.332 0.345 0.622 0.583 0.193 0.123 
P-values 0 0 0 0 0 0 0 0 0 0 
Compared P’s * 0.001   0.001   0.001   0.278   0.158   
Chicken General 0.257 0.267 0.369 0.381 -1.187 -1.204 0.394 0.444 0.168 0.141 
P-values 0 0 0 0 0 0 0 0 0 0 
Compared P’s * 0   0   0   0   0.016   
Pork General 0.391 0.378 0.621 0.578 0.355 0.397 -1.605 -1.456 0.238 0.114 
P-values 0 0 0 0 0 0 0 0 0 0.084 
Compared P’s * 0   0   0   0   0.544   
Beef Roast 0.467 0.304 0.642 0.374 0.504 0.393 0.793 0.349 -2.406 -1.821 
P-values 0 0.001 0 0 0 0 0 0.107 0 0 
Compared P’s * 0.879   0.25   0.649   0.02   0   
* Compared P's are the result of the statistical comparison of the SDDS and CIDS elasticities as being equal. 

 
 

 All compensated cross price elasticities for both CIDS and SDDS models were 

positive for all five commodities and significantly different from zero, except two. See 

Table 4. The two insignificant cross price elasticities were for pork and beef roast, and 

beef roast and pork, for only the CIDS specification with p-values of .084 and .107 

respectively. The positive nature of all the cross price elasticities, are an indication that 

all goods in both models are net substitutes. 

For compensated elasticities the SDSS and CIDS model were not significantly 

different from each other nine out of twenty five times and therefore different fourteen 

out of twenty five times.  

From the table of uncompensated elasticities it can be seen that the first two 

commodities ground beef and steak have the same statistical significance status as the 



compensated elasticities, all are positive and significant for both the SDDS and CIDS 

model, indicating gross substitutes.  See Table 5 

 

Table 5  
Uncompensated Elasticities 

" Marshallian "   
           
Commodity Ground Beef Steak Chicken Pork General Beef Roast 

         
Model SDDS CIDS SDDS CIDS SDDS CIDS SDDS CIDS SDDS CIDS 
Ground Beef -1.256 -1.254 0.218 0.255 0.153 0.149 0.314 0.289 0.119 0.072 
P-values 0 0 0 0 0 0 0 0 0 0.018 
Compared P’s * 0.153   0.125   0.009   0.068   0.009   
Steak 0.201 0.237 -1.557 -1.493 0.234 0.234 0.513 0.459 0.16 0.086 
P-values 0 0 0 0 0 0 0 0 0 0.003 
Compared P’s * 0.137   0.791   0.003   0.009   0   
Chicken -0.003 0.011 0.086 0.104 -1.442 -1.454 0.111 0.167 0.083 0.058 
P-values 0.942 0.797 0.036 0.01 0 0 0.068 0.015 0.001 0.022 
Compared P’s * 0   0   0   0   0   
Pork -0.058 -0.082 0.135 0.079 -0.084 -0.053 -2.092 -1.955 0.092 -0.036 
P-values 0.419 0.259 0.042 0.256 0.127 0.379 0 0 0.012 0.594 
Compared P’s * 0.58   0   0   0   0.003   
Roast 0.318 0.268 0.48 0.334 0.359 0.357 0.632 0.31 -2.454 -1.833 
P-values 0.002 0.005 0 0.001 0 0 0 0.151 0 0 
Compared P’s * 0.034   0.001   0.037   0   0   
* Compared P's are the result of the statistical comparison of the SDDS and CIDS elasticities as being equal. 

 

Six cross price elaticities were found to be negative but insignificant, chicken and 

ground beef of SDDS model, pork and ground beef, pork and chicken of both the SDDS 

and CIDS models, and pork and beef roast from the CIDS model. However, none of the 

six gross complementary cross price elasticitics are statistically different from zero, 

leaving all other goods as gross substitutes. Four of the remaining positive cross price 

elasticities are not statistically significant, one from the SDDS specification chicken and 

pork, and three from the CIDS model, roast beef and pork, chicken and ground beef, and 

pork and steak. Of all the commodities pork has the most cross price elasticities that are 



negative and statistically insignificant. Two of the cross price elasticities for both the 

Hicksian and Marshallian elasticities were the same, pork and beef roast, and beef roast 

and pork. Of the ten insignificant uncompensated cross-price elasticities six were 

insignificant for both SDSS and CIDS specifications, while three were only insignificant 

for the CIDS model, and only one for the SDSS model. 

The CIDS model generates more elasticity estimates that are statistically 

insignificant eight of the twelve for both the compensated and uncompensated elasticities, 

then the SDDS model. Remembering that which ever model is found to be appropriate 

would also be the model whose statistical results would be most appropriate. 

A comparison of the statistical difference of the estimated elasticities between the 

SDDS and CIDS, at the mean budget share and price show some interesting differences. 

The statistical p-values are recorded in tables 4 and 5 as “Compared P’s”. Of the five own 

price compensated elasticities only one is not statistically different between the two 

models, ground beef. This implies that a different magnitude in quantity response to an 

own price change is predicted depending on which model was used to estimate the 

elasticities, except in the case of ground beef. Of the five uncompensated own price 

elasticities, between the SDDS and CIDS models, two were not significantly different 

from each other, ground beef and steak. Three of the five own price quantity responses 

would be predicted as being different. Twelve of the twenty, sixty percent, of the 

compensated cross price elasticities were statically different from each other. The eight 

statically insignificant compensated cross price elasticities are for, ground beef and pork, 

ground beef and roast, steak and pork, steak and beef roast, pork and beef roast, beef 

roast and ground beef, beef roast and steak, and beef roast and chicken.  The 



uncompensated cross price elasticities sixteen out of twenty, eighty percent, of the 

elasticities as being statically different from each other. The four uncompensated cross 

price elasticities that were not statistically different from each other were, ground beef 

and steak, ground beef and pork, steak and ground beef, and pork and ground beef. These 

results indicate that the SDDS and the CIDS models are more statically different then 

they are alike, with the compensated elasticities being statically different sixteen out of 

twenty five estimates, or 64% different and the uncompensated elasticities being different 

nineteen out of twenty five estimates, or 76% different. Overall the difference in 

elasticity estimates between the SDDS and CIDS model was thirty five times out of fifty 

or 70% different.  

 

Discussion 

 To briefly summarize the CIDS model and the SDDS model not only produce 

different coefficient estimates, but these different coefficients lead to elasticity estimates 

that are on average significantly different 70% of the time. The SDDS model produced 

four insignificant coefficients, while the CIDS model had six insignificant coefficients; 

three of those six coefficients were the same for both models.  

What clearly can be shown is that specification between the SDDS and CIDS 

model result in mostly different results. The question yet remaining is under what 

conditions should we apply the CIDS model verses the SDDS. Given the assumptions 

where by the DAG was created and are valid the identified system would be more 

preferred. By using a technique such as directed acyclical graphs a demand system can be 

justified that makes complete use of the consumer theory, Samuelson Full Duality 



becomes a viable reality. No longer does the applied economist have to rely solely on the 

merits of a specialized set of circumstances which are no longer without empirical teeth, 

but through an judicious application of causality add strength to the use of a specific 

demand specification. 

The final question as to the effectiveness of causality in identifying demand 

specification far from complete, and further work needs to be done to validate this 

preliminary outcome. But what is significant is that this work is an attempt at crossing 

bridges. There are those on the side of the valley who are strongly convinced in the 

power of structural models and those on the other who are just as convinced of the power 

of information derived from the data. This work is aimed at combining them both, the 

theory for structure and information from the data to build a better mousetrap. As Keynes 

said  “Progress in economics consist almost entirely in a progressive improvement in the 

choice of models.” This application although basic in concept is what empirical 

economics so desperately needs. It should be remembered that in using the CIDS 

methodology assumption are made, just as in any model, it behooves all to remember as 

with all models the limitations those assumption place on the model, the old adage “buyer 

beware” would be an appropriate warning label. 
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