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ABSTRACT

This paper evaluates the central insight of the Consumption Capital Asset Pricing Model (C-

CAPM) that an asset's expected return is determined by its equilibrium risk to consumption. Rather

that measure the risk of a portfolio by the contemporaneous covariance of its return and consumption

growth -- as done in the previous literature on the C-CAPM and the pattern of cross-sectional returns

-- we measure the risk of a portfolio by its ultimate consumption risk defined as the covariance of

its return and consumption growth over the quarter of the return and many following quarters. While

contemporaneous consumption risk has little predictive power for explaining the pattern of average

returns across the Fama and French (25) portfolios, ultimate consumption risk is highly statistically

significant in explaining average returns and explains a large fraction of the variation in average

returns. Aditionally, estimates of the average risk-free real rate of interest and the coefficient of

relative risk aversion of the representative household based on ultimate consumption risk are more

reasonable than those obtained using contemporaneous consumption risk.
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1. Introduction

The natural economic explanation for the large predictable differences in returns ob-
served across assets in the U.S. stock market is differences in risk. According to canon-
ical economic theory, an asset’s risk is its covariance with consumption growth. But
observed differences in the covariance of returns and consumption growth across port-
folios do not explain the observed differences in expected returns across portfolios.1

The asset pricing literature has largely concluded that the textbook consumption-
based capital asset pricing model (C-CAPM) does not explain observed differences in
returns across portfolios of stocks, and instead differences in return arise from time-
variation in effective risk aversion or quite different models of economic behavior.
In this paper, we study the Fama and French size and book-to-market portfolios

and re-evaluate the central insight of the Consumption Capital Asset Pricing model
(C-CAPM) that an asset’s expected return is determined by its equilibrium risk to
consumption. Rather that measure the risk of a portfolio by the contemporaneous
covariance of its return and consumption growth — as done in the previous literature
on the C-CAPM and the pattern of cross-sectional returns — we follow Parker (2001)
and measure the risk of a portfolio by its ultimate risk to consumption, defined as the
covariance of its return and consumption growth over the quarter of the return and
many following quarters.
Measuring the risk of equity as the ultimate impact of a return on consumption

has several appealing features. First, this approach maintains the assumption that
the primary determinant of utility is the level of flow consumption. This assumption
is intuitive and has proved useful and successful in many other subfields of economics.
Second, this approach is consistent with the textbook model of portfolio choice in
that, if the textbook model were true, the ultimate risk would correctly measure the
risk of different portfolios. Finally and most importantly, the ultimate risk is a bet-
ter measure of the true risk of the stock market under a wide class of extant models
used in the study of household consumption and saving. If consumption responds
with a lag to changes in wealth, then the contemporaneous covariance of consump-
tion and wealth understates the risk of equity, and the ultimate risk provides the
correct measure. This slow adjustment is a well-documented feature of consumption
data: consumption displays excess smoothness in response to wealth shocks.2 Exist-
ing theoretical explanations for slow adjustment of consumption include direct costs of
adjusting consumption, nonseparability of the marginal utility of consumption from
factors such as labor supply or housing stock, which themselves are constrained to
adjust slowly, constraints on borrowing or changes in risk that hinder consumption
smoothing, and constraints on information flow or calculation so that household be-

1See Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996),
Cochrane (1996) and Lettau and Ludvigson (2001b).

2The slow adjustment of consumption has a long history starting with Flavin (1981) and Hall and
Mishkin (1982). Even the seminal paper, Hall (1978), which first notes that consumption should not
be slow to adjust rejects the random walk of consumption using data on market returns.
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havior is “near-rational.” The common feature of these models is that consumption
responds slowly to a market innovation, so that only after some time is the impact of
a change in wealth completely observed in the movement of consumption.
Thus, the ultimate risk provides a robust measure of the risk of a stock in that

it remains to some extent agnostic about the particular optimization problem faced
by households. This robustness allows us to evaluate the economic insight that con-
sumption risk should determine returns even though the true or complete model of
household saving and portfolio choice has to date escaped discovery.
We find three main pieces of evidence that consumption risk largely explains the

cross-sectional pattern of returns.
First, while, the covariance of each portfolio and contemporaneous consumption

growth has almost no predictive power for explaining the pattern of average returns
across portfolios, the ultimate risk to consumption explains half or more of the varia-
tion in returns across portfolios of stocks. The explanatory power of this single factor
— ultimate consumption risk —is similar to that of the three factors models of Fama
and French (1993) and Lettau and Ludvigson (2001). Second, and related, the ulti-
mate risk to consumption is statistically significant while the contemporaneous risk is
not. We also show that firm characteristics do not drive out the statistical significance
of consumption risk. These findings are consistent with the slow adjustment of con-
sumption to a change in wealth and inconsistent with the textbook model in which
consumption adjusts instantaneously to a return.
Third, the baseline model implies a risk-free real interest rate around five percent,

a point estimate that is not statistically different from the average real rate on 3-month
Treasury bills in the sample. While some alternative specifications yield estimates of
the risk-free rate that are lower and closer to the sample average, even this estimate is
a significant improvement both over estimates based on contemporaneous consump-
tion risk and over estimates based on the macroeconomic factor model of Lettau and
Ludvigson (2001b). Finally, we use the model to calculate the risk aversion of the
representative agent from the estimated relationship between risk and return. Point
estimates of risk aversion lie around 12, again much lower than average estimates
implied by the models of Lettau and Ludvigson (2001b), Campbell and Cochrane
(1999) or contemporaneous consumption risk, which imply levels of risk aversion of
40 and larger. Using the ultimate risk to consumption, a relatively-small 95 percent
confidence interval contains reasonable estimates of risk aversion.
Our main results are most closely related to Brainard, Nelson, and Shapiro (1991)

who show that the longer the horizon of the investor, the better the C-CAPM performs
relative to the CAPM and to Bansal, Dittmar, and Lundblad (2001) who show that
the cointegrating relationship between consumption and dividends explains a large
share of the variation in average returns. We work directly with returns rather than
long-run movements in dividends and map estimates back to underlying structural
parameters which gives us confirmation of the importance of consumption risk. We
are also closely related to the literature on the stochastic properties of aggregate
consumption following aggregate market returns (Daniel and Marshall (1997), Kandel
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and Stambaugh (1990), Parker (1999b), Ludvigson and Steindel (1999), Parker (2001),
Dynan and Maki (2001), Gabaix and Laibson (2001), and Piazzesi (2001)).
The balance of the paper is organized as follows. The next section sets the stage

by deriving the textbook C-CAPM from the portfolio choice of a representative agent.
Section 3 presents the ultimate risk to consumption and discusses the range of models
that would imply it. The fourth section describes our data and the fifth our econo-
metric methodology. The sixth section contains our main results on fit, significance,
risk-free rate, and implied risk aversion for the ultimate risk to consumption. The sev-
enth section of the paper compares our one-factor model to the fit and the performance
of the models of Fama and French (1993) and Lettau and Ludvigson (2001b). The
eighth section presents results using the ultimate risk to consumption in an economy
with time variation in the risk-free rate of interest. A final section concludes.

2. The average cross-sectional pattern of returns and the C-
CAPM

Following the literature, we use the equilibrium condition governing optimal portfolio
choice to derive a beta representation of average returns across assets as a function of
their consumption risk. This derivation of the beta representation of the C-CAPM lays
the groundwork for the derivation of our beta representation based on the ultimate
risk to consumption.
The C-CAPM first developed by Rubinstein (1976) and Breeden (1979) assumes

that the representative household maximizes the expected present discounted value
of utility flows from consumption by allocating wealth to consumption and different
investment opportunities. At the optimal allocation, a small extra investment in a
portfolio of stocks yields an expected marginal increase in utility at t+1 that exactly
offsets the expected marginal decrease in utility from the small amount less invested
in the risk-free asset:

Et [u
0 (Ct+1)Ri,t+1]− Et [u

0 (Ct+1)]R
f
t,t+1 = 0. (2.1)

where u (·) is the period utility function, C is consumption, Rf
t,t+1 is the gross risk-free

real interest rate in the economy between t and t+1, and Ri,t+1 is the gross return on
portfolio i of stocks, unknown at t, known at t+ 1.
Equation (2.1) can be written as a model of average cross-sectional returns by ma-

nipulating it to a beta representation or factor model. First, we assume that the risk-
free rate in the economy is constant. This assumption allows us to relate our results
to previous work and keep the algebra simple, but more importantly is a reasonable
approximation since, relative to the portfolios of stocks that we consider, the risk-free
rate moves little. Section 8 confirms that relaxing this assumption in the textbook
model does not affect the substance of our results. Second, to make the model empiri-
cally tractable, divide u0 (Ct+1) by u0 (Ct) to move from the nonstationary u0 (Ct+1) to
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the stationary u0 (Ct+1) /u
0 (Ct). Third, take the unconditional expectation, re-write

the expectation of the product in terms of covariances, and re-organize to yield

E
£
Ri
t+1

¤
= α0 + βi,0λ0 (2.2)

where

α0 = Rf , βi,0 =
Cov

h
u0(Ct+1)
u0(Ct) , Ri,t+1

i
V ar

h
u0(Ct+1)
u0(Ct)

i , λ0 = −
V ar

h
u0(Ct+1)
u0(Ct)

i
E
h
u0(Ct+1)
u0(Ct)

i
This equation summarizes the implications of the canonical C-CAPM for cross-sectional
returns. The expected return on a portfolio is the risk-free rate of return plus the scaled
consumption risk of the portfolio, βi,0λ0. Since λ0 < 0, portfolios that pay off poorly
when marginal utility is high (so consumption is scarce) have a high expected return.
To proceed to estimation and testing of this model of cross-sectional returns, we

log-linearize the ratio of marginal utilities assuming constant relative risk aversion, γ,
as

u0 (Ct+1)

u0 (Ct)
≈ 1− γ∆ lnCt+1

and treat consumption growth as the stochastic discount factor that prices returns.3

Including the preference parameter, γ, in the coefficient λ, the model for returns is
still in the form of equation (2.2) but with coefficients

α0 = E
£
Rf
¤
, βi,0 =

Cov [∆ lnCt+1, Ri,t+1]

V ar [∆ lnCt+1]
, λ0 =

γV ar [∆ lnCt+1]

E [1− γ∆ lnCt+1]
(2.3)

Linearization is not necessary, but it allows us to use the Fama and MacBeth (1973)
two-step procedure to evaluate the model and estimate γ, which in turn has the
advantage of making our results easy to understand and easy to relate to previous
results.
We estimate and test equation (2.2). Further, equation (2.3) provides an external

test of the structure embodied in the model. The estimated α should equal the risk-
free rate of return and the estimated λ0 and moments of consumption growth should
imply a reasonable level of the risk aversion for the representative investor, according
to

γ =
λ0

E [∆ lnCt+1]λ0 + V ar [∆ lnCt+1]
. (2.4)

3This stochastic discount factor only prices returns relative to one another and not goods over time
because we derive it from portfolio choice rather than the intertemporal allocation of consumption.
That is, our ratio of marginal utilities omits the household’s degree of impatience (the household’s
discount factor).
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3. The ultimate risk to consumption

Equations (2.1), (2.3), and (2.4) evaluate the risk of a portfolio based solely on its co-
variance with contemporaneous consumption growth. They maintain the assumption
that the intertemporal allocation of consumption is optimal from the perspective of
the textbook model of consumption smoothing, so that any change in marginal utility
is reflected instantly and completely in consumption. This is at odds with the litera-
ture on the intertemporal allocation of consumption, which is in wide agreement that
the simple, textbook model of a representative consumer is false.4 In particular, the
empirical literature studying consumption and saving behavior suggests that the fol-
lowing assumptions are at least questionable and at worst quite misleading: 1) utility
is additively separable from factors that adjust slowly and covary with returns, such
as leisure; 2) uninsurable idiosyncractic risk and borrowing constraints are not impor-
tant; 3) consumption can be instantaneously adjusted or if there are adjustment costs
on some items, such as housing, then these categories are additively separable from
the utility of consumption; 4) aggregate consumption data accurately measure move-
ments in flow consumption; 5) households perfectly optimize without informational or
calculation constraints.5

To allow for the slow response of consumption to market returns, this paper evalu-
ates the risk/return trade-off among portfolios of stocks by focussing on the ultimate
risk to consumption. Rather that measure the risk to consumption from the con-
temporaneous comovement of consumption and returns, the risk to consumption is
measured by the response of consumption to a return over a longer horizon, as given
by

Cov

·
ln

µ
Ct+1+S

Ct

¶
, Ri,t+1

¸
(3.1)

or in beta representation
E
£
Ri
¤
= αS + βi,SλS (3.2)

where

αS = Rf , βi,S =
Cov

h
ln
³
Ct+1+S

Ct

´
, Ri,t+1

i
V ar

h
ln
³
Ct+1+S

Ct

´i , λS =
γV ar

h
ln
³
Ct+1+S

Ct

´i
E
h³
1− γ ln

³
Ct+1+S

Ct

´´i (3.3)

Thus the stochastic discount factor we consider is one minus the long-horizon con-
sumption growth times the risk aversion of the representative agent. Consumption

4This literature is not in agreement about the explanation for this failure, but this literature has
the problem of too many models fitting time series data on consumption and risk-free returns rather
than no model fitting this behavior.

5See Attanasio and Weber (1995), Basu and Kimball (2000), Zeldes (1989), Caballero (1990),
Carroll (1997), Gourinchas and Parker (2002), Grossman and Laroque (1990), Ogaki and Reinhart
(1998), Attanasio and Weber (1995), Baxter and Jermann (1999), Attanasio and Weber (1993),
Wilcox (1992), Parker (1999a), Souleles (forthcoming).
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risk is measured by the covariance of the return at t+ 1 and the change in consump-
tion from t to t+ 1+ S, where S is the horizon over which the consumption response
is studied. The implied relative risk aversion of the representative agent is

γS =
λS

E
h
ln
³
Ct+1+S

Ct

´i
λS + V ar

h
ln
³
Ct+1+S

Ct

´i (3.4)

Why evaluate risk using ultimate risk, as in equations (3.3) and (3.4)? If households
choose their portfolio at time t, and the impact of this choice and the realized return on
stocks takes time to appear in observed consumption data, then this measure provides
a better measure of the risks of stocks than does the contemporaneous measure. To be
more concrete, the remainder of this subsection argues that the ultimate consumption
risk measures consumption risk a) if the textbook model is true b) if the marginal
utility of consumption is shifted by a stationary variable that covaries with returns, c)
if constraints on information flow slow consumption movements, and d) if consumption
data is mismeasured due to the use of lagged data.
First consider a textbook model of consumption smoothing. Households seek to

smooth consumption over time, which is captured by the consumption Euler equation
between any two periods

Eτ

·
δRfu0 (Cτ+1)

u0 (Cτ)

¸
= 1

where δ is the factor by which households discount the future. These relationships
imply

u0 (Ct+1) =
¡
δRf

¢S
u0 (Ct+1+S)−

t+1+SX
τ=t+2

¡
δRf

¢τ−t−1
ετ

where ετ = u0 (Cτ) − Eτ−1 [u0 (Cτ)], the expectation error in τ . Substituting into
equation (2.1) and noting that the expectation errors are mean zero and uncorrelated
with information known at time t+ 1 yields

Et [u
0 (Ct+1+S)Ri,t+1]− Et [u

0 (Ct+1+S)]R
f = 0 (3.5)

Following the same derivation as in section (2) yields the structural beta representation
given by equations (3.2) to (3.4). Thus, if the textbook model were true, our analysis
would be as valid as the analysis using contemporaneous risk.
Second, consider the class of models in which marginal utility adjusts at the time

of the return, but in which a stationary confounding variable implies that the contem-
poraneous change in consumption understates this change. For this class of models,
the ultimate risk to consumption explains the pattern of expected returns, but our
estimates of risk aversion are biased. More concretely, suppose that the marginal
utility of the representative agent is shifted by a stationary variable, µt > 0, so that
marginal utility is given by µtu

0 (Ct), and normalize so that limS→∞Et+1

£
µt+1+S

¤
= 1.
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Assume that the ηut ,µt is a jointly covariance stationary process, where η
u
t = u0 (Ct)−

Et−1 [u0 (Ct)].6 µt can capture the factors that shift the marginal utility of consumption
in many extant models. For example, µ can represent a) the share of hours devoted to
market work, b) the relative productivity of home production, c) the stock of durable
goods relative to flow consumption.7

In such a model, arbitrage across assets implies

Et

£
µt+1u

0 (Ct+1)Ri,t+1

¤
= Et

£
µt+1u

0 (Ct+1)
¤
Rf

and consumption smoothing implies

µt+1u
0 (Ct+1) =

¡
δRf

¢S
µt+1+Su

0 (Ct+1+S)−
t+1+SX
τ=t+2

¡
δRf

¢τ−t−1
ετ .

Combining gives

Et

£
µt+1+Su

0 (Ct+1+S)
¤
Rf = Et

£
µt+1+Su

0 (Ct+1+S)Ri,t+1

¤
= Et

£
Et+1

£
µt+1+Su

0 (Ct+1+S)
¤
Ri,t+1

¤
.

Now, defining ψ = limS→∞Covt+1
hPS

τ=S/2+1 η
u
t+1+τ , µt+1+S

i
, we have

Et+1

£
µt+1+Su

0 (Ct+1+S)
¤
= Covt+1

£
µt+1+S, u

0 (Ct+1+S)
¤
+Et+1

£
µt+1+S

¤
Et+1 [u

0 (Ct+1+S)]

−→
S→∞

ψ +Et+1 [u
0 (Ct+1+S)]

since

Covt+1
£
µt+1+S, u

0 (Ct+1+S)
¤
= Covt+1

 S/2X
τ=1

ηut+1+τ , µt+1+S

+ Covt+1

 SX
τ=S/2+1

ηut+1+τ , µt+1+S


−→
S→∞

0 + ψ.

It follows that, for large S, optimal portfolio choice implies

Et [ψ +Et+1 [u
0 (Ct+1+S)]]R

f = Et [(ψ +Et+1 [u
0 (Ct+1+S)])Ri,t+1]

E [ψ + u0 (Ct+1+S)]R
f = E [(ψ + u0 (Ct+1+S))Ri,t+1]

= Cov [u0 (Ct+1+S) , Ri,t+1] +E [ψ + u0 (Ct+1+S)]E [Ri,t+1]

6The usual assumption is that the µtu
0 (Ct)− Et−1 [µtu0 (Ct)] is a covariance stationary process.

Since we assume µt is stationary, joint stationarity is not particularly restrictive.
7See for example Aschauer (1985) Eichenbaum, Hansen, and Singleton (1988), Startz (1989),

Flavin (2001), and Piazzesi, Schneider, and Tuzel (2003). It is uncertain but possible that ultimate
consumption risk might also capture consumption risk in models with transitory movements in indi-
vidual consumption risk or the cross-sectional distribution of marginal utilities such as the model of
Lustig (2001).
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so that we can apply a derivation parallel to that of the previous section to yield

E [Ri,t+1] = Rf +
Cov

h
(ln
³
Ct+1+S

Ct

´
, Ri,t+1

i
V ar

h
ln
³
Ct+1+S

Ct

´i γV ar
h
ln
³
Ct+1+S

Ct

´i
E
h
1− γ ln

³
Ct+1+S

Ct

´i
+ ψ

= Rf + βi,Sλ̃S

where

λ̃S =
γV ar

h
ln
³
Ct+1+S

Ct

´i
E
h
1− γ ln

³
Ct+1+S

Ct

´i
+ ψ

(3.6)

Thus, for this class of models, we have the same structural beta representation, so
that ultimate consumption risk should explain the cross-sectional pattern of returns.
However, since λ̃S includes an additional term, ψ, in the denominator, our estimates of
risk aversion are biased. A plausible assumption is that the stochastic discount factor
based only on consumption understates the volatility of the true stochastic discount
factor, and therefore that Cov [µt, u

0 (Ct)] = ψ > 0. If this were true, our estimates
of risk aversion that ignore the term ψ would be downward-biased. While there is
no hard evidence on the magnitude of ψ, we suspect that, relative to the size of the
denominator in equation (3.6), this bias is small.8

Related to this class of models, the appendix uses a different argument to show
that there are a set of models with multiplicative external habits that do not have
this bias in estimates of risk aversion. For this class of models, which includes that of
Abel (1990), our measure of ultimate consumption risk prices average returns and our
measure of risk aversion is unbiased, for S large enough.
Third, the ultimate risk also measures the risk of stocks in some models in which

households face constraints on information, calculation, or adjustment of consumption
so that consumption and marginal utility move only slowly to the new optimal level
following a shock. As a concrete example, Gabaix and Laibson (2001) add to the
canonical model of Merton (1969) the assumption that households face costs of mon-
itoring their portfolio balances and so check and learn their wealth only infrequently,
once every D periods.9 When a household learns its wealth, it adjusts its consumption
in response to all the market returns during the interval since it last learned its account
balance. Assuming that a constant measure of households learn their balances and
adjust their consumption at every instant, aggregate consumption adjusts smoothly
and slowly over D periods to reflect a given return. In this case, the risk of a given
portfolio under this model of economic behavior is measured by the ultimate risk to
consumption.

8For example, Piazzesi, Schneider, and Tuzel (2003), consider µt to be the budget share of con-
sumption spend on housing services (relative to its mean). Since both this and consumption fluctuate
only by a few percent from their expected paths, ψ << 1.

9See also Caballero (1995), Lynch (1996), Marshall and Parekh (1999), Alvarez, Atkeson, and
Kehoe (2000), and Sims (2001).
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A final reason to evaluate the risk of equity with the ultimate risk is that aggregate
consumption data may measure consumption responses with delay, even if the true
consumption response were instantaneous. As demonstrated byWilcox (1992), serially
correlated measurement error is induced in aggregate consumption data by sampling
error, imputation procedures, and definitional difficulties involved in constructing mea-
sures of aggregate consumption frommonthly survey data on retail sales. For example,
sales at a given retailer are allocated across types of consumption using shares that
remain fixed for years. Given divergent price indexes, this induces serially correlated
measurement error, only corrected once the correct shares are employed.

4. Data

For our portfolios and returns, we use quarterly returns on the Fama and French
portfolios (25), which are the intersections of 5 portfolios formed on size (market
equity, ME) and 5 portfolios formed on the ratio of book equity to market equity
(B/M). B/M used during a fiscal year is based on the book equity for the previous
fiscal year divided by ME for December of the previous year. The B/M breakpoints
are the NYSE quintiles. The portfolios include all NYSE, AMEX, and NASDAQ
stocks for which there is market equity data for December and June of the previous
fiscal year, and (positive) book equity data for the previous fiscal year. We denote a
portfolio by the rank of its ME and then the rank of its B/M so that the portfolio
15 is the smallest quintiles of stocks by ME and the largest quintile of stocks by
B/M . The series are available monthly from July 1926 to December 2001.10 To
match consumption data, we use a quarterly frequency, and set our timing convention
so that Ri,t+1 represents the return on portfolio i during the quarter t+ 1.
We measure consumption as personal consumption expenditures on nondurable

goods from the National Income and Product Accounts, divided by the civilian non-
institutional population of the United States. The data are made real using a chain-
weighted price deflator, spliced across periods, produced by the Bureau of Economic
Analysis. Except where noted, we make the “end of period” timing assumption that
consumption during quarter t takes place at the end of the quarter. Our measure of
the risk-free rate is the return on a three-month treasury bill. All returns are deflated
by the same deflator as consumption.
These series determine our sample and frequency. We use a sample of returns

for quarterly data from the second quarter of 1947 to the first quarter of 1998. We
stop the sample of returns so that we can allow up to 4 years of consumption growth
matched to a return (S = 15) without altering the sample of returns that we study as
we vary S. That is, the sample for per capita consumption runs from the first quarter
of 1947 to the last quarter of 1998 plus S quarters, which is the last quarter of 2001
when S = 15.
10We thank Kenneth French for making the Fama and French portfolio data available on his web

page: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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5. Estimation and inference

Following the methodology of Fama and MacBeth (1973) and Fama and French (1992),
we estimate equations (3.2) and (3.3) in two steps. First, each βi,S is estimated directly
from the empirical counterparts to the theoretical moments in equation (3.3). This is
simple to implement since β̂i,S is the slope coefficient from a time series regression of
return i onto a constant and ln Ct+1+S

Ct
.

Second, λS and its standard error are estimated from a series of cross-sectional
regressions of returns on the β̂i,S, the slope coefficients estimated in the time series
regressions. Let the parameters be denoted by θS = (αS, λS)

0, let the data be denoted

by Rt+1 = (R1,t+1, ...R25,t+1)
0 and X̂S =

³
ι, B̂S

´
where ι is a column vector of ones

and B̂S =
³
β̂1,S, ..., β̂25,S

´0
. Let bθS,t be the average of the estimates of θS from cross-

sectional regression using only returns during period t

bθS = 1

T

TX
t=1

bθS,t , bθS,t = ³X̂ 0
SX̂S

´−1
X̂ 0

SRt. (5.1)

We calculate Fama and MacBeth standard errors from the observed variation in
parameter estimates across subsamples,

dV ar ³√T ³θ̂S − θS
´´
=

TX
t=1

³bθS,t − 1
T

PT
t=1
bθS,t´³bθS,t − 1

T

PT
t=1
bθS,t´0 . (5.2)

If the innovations to returns conditional on the factor are independently distributed
over time then

plim dV ar ³√T ³θ̂S − θS
´´
= V = (X 0

SXS)
−1

X 0
SΦXS (X

0
SXS)

−1

where Φ = E
£
(Rt+1 −E [Rt+1]) (Rt+1 −E [Rt+1])

0¤. However, these estimates of sta-
tistical uncertainty do not account for the fact that the betas are estimated regressors.
Shanken (1992) shows that, if asset returns are homoskedastic and have a jointly nor-

mal distribution conditionally on the factor, then
√
T
³bθ − θ

´
converges to a normal

distribution with mean zero and variance W = V +Q where Q is given by

Q = λ2SV ar
h
ln
³
Ct+1+S

Ct

´i−1
(X 0

SXS)
−1

X 0
SΣXS (X

0
SXS)

−1 (5.3)

where Σ is the constant covariance matrix of the residuals of the time series regres-
sions. Since Q is positive definite, in this case, the Fama and MacBeth standard errors
overstate the precision of the estimates. If the returns are indeed conditionally ho-
moskedastic the Shanken standard errors are to be preferred. However, Jagannathan
and Wang (1998) shows this ordering may not hold when the returns are conditionally
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heteroskedastic, leading us to report both standard errors. The Shanken standard
error is estimated from the empirical counterparts to the elements of equation (5.3).
Turning from the statistical importance of consumption risk to the economic impor-

tance of consumption risk, we report a cross-sectional R2 statistic from our second-
stage regressions. Following Jagannathan and Wang (1998), the cross-sectional R2

measures the fraction of cross-sectional variation explained by the data given the av-
erage θ from the cross-sectional regressions,

1− V arc

µ
1

T

TP
t=1

Ri,t+1 − α̂S − λ̂Sβ̂
i

S

¶
/V arc

µ
1

T

TP
t=1

Ri,t+1

¶
,

where V arc (.) denotes a cross-sectional variance. Since the β̂i,S are estimated, it is
also the case that the fit of the second stage regression is biased downwards in finite
samples. To gauge the importance of this bias, we estimate the noise and signal in
the β̂i,S for different S. This also allows us to evaluate the relative importance of the
added signal (additional movement in expected consumption growth) and added noise
(innovations to consumption after time t+ 1) in the β̂i,S as we increase S.
We report inference concerning the implied risk-free rate and risk aversion based

only on the statistical uncertainty of the coefficients in the cross-sectional regression.
That is, the standard error of the risk-free rate is the standard error of α, and the
test of its equality to the observed average risk-free rate takes the empirical moment,
Ê
£
Rf
¤
, as given. Similarly, we make inference regarding the risk aversion of the

representative investor taking as given the observed values of V ar
h
ln
³
Ct+1+S

Ct

´i
and

E
h
ln
³
Ct+1+S

Ct

´i
. This approach isolates the uncertainty about risk aversion due to

the relationship between consumption risk and average returns, but understates our
true degree of ignorance about risk aversion and the risk-free rate.

6. Main findings

This section asks whether consumption risk explains the cross-sectional variation in
expected returns on different portfolios of stocks. First, do the β̂i,S explain a large
share of the variance of average returns — is consumption risk economically significant?
Second, is λ̂S significant — is consumption risk statistically significant? These two
questions address the major issue of whether consumption risk is or is not a major
determinant of the cross-sectional pattern of returns.
We pursue two additional checks of the model and, implicitly, of the importance

of consumption risk. First, α̂S is an estimate of the implied risk-free rate. Thus,
an additional test of the model is whether this estimate is similar to the sample
average of the risk-free rate. Second, we recover an estimate of the risk aversion of
the representative investor. Since this is a structural parameter that governs other
household behaviors, a test of the model is whether the estimated risk aversion is
plausible given what it would imply for economic behavior and risk taking in general.
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6.1. Baseline results

We begin by reporting the economic and statistical significance of contemporaneous
consumption risk for the returns of these portfolios. The first two rows of Table 1 show
that for S = 0, consumption betas explain only 12 or 19 percent of the cross-sectional
variance in average returns. The first row reports results using the traditional “start
of period” timing convention for consumption growth that aligns ∆ lnCt+2 with Ri,t+1,
while the second row reports results using the end of period timing convention that
aligns aligns ∆ lnCt+1 with Ri,t+1.11 For S > 0, we report results using the end of
period timing convention since only for this convention is the initial period entirely
prior to the period covered by the return.
In addition to having a low fit, contemporaneous risk is not statistically significant

in explaining average returns. Both the Fama-MacBeth and Shanken standard errors
are of similar magnitude to the estimated slope coefficient λ̂. The insignificant slope
coefficient is accompanied by a large estimate of the intercept, which implies a large
estimate of the risk-free rate. The fifth and sixth entries in the first two rows of of
Table 1 show that the annual real interest rate is estimated to be 15.0 or 8.6 percent,
far in excess of and statistically significantly different from the actual average risk-free
rate over the sample of 1.7 percent. Finally, the low slope coefficient and high intercept
imply implausibly large levels of household risk aversion. The point estimate of the
risk aversion required of the representative agent to rationalize the spread in average
returns given the differences in the contemporaneous consumption risk of the returns
is 41 or 55. A 95 percent confidence interval contains reasonable levels of risk aversion
only because statistical uncertainty is large.
The remainder of Table 1 shows that, contrary to the result for contemporaneous

risk, consumption risk measured after consumption has had time to adjusts to returns
explains a significant share of the variance in average returns. As we increase S, the
inferred economic importance of consumption risk rises: consumption betas measured
using the ultimate risk explain as much as half the variance in average returns across
portfolios. This rise is not monotonic, and the decline for S = 12 and higher is
discussed subsequently.
The magnitude of the slope coefficient, λ̂, rises monotonically with S, and is statis-

tically significant for horizons 9 and higher. The slope coefficient measures the extent
to which one portfolio is expected to have a higher return than another, based on the
difference in their risk, as measured by the difference between the covariance of the
returns on each portfolio and the following change in consumption over 1+S periods.
While this evidence seems strong, if the model is misspecified, it is possible for the
t-statistic to not converge to zero (Kan and Zhang (1999)). We provide a test of mis-
specification later in this section of the paper. For now, for large S, we observe that

11Campbell (1999) uses the start of period convention because, consistent with the finding here
with respect to the cross-section of returns, the start of period convention produces a larger con-
temporaneous covariance between consumption and aggregate market returns than the end of period
timing convention.
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consumption risk explains average returns.
The greater economic and statistical importance of consumption risk for large S

is accompanied by an increased plausibility of the implied interest rate on the risk-
free asset and the implied risk aversion of the representative agent. For S > 6 the
average risk-free real interest rate and the intercept of the cross-sectional regression
are statistically indistinguishable, although the gap between the estimate and the
actual average remains 2− 5 percent. The implied risk aversion of the representative
agent declines nearly monotonically in S to level off at a point estimate of around
12. The statistical uncertainty declines substantially with S, so that for large S, a 95
percent confidence interval contains roughly any positive number below 15. The 95
percent confidence interval includes reasonable estimates of the representative agent’s
risk aversion not simply because of large statistical uncertainty.
But how should we choose the correct horizon of consumption adjustment, S?

What are our best estimates for fit and parameter estimates given that they vary by
horizon? On the one hand, if consumption is slow to adjust for the reasons outlined
above, then larger S are preferred since they allow a longer horizon for consumption
adjustment. The fact that the estimates of risk aversion and the risk-free rate change
with S are evidence against the textbook C-CAPM and in favor of the C-CAPM
with slow consumption adjustment. This suggests that we would like to choose S
as large as possible. On the other hand, as one increases S, one also increases the
noise in the estimates of βiS from the time series regressions. Measurement error in a

factor, here ln
³
Ct+1+S

Ct

´
, is irrelevant asymptotically: the effect on the denominator of

each βiS is offset by a corresponding change in the numerator of λ. But measurement
error decreases the accuracy of estimation of βiS in any finite sample. For larger S,
measurement error is greater because we do not observe the expectation at time t+1
of consumption growth over the subsequent S periods, but instead must construct or
proxy it.12 Closely related, for larger S, there is more correlation over time in residuals
in the time series regressions that estimate each βiS and thus less precisely estimated
βiS.

13 These arguments imply that we do not want to choose S too large.
One solution would be to use the value of S which gives the best estimates of the

structural parameters. But such an approach would undermine inference. Instead we
consider two different approaches to choosing a “best” value for S.
First, we choose S based on the statistical uncertainty in the βiS’s from the time

series regressions relative to the total cross-sectional variance of the β̂
i

S used in the

12We use actual consumption growth in place of consumption growth expected given information

at t + 1. An alternative would be to use a constructed measure of Et+1

h
ln
³
Ct+1+S

Ct

´i
. But this

measure would still contain noise, and potentially more importantly would omit signal — true slow
adjustment of consumption — from our factor.
13There is also a reason to keep the maximum S small and not include larger values of S in our

reported results. A larger maximum S studied implies a shorter time series of available returns on
which to estimate all βS , so that imprecision in all β̂S increases.
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second stage. We calculate for different values of S the ratio

1
25

P25
i=1

dV ar ³β̂iS´
1
25

P25
i=1

³
β̂
i

S − 1
25

P25
i=1 β̂

i

S

´2
where the numerator is the variance of β̂

i

S in each time-series regression averaged across

portfolios and the denominator is the cross-sectional variance in β̂
i

S. The numerator

is a measure of the average noise in β̂
i

S and the denominator is a measures of the
total observed signal plus noise across βiS. The calculation of the numerator is based
upon standard errors calculated accounting for time-series correlations using Newey-
West standard errors in each time-series regression. Because any correlation among β̂

i

S

affects both numerator and denominator, the measure is not perfect and the numerator
can be greater than the denominator, and indeed is. Figure 1 shows that statistical
uncertainty in the estimated βiS remains a roughly constant share of the total variance
from S = 0 to 11 and rises significantly after this. On these grounds, we choose
S = 11, since greater values of S lead to much larger ratios of statistical uncertainty
to observed variation in consumption beta’s. Consistent both with this evidence and
the hypotheses that consumption risk is important and that consumption adjusts
slowly, Table 1 shows that S = 11 is also the horizon for which the consumption betas
explain the largest fraction of average returns and our estimates of risk aversion are
most precise. On the other hand, still larger values of S lead to greater precision
in estimates of λ and more realistic estimates of the risk-free interest rate and the
coefficient of relative risk aversion.
Second, consider the choice of S as a model selection problem in which S indexes

a set of models none of which are true and in which the sample of data is given.14

As discussed by Leamer (1983), the best model minimizes the difference between the
true and approximating density for the data in the information sense. Thus, choosing
among the models amounts to choosing the model which produces the best fit, since
there is no difference in the number of parameters across models. Thus, again we are
lead to choose S = 11.
In our tables, we continue to report all horizons, and to report in bold the model

selected by our first criterion, the variance ratio. We focus on the first criterion since
it does not necessarily select the model with the best fit. In all specifications and
samples that we have analyzed, the exact choice of S does not drive our inference on
structural parameters, in that estimates are similar for models (S) near the selected
model.
Returning to our main results, Figure 2 plots the consumption betas, average

realized returns, and the second-stage regression lines for S = 0 and for S = 11. One
14If the sample were to grow, we could reasonably think we were estimating the true model by

choosing S large enough (or letting S grow with the sample) and our estimates would be consistent,
although potentially uininformative in our sample. Since instead we are fixing the sample and treating
mismeasurement of β as a fixed problem for inference, we are naturally lead to Bayesin methods.
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can see that for S = 11, the β̂
i
explain more of the variance in returns. If the model

is correct, as the estimated expected returns and β̂
i
converge to their true values, the

fit of the second stage regression should become perfect. One can also observe that
the lower estimate of the risk-free rate is due to the increased slope of the regression
line, although this is not a precise statement since the scale of the β’s is different due
to the different variance of the stochastic discount factor.
Figure 3 recasts Figure 2 in terms of the more economically interesting concept

of pricing errors. The horizontal axis displays average returns and the vertical axis
predicted returns based on consumption betas measured for S = 0 and for S = 11.
Each portfolio is denoted by the relative size (1 to 5) and relative book to market
ratio (1 to 5). The error in pricing a return using consumption risk is the vertical
difference between the fitted return and average return and given by the distance of
a point from the 45-degree line. For all but five of the twenty five portfolios (ME 1,
B/M 3; ME 3, B/M 2; ME 4, B/M 1; ME 5, B/M 3; and ME 5, B/M 5), the
pricing error is smaller for S = 11 than for S = 0. Table 2 presents the information
slightly differently, showing the square root of the average squared pricing error for
each way of splitting into five quintiles. The pricing errors are aggregated to five size
and then five book to market quintiles. Comparing horizon S = 11 to horizon S = 0,
the pricing errors are lower in four out of five of size quintiles and four out of five book
equity to market equity quintiles. In each of the two exceptions (the middle book
to market portfolio and the largest size portfolio), the pricing error associated with
contemporaneous consumption risk, S = 0, is the smallest of the portfolios. Further,
the increases in the pricing error across horizons for these two portfolios are smaller
than the decreases in pricing error for every one of the remaining portfolios.
Before turning to comparisons with factor models of returns, we conclude this

section of the paper by reporting the results of estimating our model in several different
ways and the results of testing for misspecification using portfolio characteristics.

6.2. Alternative specifications

We consider three alternative ways of estimating of our model. First, previous work
has focussed on a shorter time period than we analyze in our baseline results (e.g.
Fama and French (1992 and 1993)). Table 3 presents results for a sample set to
match that of Lettau and Ludvigson (2001b). This sample uses returns from the
third quarter of 1963 to the third quarter of 1998, which implies that we can only
study a maximum horizon of three and a half years (S= 13). In this sub-period, our
slow consumption adjustment model does even better at explaining average returns.
The data still suggest that S = 11 is the best horizon to study, and at this horizon
consumption risk explains 73 percent of the variation in average returns. The implied
risk-free rate is below the average return on a three-month treasury bill. On the other
hand, estimated risk aversion rises slightly to 14.
Second, Ait-Sahalia, Parker, and Yogo (2001) argue that the consumption risk of

equity is understated by NIPA nondurable goods because it contains many necessities
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and few luxury goods. Parker (2001) shows that this concern can be partly addressed
when using long-term measures of consumption risk by conducting the analysis with
total consumption instead of nondurable consumption. The usual concern with using
total consumption is that it contains expenditures on durable goods instead of the
theoretically desired stock of durable goods. But expenditures and stocks are coin-
tegrated. The long-term movement in expenditures following an innovation to equity
returns also measures the long-term movement in consumption flows.
Table 4 presents our main results for total consumption per capita. Compared to

the results for nondurable goods, the initial fit for S = 1 is better and the increase
in fit for larger S is not monotone, but declines over the first year. As with the
main results, the noise ratio suggests that S = 11 provides the best estimates as the
noise to cross-sectional variance ratio rises significantly at S = 12 and each larger S.
At S = 11, the fit is higher than for nondurable consumption, 56 percent, and the
estimated coefficient of relative risk aversion is lower, below 10. On the other hand,
the implied risk-free rate, while still statistically indistinguishable from the average
treasury bill rate, is economically farther from it, only slightly below 6 percent.
Third, we consider a slightly different set of returns, the equal-weighted Fama and

French (25) portfolios. Table 5 shows that ultimate consumption risk does an even
better job of explaining the cross-sectional pattern of returns of these (albeit similar)
portfolios. The estimated risk-free return is 3.0 percent as opposed to 5.3 percent for
value-weighted portfolios. On the other hand, the estimated level of risk aversion is
slightly higher using this set of portfolios.

6.3. Testing the model for misspecification

While the evidence presented so far is consistent with an important role for con-
sumption risk, if our model were misspecified, the cross-sectional estimation could
be asymptotically biased. Kan and Zhang (1999), with a simulation exercise, show
that “useless” factors can appear statistically significant when the Fama and MacBeth
methodology is applied to a misspecified model. When the factors are misspecified,
the t statistic for a beta may converge in probability to infinity even when the true co-
efficient is zero. Therefore, it is possible that the statistical significance of the ultimate
risk to consumption might be spurious.
To test the hypothesis of misspecification, we follow Jagannathan andWang (1996)

and expand our model to include other asset characteristics such as book-to-market
ratio and relative market size. Adding these to equation (3.2), we obtain

E [Ri,t+1] = aS + a0zzi + βi,SλS (6.1)

where zi is the time average of the vector of observable asset characteristics. Using
formulae analogous to those in Section 5, we construct t-statistics for the coefficient on
the asset characteristics using both the Fama and MacBeth standard errors and the
standard errors with the Shanken correction. If the model in equation (3.2) is correctly
specified, then az should be a vector of zeros. If instead the model is misspecified, the
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t-statistics for firm characteristics converge to infinity in probability (Jagannathan and
Wang (1998)). Thus we include asset characteristic in our cross-sectional regressions
to detect model misspecification, since large t-statistics for firm characteristics would
reject the beta pricing model under analysis.
Table 6 shows the fit of the regressions of returns onto the ultimate consumption

risk betas and asset characteristics for two different asset characteristics — size and
book to market value — and two different measures of each of these characteristics —
the mean of the log of the characteristic over time for each portfolio or the log of the
mean of the characteristics over time for each portfolio. First note that in all four
cases, although only trivially for the log of the mean book to market value, the fit of
the model still is larger for the horizon S = 11 than for the horizon S = 0. Second, in
all four cases the statistical significance of the coefficient on consumption beta is larger
for S = 11 than for S = 0. Thus, slow adjustment of consumption adds explanatory
power to consumption risk even in the presence of firm characteristics. For all panels
except the upper left panel, the statistical significance of firm characteristics is lower
for S = 11 than for S = 0. Finally, and most relevant for the test at hand, only for
one panel is the firm characteristic significant at a horizon of 11, while only for one
panel is consumption risk not significant at a horizon of 11.

Having shown that the ultimate risk to consumption is a significant explanator
of average returns across portfolios of stocks, we now compare the performance of
consumption risk as a “factor” to two important extant factor models that have been
used to study the average returns in the Fama and French portfolios. A final section of
results follows in which we derive and analyze the ultimate risk to consumption from
the textbook C-CAPM in an economy with a time-varying risk-free rate of interest.

7. Relation to Fama-French and Lettau-Ludvigson factor mod-
els

Fama and French (1992) and Fama and French (1993) show that three factors explain
a large fraction of the cross-sectional variation in returns in the Fama and French
portfolio: the overall market return (denoted Rm), the difference between the size of
firms in the smallest and largest size quintiles (“small minus big” denoted SMB), and
the difference between the book to market equity ratios in the largest and smallest book
to market equity quintiles (“high minus low” denoted HML). Lettau and Ludvigson
(2001a) argues that the budget constraint of the representative household implies
that consumption, income and wealth should be cointegrated and then shows that
the deviation of these variables from their long-run relationship (the error-correction
term in the three variable vector autoregression) is a good predictor of market returns.
Lettau and Ludvigson (2001b) shows that this variable, denoted by cayt, consumption
growth (∆ lnCt+1), and their interaction provide a three factor model that does as
well in explaining the average cross-section of returns as the Fama and French three
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factor model. In this section, we compare the fit of our one factor model to these
alternative factor models.
Both three factor models assume that there exists a stochastic discount factor that

prices returns, Mt+1, which is a linear function of the factors, which we denote ft+1.
In the Lettau and Ludvigson model for example, we have

Mt+1 = b0 + b1cayt + b2∆ lnCt+1 + b3cayt∆ lnCt+1.

This model has the beta representation

E
£
Ri
t+1

¤
= α+ β0iλ (7.1)

where
α = Rf , βi = V ar [ft+1]

−1Cov [ft+1, Ri,t+1] , λ = −RfV ar [ft+1]b

and ft+1 = (cayt,∆ lnCt+1, cayt∆ lnCt+1)
0, the vector of factors, and b= (b1, b2, b3)

0

the vector of coefficients on the factors in the stochastic discount factor. In the Fama
and French three factor model, ft+1 =

¡
Rm
t+1, SMBt+1, HMLt+1

¢0
. We estimate these

models using the Fama-MacBeth methodology, first by estimating the vector βi from
a series of multivariate time-series regressions of the factors on the returns and then
by estimating equation (7.1) on the cross-section of β̂i’s. We report both standard
errors from the Fama-MacBeth procedure and those with the Shanken adjustment.
We initially focus on the subsample analyzed by Lettau and Ludvigson (2001b)

and the focus of Fama and French (1993). The first row of results in the first panel
of Table 7 reports the fit, implied risk-free rate, and coefficients on the Fama and
French factors and their standard errors, the Fama-MacBeth standard error above the
Shanken-adjusted standard error. The penultimate column reports the t-tests of the
hypothesis that the risk-free rate implied by the model equals the average Treasury
bill return in the sample. The second row of results reports the same set of statistics
for the Lettau and Ludvigson three-factor model (using our timing convention for
consumption). One interpretation of this model is that the coefficient of relative risk
aversion is time-varying, so that the stochastic discount factor is 1 − γt∆ lnCt+1.15

Since risk aversion appears only multiplied by consumption growth, we also report in
the third row results which omit cayt on its own. We view this as consistent with
this more structural view of the role of cayt, that it captures time variation in risk
aversion.16 The final column of results shows the point estimate and a 95-percent
confidence interval for the average level of risk aversion implied by the estimated

15We assume that marginal utility at t + 1 is given by C
−γt
t+1 and make the arbitrage relation

stationary by dividing by C−γtt .
16There are two possible interpretations of the role of cay. Time-varying risk aversion is one; the

other, less structural, is that cay is a better version of a dividend-price ratio, where dividend is
measured by c and y and price by a. Lettau and Ludvigson (2001) state “some stocks tend to be
more highly correlated with consumption growth in bad times, when risk or risk aversion is high,
than they are in good times, when risk or risk aversion is low [emphasis added].”
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coefficients in this model.

γ = −
Ã
b2 + b3

1

T

TX
t=1

cayt

!

The fourth row presents the results for our single-factor model, the ultimate risk
to consumption, and the results correspond to those in Table 3 with a horizon of 11
quarters. The final row reports the results for the textbook C-CAPM and corresponds
to Table 3 row 2.17

The first main point of Table 7 is that the fit of the Fama and French, Lettau
and Ludvigson, and ultimate risk to consumption models are all good: 78 percent,
66 percent and 73 percent of the variation in returns are explained by each model’s
betas respectively. The horizon S = 11 consumption beta is a single factor model,
and yet it explains returns as well as these three-factor models. Second, while the
factors are jointly significant, the individual factors in both three-factor models are
all statistically insignificant except HML. The ultimate risk to consumption is highly
statistically significant. Third, the betas on the Fama and French factors and the beta
on the ultimate risk to consumption both imply reasonable levels of the risk-free rate of
interest, while the Lettau and Ludvigson model performs less well on this dimension.
Fourth, a fair amount of explanatory power in the Lettau and Ludvigson model is lost
when the factor cay alone is removed. Consumption growth interacted with cay to
capture time-variation in risk aversion still explains more of the variation in returns
than the C-CAPM, but also now noticeably less than the Fama and French model
and ultimate consumption risk. Related to this point, the magnitude of the estimates
of risk aversion from the Lettau and Ludvigson model are much higher than for the
ultimate risk to consumption and suggest that cay does not measure time variation in
risk aversion. Finally, and most well-known, the textbook C-CAPM performs poorly.
Figure 4 graphs the pricing errors for each portfolio as the difference on the vertical

axis between a portfolio and the 45 degree line, for the four main models. All models
besides the textbook C-CAPM do quite well at fitting returns, although in this sample
and with this timing assumption, the performance of the textbook C-CAPM is not
terrible.
The second panel of Table 7 reports the same set of information as the first panel

but expands the sample to the longest possible sample and thus the closest to the
baseline sample used initially in this paper.18 The same conclusions stand as for the
shorter sample. Figure 5 plots fitted and average returns in this sample, but plots
the Lettau and Ludvigson two factor model that omits the variable cay not interacted
with consumption growth.

17The textbook C-CAPM performs significantly worse than reported here under the start-of-period
timing convention.
18The starting date is determined by the first available observation on cayt.
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8. Consumption risk when the risk-free rate varies over time

So far we have assumed that the risk-free rate in the economy is constant. In this
section we demonstrate that our main results do not depend on this approximation.
We consider the textbook model only. When the risk-free rate varies, the extent to
which the model based only on the ultimate risk as in Section 3 differs from the
truth is related to the extent to which an innovation to returns leads to a change in
future risk-free rates. Intuitively, according to the textbook model, if an innovation
to returns were to lead to a significant revision in planned intertemporal substitution
in consumption over the next S periods, then looking S periods out could be quite
misleading. If the only reason for consumption to move from planned consumption
between periods t+1 and t+1+S were future innovations, then this measure would
exactly measure consumption risk. Thus, we demonstrate that our findings remain
when we include as an additional factor consumption growth interacted with changes
in the risk-free rate.

8.1. The ultimate risk to consumption

In an economy with a time-varying real interest rate, the textbook household opti-
mization problem implies that consumption obeys an intertemporal Euler equation
between t+ 1 and t+ 1 + S for the risk-free rate

Et+1

"
δSRf

t+1,t+1+Su
0 (Ct+1+S)

u0 (Ct+1)

#
= 1.

This Euler equation implies that marginal utility in t+1+S is equal to (discounted)
marginal utility in t+1 plus an innovation to marginal utility due to information that
arises between t+ 1 and t+ 1 + S, denoted εt+1,t+1+S,

u0 (Ct+1) = δSRf
t+1,t+1+Su

0 (Ct+1+S)− εt+1,t+1+S.

Substituting this relationship into the arbitrage equation (2.1), gives
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Following the same derivation as before leads to a beta representation with
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u0(Ct+1+S)
u0(Ct)

i .
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Log-linearizing consumption growth, u0(Ct+1+S)
u0(Ct) u 1 − γ ln

³
Ct+1+S

Ct

´
, we obtain a two

factor beta representation

E
£
Ri
t,t+1

¤
= αS + βCi,Sλ

C
S + βfi,Sλ

f
S (8.1)

where:

αS = E
h
Rf
t,t+1

i
+

Cov
h
Rf
t+1,t+1+S

³
1− γ ln

³
Ct+1+S

Ct

´´
, Rf

t,t+1

i
E
h
Rf
t+1,t+1+S

³
1− γ ln

³
Ct+1+S

Ct

´´i ;

βfi,S =
Cov

h
Rf
t+1,t+1+S, R

i
t,t+1

i
V ar

h
Rf
t+1,t+1+S

i ; λfS = −
V ar

h
Rf
t+1,t+1+S

i
E
h
Rf
t+1,t+1+S

³
1− γ ln

³
Ct+1+S

Ct

´´i ;
βCi,S =

Cov
h
Rf
t+1,t+1+S ln

³
Ct+1+S

Ct

´
, Ri,t+1

i
V ar

h
Rf
t+1,t+1+S ln

³
Ct+1+S

Ct

´i ; λCS =
γV ar

h
Rf
t+1,t+1+S ln

³
Ct+1+S

Ct

´i
E
h
Rf
t+1,t+1+S

³
1− γ ln

³
Ct+1+S

Ct

´´i .
The two factors are consumption growth interacted with the future risk-free rate
(Rf

t+1,t+1+S) and the future risk free rate alone. Thus we have a “scaled” linear factor
model in which Rf

t+1,t+1+S is the scaling factor. Note that if we assume that R
f
t+1,t+1+S

and Ri
t,t+1 are orthogonal, then we have that β

f
i,Sλ

f
S = 0 and our model collapses to a

one-factor model with βCi,S only.

We also recover a measure of the implied risk aversion from both bλCS and bλfS .
These measures are, respectively,

γ̂CS =
λ̂
C

SE
h bRf

t+1,t+1+S

i
V ar

h bRf
t+1,t+1+S ln

³
Ct+1+S

Ct

´i
+ λ̂

C

SE
h bRf

t+1,t+1+S ln
³
Ct+1+S

Ct

´i , (8.2)

γ̂fS =

bλfSE h bRf
t+1,t+1+S

i
+ V ar

h bRf
t+1,t+1+S

i
E
h bRf

t+1,t+1+S ln
³
Ct+1+S

Ct

´i . (8.3)

Using the estimated relative risk aversion we can recover a measure of the implied
mean risk free rate

bE hRf
t,t+1

i
= bαS −

Cov
h bRf

t+1,t+1+S

³
1− bγS ln³Ct+1+S

Ct

´´
, Rf

t,t+1

i
E
h bRf

t+1,t+1+S

³
1− bγS ln³Ct+1+S

Ct

´´i . (8.4)
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8.2. Estimation

Since Rf
t+1,t+1+S is not observable for S > 1, the appropriate risk free rate need to

be constructed. We approximate the risk-free rate between t+ 1and t+ 1 + S by the
expected value of the product of the one-period risk-free rates

Rf
t+1,t+1+S ≈ Et+1

"
S−1Y
j=0

Rf
t+1+j,t+2+j

#
.

To model conditional expectations, we estimate the forecasting model

S−1Y
j=0

Rf
t+1+j,t+2+j = Φ0 + Φ1Zt + Φ2Zt−1 + ...+ Φp+1Zt−p + εt (8.5)

where Φ are parameter vectors and Zt =
h
Rf
t,t+1, πt, ∆ lnCt

i0
. Our series for long-

horizon risk-free rates is

Rf
t+1,t+1+S = Êt+1

"
S−1Y
j=0

Rf
t+1+j,t+2+j

#
= Φ̂0 + Φ̂1Zt + Φ̂2Zt−1 + ...+ Φ̂p+1Zt−p

The fit in the forecasting regression exceeds 90 percent, suggesting that the assumed
approximation is reasonable.
Estimation of the two factor model uses the Fama-MacBeth procedure. βCi,S and

βfi,S are estimated by the time-series regressions

Ri,t+1 = αf
S + βfi,S

bRf
t+1,t+1+S +

f
S,t,t+1, (8.6)

Ri,t+1 = αC
S + βCi,S

· bRf
t+1,t+1+S ln

µ
Ct+1+S

Ct

¶¸
+ C

S,t,t+1, (8.7)

where we introduced the convention bRf
t+1,t+2 = Rf

t+1,t+2 and bRf
t+1,t+1 = 1. In the

second stage, a series of cross-sectional regressions of equation (8.1) estimate λCS , λ
f
S,

and their statistical uncertainty.

8.3. Results

We estimate the model in equation (8.1) using the Fama-MacBeth procedure. The
second column of Table 8 reports the cross-sectional R2 of the two factor model given
by equation (8.1) while the remaining columns report statistics and estimated parame-

ters for the one factor model in which we include only the factor Rf
t+1,t+1+S ln

³
Ct+1+S

Ct

´
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and not Rf
t+1,t+1+S (the one factor model is the same as in equation (8.1) with the re-

striction βfi,Sλ
f
S = 0). A comparison between the second and the third columns shows

that adding bRf
t+1,t+1+S as additional factor increases the average fit of the model by

only 3 percent. Therefore, it is reasonable to concentrate on bRf
t+1,t+1+S ln

³
Ct+1+S

Ct

´
as the only factor. The first two rows of Table 8 reports the same results as the first
two rows of Table 1 since, for S = 0, we have that bRf

t+1,t+1 = 1 and βfi,Sλ
f
S = 0. As S

increases, the economic importance of the factor increases and for S = 11 it explains
as much as 54 percent of the cross-sectional variance in average returns. As in Table 1,
this rise is not monotone and it declines for S ≥ 12. This corresponds to the starting
point of a sharp rise in the ratio of statistical uncertainty to observed variation in β̂

C

i,S.
The cross-sectional R2 of the one factor model is on average 1% higher than the one
reported in Table 1, which shows that adding bRf

t+1,t+1+S as a scaling variable does not
decrease the high explanatory power of the ultimate risk to consumption, but actually
increases it slightly.

The magnitude of the slope coefficient, bλC, rises monotonically with S and is sta-
tistically significant for horizons 8 and higher. Thus, for large enough S, consumption
risk measured by bRf

t+1,t+1+S ln
³
Ct+1+S

Ct

´
explains the cross-section of returns. More-

over, bλC is never statistically different from the point estimates of bλ reported in Table
1 and exhibits an almost identical pattern. We find similar conclusions for the implied
risk-free rate and risk aversion. α̂ decreases almost monotonically in S and becomes
statistically indistinguishable from the time series average of the three-month Treasury
bill for S > 6. The implied risk aversion declines in S and levels off at a point estimate
around 11. Furthermore, for larger S, the statistical uncertainty is much lower and a
95 percent confidence interval contains roughly all positive numbers below 14.
The analysis presented in this section is coherent, both qualitatively and quantita-

tively, with the results obtained under constant risk free rate assumption, and shows
that the assumption of a constant risk-free rate or return is not important for our
previous conclusions.

9. Conclusion

This paper analyzes the Fama and French portfolios and measures their riskiness by
their ultimate risk to aggregate consumption. When investors are allocating their
portfolios efficiently, differences in expected returns on assets should be explained by
differences in the risk of each marginal investment to the utility of investors. We
show that while the covariance of each portfolio and contemporaneous consumption
growth has almost no predictive power for explaining the pattern of average returns
across portfolios, the ultimate risk to consumption is highly statistically significant
in explaining average returns and explains a large fraction of the variation in average
returns. The average risk-free real rate of interest and the coefficient of relative risk
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aversion of the representative household calculated from the fitted model are more
reasonable and more precise than those obtained in the previous literature; confidence
intervals include completely reasonable estimates of these structural parameters. The
fit of our one factor model rivals that of the three factor models of Fama and French
and Lettau and Ludvigson. These conclusions are robust to several variations in
assumptions.
In sum, the insights of the C-CAPM are alive and well: consumption risk is an

important determinant of relative returns.
These results raise several questions. First, what is the true stochastic discount

factor that prices returns, over time and across assets? Second, and more realisti-
cally, while the ultimate risk to aggregate consumption helps to explain the premium
of equity over and above bonds, estimated risk aversion remains implausibly large.
However, Parker (2001) narrows the focus to households that actually hold stock, and
shows that the ultimate consumption risk of stockholders comes close to rationalizing
the observed premium on equity. Is the consumption of stockholders alone an even
better explanator of the cross-section of returns and does it imply more reasonable risk
aversion in this cross-sectional context? A final open question is whether the ultimate
risk to consumption explains differences in bond returns or differences in aggregate
returns over time.
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Appendixes

A. Multiplicative External Habits

In this section we show that, in the presence of external habit formation that acts
as a shifter of the utility function, the ultimate risk to consumption measure is the
appropriate stochastic discount factor to price the cross-section of asset returns.
Suppose that the instantaneous marginal utility function, u0 (Ct) , is shifted by an

external habit component so that marginal utility at time t takes the form V (Ct,Ψt) =
u0 (Ct)Ψt(C0, ..., Ct) where Ψt is a function of the past history of aggregate consump-
tion. Several properties of the habit component Ψt are desirable from an economic
point of view: i) Ψt is increasing in Cs so that more “habit” consumption increases
the marginal utility of agent consumption; ii) the effect of Ct−s on Ψt decreases with
s so that more recent “habit” consumption matters more; iii) the marginal effect of
“habit” consumption is decreasing so that Ct has diminishing marginal effects on Ψt.
We formalize our general class of habit models as follows.

Assumption (The class of habit models)
a) Ψt(C0, ..., Ct−τ) = f (lnCt−τ ,Ψt−τ−1) for τ ≥ 0
b) fC (lnC,Ψ) ≥ 0, fCC (lnC,Ψ) < 0
c) |fC| > |fCfΨ| ⇒ |fΨ| < 1

where fC and fΨ are the derivatives with respect to the first and the second argu-
ments of the function.19 For example, this class of models includes the model of Abel
(1990)

u0 (Ct)Ψt(C0, ..., Ct) = C−γt

µ
1

Xt

¶1−γ
where Xt = Cκ

t−1 and 1 > κ (γ − 1) > 0.
The first order conditions of the agent utility maximization problem imply an

arbitrage relation analogous to equations (2.1) and (3.5)

Et

£
u0 (Ct+1+S)Ψt+1+SR

i
t,t+1

¤−Et [u
0 (Ct+1+S)Ψt+1+S]R

f = 0. (A.1)

Dividing both sides by u0 (Ct), taking unconditional expectation and rewriting the
expectation of the product in term of covariances and reorganizing yield

E
£
Ri
t,t+1

¤
= αS −

Cov
£
mt+1+SΨt+1+S, R

i
t,t+1

¤
E [mt+1+SΨt+1+S]

, (A.2)

19This recursive formulation does not represent a substantial loss of generality and greatly reduces
the dimensionality of the problem at hand making it easily tractable. The use of the natural logarith
is without loss of generality.
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where αS = Rf and mt+1+S =
u0(Ct+1+S)

u0(Ct) . Following the same derivation without habit
component, yields

E
£
Ri
t,t+1

¤
= αS −

Cov
£
mt+1+S, R

i
t,t+1

¤
E [mt+1+S]

. (A.3)

Notice that log linearizing the ratio of marginal utilities mt+1+S in equation (A.3) we
obtain the beta representation of equation (3.3). This means that, if we are able to
show that the right hand side of equation (A.2) converges to the right hand side of
equation (A.3), the ultimate risk to consumption is the appropriate stochastic discount
factor to price the cross-section of asset returns in the presence of external habits that
act as a shifter of the instantaneous utility function.

Proposition 1. Under the following regularity conditions on consumption growth
and the functions
i) E [Ψt] < d0, E [Ψ2

t ] < d1 ∀t
ii) lim

t−→+∞
Ψt lnΨt =⇒ lim

t−→+∞
E [Ψt] = E

·
lim

t−→+∞
Ψt

¸
iii) |∆ lnCt+1| < d2 ∀t almost surely
iv) |fC (Ct,Ψt−1)| < d3 ∀t almost surely
v) fC (C,Ψ) is o (t−2)
vi) V art (∆ lnCt+1) is bounded from above for each t
for d0, ..., d3 arbitrary constants, ∃ S such that ∀S > S°°°°°Cov

£
mt+1+SΨt+1+S, R

i
t,t+1

¤
E [mt+1+SΨt+1+S]

− Cov
£
mt+1+S, R

i
t,t+1

¤
E [mt+1+S]

°°°°° 6 0 (A.4)

almost surely and uniformly.

Proof: We prove the proposition for τ = 0. The case for τ > 0 is a simplification.
Notice that proving equation (A.4) is equivalent to prove that

E
£
mt+1+SΨt+1+S, R

i
t,t+1

¤
E [mt+1+SΨt+1+S]

a.s.−→ E
£
mt+1+S, R

i
t,t+1

¤
E [mt+1+S]

. (A.5)

and the convergence is uniform. We first show that Ψt+1+S converges almost surely
and uniformly as S → +∞. By Taylor expansion of |Ψt+1+S −Ψt+S| around Ψt+S−1
and Ct+S we obtain that

|Ψt+1+S −Ψt+S| = |f (lnCt+1+S,Ψt+S)−Ψt+S|
∼= |fC (lnCt+S,Ψt+S−1) (∆ lnCt+S+1) + fΨ (lnCt+S,Ψt+S−1) (Ψt+S −Ψt+S−1)|
≤ |fC (lnCt+S,Ψt+S−1)| |∆ lnCt+S+1|+ |fΨ (lnCt+S,Ψt+S−1)| |(Ψt+S −Ψt+S−1)|
≤

t+SP
τ=0

|fC (lnCτ ,Ψτ−1)| |fΨ (lnCτ+1,Ψτ)|t+S−τ |∆ lnCt+S+1| (A.6)

+ |fΨ (lnC1,Ψ0)|t+S |(Ψ1 −Ψ0)|
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Notice that the last term in equation (A.6), since |fΨ| < 1, goes uniformly almost
surely to zero as S → +∞. For any δ1, δ2, k, pick T1 and T2 such that

|fΨ|t+S < δ1
k (t+ S)

∀S ≥ T1

|fC (Ct+S,Ψτ+S−1)| < δ2
k (t+ S)2

∀S ≥ T2

Then define eT = max [T1, T2] and pick T = 2eT . It follows that for each
t+SP
τ=0

|fC (lnCτ ,Ψτ−1)| |fΨ (lnCτ+1,Ψτ)|t+S−τ |∆ lnCt+S+1| < (A.7)

almost surely for each S > T since

t+SP
τ=0

|fC (lnCτ ,Ψτ−1)| |fΨ (lnCτ+1,Ψτ)|t+S−τ |∆ lnCt+S+1|

≤ d2
t+S+ eTP
τ=t+eT |fC (lnCτ ,Ψτ−1)| |fΨ (lnCτ+1,Ψτ)|t+S−τ |∆ lnCt+S+1|

+
t+eTP
τ=0

|fC (lnCτ ,Ψτ−1)| |fΨ (lnCτ+1,Ψτ)|t+S−τ |∆ lnCt+S+1|

< d2
³
δ1
k
+ δ2

k

´ 1

(t+ S)

and this completes the proof of almost sure convergence of Ψt+1+S Then, taking a log
linear approximation of the habit shifter around Ct+S and Ψτ+S−1

Ψt+S+1 ≈ f (lnCt+S,Ψτ+S−1) + fC (lnCt+S,Ψτ+S−1)∆ lnCt+S+1

+fΨ (lnCt+S,Ψτ+S−1) (Ψτ+S −Ψτ+S−1)

it is easy to see that, since the conditional on time t + S variance of ∆ lnCt+S+1 is
bounded from above and |fC (Ct+S,Ψτ+S−1)| decreases over time due to the increase
in consumption,

lim
S−→∞

V art+S (Ψt+S+1) = 0

almost surely. Therefore, considering a normal approximation of the distribution of
Ψt+S+1, using the approximation mt+1+S ≈ 1 − γ ln Ct+S+1

Ct
and applying the law of

iterated expectation in equation (A.5) completes the proof.
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Horizon 
(quarters) R 2

Fama-MacBeth 
standard error

Shanken 
standard error

Implied risk 
free rate 

(annualized)

t-test for the 
implied risk 
free rate**

Implied 
relative risk 

aversion

0* 0.12 0.0030 (0.0023) (0.0025) 15.0% 6.08 40.8 [ 87.2 -35.7 ]
0 0.19 0.0043 (0.0026) (0.0030) 8.6% 2.93 55.5 [ 103.8 -29.6 ]
1 0.08 0.0037 (0.0039) (0.0041) 8.7% 2.29 23.1 [ 53.9 -42.0 ]
2 0.17 0.0081 (0.0055) (0.0062) 6.3% 1.41 25.9 [ 45.9 -23.8 ]
3 0.20 0.0093 (0.0058) (0.0065) 6.7% 1.74 20.0 [ 34.0 -12.9 ]
4 0.11 0.0073 (0.0064) (0.0067) 8.0% 2.05 12.9 [ 25.6 -19.2 ]
5 0.12 0.0085 (0.0072) (0.0077) 8.0% 2.11 11.9 [ 22.6 -18.3 ]
6 0.11 0.0091 (0.0078) (0.0083) 8.1% 2.12 10.7 [ 20.0 -17.9 ]
7 0.16 0.0116 (0.0082) (0.0089) 7.2% 1.86 11.0 [ 18.6 -12.0 ]
8 0.28 0.0165 (0.0084) (0.0097) 6.4% 1.74 12.4 [ 18.2 -4.1 ]
9 0.41 0.0213 (0.0084) (0.0103) 6.2% 1.68 13.0 [ 17.5 0.8 ]
10 0.44 0.0234 (0.0087) (0.0110) 5.8% 1.51 12.6 [ 16.4 1.5 ]
11 0.52 0.0276 (0.0090) (0.0118) 5.3% 1.27 12.5 [ 15.7 3.5 ]
12 0.42 0.0299 (0.0108) (0.0146) 4.8% 1.06 12.0 [ 15.1 0.7 ]
13 0.45 0.0392 (0.0128) (0.0195) 3.6% 0.62 12.4 [ 15.0 0.3 ]
14 0.38 0.0409 (0.0140) (0.0215) 4.4% 0.89 11.7 [ 14.3 -1.9 ]
15 0.37 0.0479 (0.0157) (0.0261) 4.1% 0.74 11.6 [ 13.9 -4.4 ]
* Uses the start of period timing convention: consumption growth between t+1 and t+2 is aligned with returns during t+1.
** Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the return on 3 month Treasury bills.
*** The confidence interval for risk aversion uses the Shanken standard error.

95 % confidence 
interval for implied 

risk aversion***

Table 1: Expected Returns and Consumption Risk at Different Horizons

λ̂



Table 2. Pricing Errors of Average Size and Book to Market Portfolios 

(Quarterly rates in percentage terms) (Quarterly rates in percentage terms)

0 11 Change 0 11 Change

S1 0.87 0.72 -0.15 B1 0.87 0.70 -0.17
S2 0.60 0.40 -0.21 B2 0.40 0.25 -0.14
S3 0.42 0.23 -0.18 B3 0.27 0.35 0.08
S4 0.35 0.29 -0.05 B4 0.35 0.23 -0.12
S5 0.18 0.20 0.02 B5 0.58 0.36 -0.22
Note: Average pricing errors are calculated as the square root of the average squared errors.  Units are quarterly rates 
reported in percentage terms, so that an improvement of 0.15 is roughly 0.6 percent per year

Horizon (quarters) Horizon (quarters)

By size quintiles By book-to-market quintiles



Horizon 
(quarters) R 2

Fama-MacBeth 
standard error

Shanken 
standard error

Implied risk 
free rate 

(annualized)

t-test for the 
implied risk 
free rate**

Implied 
relative risk 

aversion

0* 0.03 0.0008 (0.0021) (0.0021) 12.3% 3.87 12.3 [ 61.4 -65.6 ]
0 0.34 0.0048 (0.0025) (0.0029) 6.3% 1.37 60.7 [ 106.5 -18.2 ]
1 0.14 0.0054 (0.0048) (0.0052) 5.2% 0.78 30.9 [ 63.7 -51.3 ]
2 0.29 0.0125 (0.0074) (0.0095) 2.2% 0.00 34.9 [ 55.9 -41.1 ]
3 0.26 0.0133 (0.0085) (0.0104) 4.1% 0.55 25.4 [ 41.3 -33.7 ]
4 0.14 0.0095 (0.0087) (0.0095) 6.1% 1.13 15.7 [ 30.0 -37.2 ]
5 0.15 0.0110 (0.0097) (0.0107) 6.0% 1.12 14.3 [ 26.1 -34.8 ]
6 0.23 0.0160 (0.0110) (0.0130) 4.6% 0.70 15.6 [ 24.7 -27.7 ]
7 0.26 0.0178 (0.0114) (0.0136) 3.8% 0.45 14.4 [ 22.0 -21.7 ]
8 0.45 0.0272 (0.0121) (0.0166) 2.5% 0.07 16.1 [ 21.6 -10.6 ]
9 0.64 0.0352 (0.0115) (0.0177) 2.1% 0.04 16.4 [ 20.4 -0.3 ]
10 0.65 0.0376 (0.0122) (0.0190) 0.9% 0.35 15.4 [ 18.9 -0.5 ]
11 0.73 0.0426 (0.0119) (0.0196) 0.9% 0.34 14.8 [ 17.7 3.0 ]
12 0.70 0.0477 (0.0137) (0.0239) -1.1% 0.78 14.2 [ 16.8 0.0 ]
13 0.70 0.0563 (0.0148) (0.0284) -1.6% 0.83 13.9 [ 16.1 -0.5 ]
* Uses the start of period timing convention: consumption growth between t+1 and t+2 is aligned with returns during t+1.
** Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the return on 3 month Treasury bills.
*** The confidence interval for risk aversion uses the Shanken standard error.

95 % confidence 
interval for implied 

risk aversion***

Table 3: Expected Returns and Consumption Risk Estimated 1963Q3 to 1998Q3

λ̂



Horizon 
(quarters) R 2

Fama-MacBeth 
standard error

Shanken 
standard error

Implied risk 
free rate 

(annualized)

t-test for the 
implied risk 
free rate**

Implied 
relative risk 

aversion

0* 0.27 0.0053 (0.0026) (0.0031) 14.6% 5.67 49.5 [ 80.7 -12.0 ]
0 0.32 0.0053 (0.0024) (0.0027) 9.1% 3.37 49.8 [ 78.4 -2.2 ]
1 0.23 0.0064 (0.0037) (0.0041) 7.0% 2.26 27.7 [ 45.1 -12.7 ]
2 0.18 0.0083 (0.0054) (0.0060) 6.3% 1.69 19.6 [ 32.3 -16.5 ]
3 0.17 0.0103 (0.0069) (0.0077) 6.6% 1.87 15.9 [ 25.7 -16.6 ]
4 0.11 0.0085 (0.0073) (0.0078) 7.7% 2.17 10.9 [ 19.7 -20.9 ]
5 0.16 0.0133 (0.0090) (0.0101) 6.9% 1.98 11.9 [ 18.5 -16.2 ]
6 0.17 0.0140 (0.0092) (0.0103) 7.1% 2.16 10.6 [ 16.1 -13.0 ]
7 0.20 0.0177 (0.0103) (0.0120) 7.0% 2.23 10.5 [ 15.0 -10.7 ]
8 0.33 0.0236 (0.0104) (0.0129) 6.6% 2.16 10.9 [ 14.1 -2.7 ]
9 0.41 0.0271 (0.0103) (0.0132) 6.3% 2.01 10.4 [ 13.0 0.6 ]
10 0.46 0.0306 (0.0108) (0.0143) 6.3% 1.98 9.9 [ 12.1 1.6 ]
11 0.55 0.0370 (0.0111) (0.0157) 6.2% 1.82 9.7 [ 11.4 3.4 ]
12 0.50 0.0411 (0.0126) (0.0185) 6.1% 1.77 9.3 [ 10.8 2.4 ]
13 0.44 0.0520 (0.0158) (0.0264) 5.4% 1.47 9.2 [ 10.6 -0.5 ]
14 0.38 0.0531 (0.0169) (0.0280) 6.3% 1.82 8.7 [ 10.0 -2.1 ]
15 0.37 0.0588 (0.0182) (0.0317) 7.0% 2.00 8.4 [ 9.5 -3.8 ]
* Uses the start of period timing convention: consumption growth between t+1 and t+2 is aligned with returns during t+1.
** Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the return on 3 month Treasury bills.
*** The confidence interval for risk aversion uses the Shanken standard error.

Table 4: Expected Returns and the Risk to Total Consumption
95 % confidence 

interval for implied 
risk aversion***λ̂



Horizon 
(quarters) R 2

Fama-MacBeth 
standard error

Shanken 
standard error

Implied risk 
free rate 

(annualized)

t-test for the 
implied risk 
free rate**

Implied 
relative risk 

aversion

0* 0.10 0.0031 (0.0023) (0.0025) 15.9% 6.12 42.6 [ 88.5 -32.9 ]
0 0.39 0.0064 (0.0028) (0.0036) 7.0% 2.04 74.7 [ 122.2 -14.2 ]
1 0.23 0.0069 (0.0041) (0.0047) 5.7% 1.18 37.2 [ 64.8 -22.1 ]
2 0.38 0.0131 (0.0058) (0.0076) 2.7% 0.27 35.7 [ 53.4 -10.7 ]
3 0.39 0.0141 (0.0063) (0.0078) 3.9% 0.68 26.3 [ 39.0 -5.0 ]
4 0.30 0.0130 (0.0068) (0.0080) 4.6% 0.83 19.5 [ 30.2 -7.8 ]
5 0.31 0.0153 (0.0078) (0.0093) 4.6% 0.82 17.7 [ 26.6 -7.4 ]
6 0.31 0.0166 (0.0086) (0.0102) 4.5% 0.79 15.9 [ 23.5 -7.5 ]
7 0.36 0.0200 (0.0092) (0.0114) 3.5% 0.52 15.4 [ 21.6 -4.6 ]
8 0.50 0.0242 (0.0092) (0.0121) 3.6% 0.62 15.3 [ 20.2 0.1 ]
9 0.62 0.0288 (0.0091) (0.0127) 4.0% 0.78 15.0 [ 19.0 3.5 ]
10 0.67 0.0326 (0.0097) (0.0141) 3.2% 0.49 14.6 [ 17.9 4.1 ]
11 0.74 0.0362 (0.0097) (0.0147) 3.0% 0.43 14.0 [ 16.8 5.3 ]
12 0.67 0.0414 (0.0120) (0.0192) 1.8% 0.05 13.5 [ 16.2 2.5 ]
13 0.71 0.0545 (0.0144) (0.0271) 0.2% -0.41 13.8 [ 16.0 0.2 ]
14 0.67 0.0589 (0.0159) (0.0310) 0.9% -0.22 13.1 [ 15.2 -3.0 ]
15 0.68 0.0689 (0.0176) (0.0380) 0.5% -0.33 12.8 [ 14.7 -8.7 ]
* Uses the start of period timing convention: consumption growth between t+1 and t+2 is aligned with returns during t+1.
** Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the return on 3 month Treasury bills.
*** The confidence interval for risk aversion uses the Shanken standard error.

95 % confidence 
interval for implied 

risk aversion***

Table 5: Expected Returns and Consumption Risk Using Equal Weighted Returns

λ̂



Table 6: The Significance of Consumption Risk vs. Firm Characteristics

Horizon 
(quarters) R 2

Coefficient 
on Size 
Factor R 2

Coefficient on 
Book to Market 

Factor

0 0.22 0.0068 0.0012 0.56 0.0028 0.0048
(0.0025) (0.0013) (0.0029) (0.0019)
(0.0033) (0.0018) (0.0030) (0.0020)

11 0.58 0.0355 0.0012 0.65 0.0186 0.0033
(0.0106) (0.0014) (0.0115) (0.0022)
(0.0158) (0.0021) (0.0133) (0.0025)

0 0.23 0.0071 0.0012 0.78 0.0013 0.0079
(0.0026) (0.0013) (0.0030) (0.0025)
(0.0034) (0.0017) (0.0030) (0.0026)

11 0.59 0.0357 0.0012 0.78 0.0075 0.0071
(0.0106) (0.0013) (0.0140) (0.0034)
(0.0158) (0.0020) (0.0144) (0.0035)

Factor calculated as mean of the log

Factor calculated as log of the mean

Note: Standard errors in parenthesis,  the first based on the Fama-McBeth standard error while the 
second uses the Shanken correction.

λ̂ λ̂



Table 7: Statistics on Predicting Average Returns for Betas from Different Factor Models

Sample period of asset returns: 1963:3-1998:3

Row R 2 SMB t+ 1 HML t+ 1

1 0.78 3.9% 0.0118 0.4425 1.4666
(6.3) (0.0165) (0.5099) (0.4477) 0.2627
(6.7) (0.0173) (0.5108) (0.4477) 0.2485

2 0.66 13.6% -0.0032 0.0035 0.0022
(3.8) (0.0035) (0.0020) (0.0012) 3.1239
(5.1) (0.0046) (0.0027) (0.0016) 2.3087 [5258.8 -5258.8]

3 0.43 8.27% 0.0019 0.0012
(2.8) (0.0025) (0.0015) 2.1780
(3.6) (0.0032) (0.0020) 1.6890 [5365.5 -5266.3]

4 0.73 0.9% 0.0426
(4.1) (0.0119) 0.3354
(6.9) (0.0196) 0.1998 [3.0 17.7]

5 0.34 6.3% 0.0048
(3.0) (0.0025) 1.3691
(3.5) (0.0029) 1.1742

Sample period of asset returns: 1952:4-1998:3

Row R 2 SMB t+ 1 HML t+ 1

1 0.71 16.0% -0.0116 0.3266 1.2820
(5.4) (0.0130) (0.4070) (0.3751) 2.7258
(5.5) (0.0134) (0.4075) (0.3748) 2.6375

2 0.61 15.7% -0.0065 0.0049 0.0030
(4.3) (0.0037) (0.0019) (0.0011) 3.3491
(6.0) (0.0051) (0.0026) (0.0016) 2.3878 [5894.7 -5764.5]

3 0.47 9.4% 0.0018 0.0012
(2.6) (0.0027) (0.0016) 2.9520
(3.3) (0.0035) (0.0021) 2.2821 [7347.5 -7291.6]

4 0.61 5.1% 0.0306
(3.3) (0.0091) 0.9415
(4.6) (0.0125) 0.6757 [4.8 16.1]

5 0.33 7.5% 0.0044
(2.7) (0.0020) 2.0432
(3.1) (0.0023) 1.7955

13.1

Factors t-test for the 
implied risk 
free rate*

Factors t-test for the 
implied risk 
free rate*

** 95% confidence interval in square brackets (confidence interval for risk aversion uses the Shanken standard error).

* Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the 3 months T-bill. The 
top statistic uses Fama-MacBeth standard errors, the bottom statistic uses the Shanken correction.

Note: Standard errors in parenthesis,  the first based on the Fama-McBeth standard error while the second uses the Shanken 
correction.

Implied relative 
risk aversion**

84.6

49.7

14.8

Implied relative 
risk aversion**

65.1

28.0
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Horizon 
(quarters)

R 2  -- two 
factors 
model

R 2 -- one 
factor 
model

Fama-MacBeth 
standard error

Shanken 
standard error

Implied risk 
free rate 

(annualized)

t-test for the 
implied risk 
free rate**

Implied 
relative risk 

aversion

0* 0.12 0.12 0.0030 (0.0023) (0.0025) 15.0% 6.08 40.8 [ 87.2 -35.7 ]
0 0.19 0.19 0.0043 (0.0026) (0.0030) 8.6% 2.93 55.5 [ 103.8 -29.6 ]
1 0.15 0.08 0.0038 (0.0039) (0.0041) 8.6% 2.27 23.4 [ 53.8 -41.0 ]
2 0.24 0.18 0.0083 (0.0055) (0.0062) 6.1% 1.36 26.1 [ 45.7 -22.3 ]
3 0.27 0.21 0.0096 (0.0058) (0.0065) 6.5% 1.68 20.1 [ 33.7 -11.6 ]
4 0.18 0.12 0.0076 (0.0064) (0.0068) 7.8% 1.99 13.0 [ 25.3 -18.1 ]
5 0.19 0.13 0.0090 (0.0074) (0.0079) 7.8% 2.04 12.0 [ 22.3 -16.8 ]
6 0.18 0.12 0.0098 (0.0080) (0.0085) 7.8% 2.03 10.8 [ 19.7 -16.0 ]
7 0.22 0.17 0.0125 (0.0084) (0.0092) 7.0% 1.78 11.0 [ 18.2 -10.5 ]
8 0.32 0.30 0.0177 (0.0087) (0.0101) 6.3% 1.68 12.2 [ 17.6 -3.2 ]
9 0.44 0.43 0.0229 (0.0087) (0.0108) 6.1% 1.64 12.6 [ 16.8 1.3 ]
10 0.47 0.45 0.0253 (0.0092) (0.0116) 5.7% 1.47 12.1 [ 15.7 1.9 ]
11 0.55 0.54 0.0299 (0.0095) (0.0126) 5.3% 1.27 11.9 [ 14.8 3.6 ]
12 0.46 0.44 0.0328 (0.0115) (0.0156) 4.7% 1.04 11.3 [ 14.2 1.2 ]
13 0.50 0.47 0.0427 (0.0134) (0.0206) 3.7% 0.66 11.6 [ 14.0 1.1 ]
14 0.43 0.41 0.0457 (0.0150) (0.0233) 4.4% 0.87 11.0 [ 13.3 -0.6 ]
15 0.42 0.41 0.0536 (0.0168) (0.0283) 4.0% 0.72 10.8 [ 12.8 -2.3 ]
* Uses the start of period timing convention: consumption growth between t+1 and t+2 is aligned with returns during t+1.
** Tests for the null hypothesis that the implied risk free rate is equal to the time series average of the return on 3 month Treasury bills.
***The confidence interval for risk aversion uses the Shanken standard error.

Table 8: Explaining Expected Returns with Consumption Growth and the Risk-Free Interest Rate
95 % confidence 

interval for implied 
risk aversion***

Cλ̂



Figure 1: Ratio of Statistical Variance to Cross-sectional Variance of Beta's
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Figure 2: Average Returns and Betas
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Figure 3: Fitted Returns and Average Returns
Quarterly rates
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Figure 4: Fitted Returns and Average Returns for Different Models
Quarterly rates, 1963:3 - 1998:3
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Figure 5: Fitted Returns and Average Returns in the Baseline Sample
Quarterly rates, 1952:4 - 1998:3
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