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1 Introduction

One of the starkest empirical facts in macroeconomics is the dramatic nature of the changes

in the time series properties of in�ation and real activity since the 1970s. Most industrialised

countries experienced a �Great In�ation�period of high and volatile in�ation during the 1970s,

followed by a �Great Moderation�in volatilities to a period of low and stable in�ation that has

been dubbed the �Great Stability�in studies of the UK data.1 These changes in the level and

volatility of in�ation were, in many countries, accompanied by changes in its persistence. And

similar patterns have also been observed in measures of real activity such as GDP. Figure 1

documents these facts for the United Kingdom.2
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Unsurprisingly these facts have spawned a huge literature investigating the possible causes

of the changes in the time series of macroeconomic data.3 Broadly speaking, the literature has

sought to identify the relative contribution of three factors: good luck; favourable structural

change; and better policy. The �good luck� explanation is simply that the shocks hitting

economies in recent decades may have been smaller and less volatile than the shocks hitting

those economies in the 1970s and early 1980s.4 Favourable structural change �for example,

1See, for example, Bernanke (20 Feb 2004) for the United States, or King (2007) for the United Kingdom.
2In�ation data is based on the RPI measure prior to 1976, when it is spliced to the RPIX series. Output

is GDP at market prices. Standard deviations and persistence (sum of �rst four autocorrelation coe¢ cients)

are based on rolling samples of 40 quarters.
3This literature is surveyed by Velde (2004). But some notable contributions are: Stock & Watson (2002),

Cogley & Sargent (2005), Cogley & Sargent (2002).
4Policymakers themselves recognise that good luck may have played a part in the Great Moderation.
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greater competition in goods and factor markets �could have reduced the extent to which

the macroeconomy is sensitive to shocks of a given variance. And improved frameworks for

and conduct of monetary and �scal policies may have allowed policymakers to respond more

e¤ectively to stabilise the economy in the face of the shocks hitting it.

This paper is concerned with the extent to which econometric investigations may confuse

changes in the expectations process (associated with improvements in monetary policy) with

changes to the process driving macroeconomic shocks. Such confusion might lead researchers

to falsely conclude that good luck is the primary explanation of the Great Moderation. This

conjecture is not new. As Bernanke (2004) noted:

... changes in monetary policy could conceivably a¤ect the size and frequency of

shocks hitting the economy, at least as an econometrician would measure those

shocks. This assertion seems odd at �rst, as we are used to thinking of shocks

as exogenous events, arising from �outside the model,� so to speak. However,

econometricians typically do not measure shocks directly but instead infer them

from movements in macroeconomic variables that they cannot otherwise explain.

Shocks in this sense may certainly re�ect the monetary regime.

Some have interpreted Bernanke�s conjecture in terms of a change in the monetary policy

reaction function from one that responded �too weakly�to in�ationary pressures in the 1970s

and early 1980s to one that was much more responsive thereafter.5 The ideas is that a

policy response to in�ation that is �too weak�can give rise to multiple equilibria in rational

expectations models: the equilibrium paths for in�ation and activity are �indeterminate�. In

such cases, in�ation and activity can be driven by so-called sunspot shocks that are unrelated

to the fundamental disturbances to demand and supply. When monetary policy becomes

more responsive to in�ation, the equilibrium paths of in�ation and real activity are uniquely

determined and the e¤ects of sunspot shocks are eliminated. Benati & Surico (2006) generate

data from simulations in which monetary policy behaviour exogenously changes from a reaction

function that generates indeterminate equilibria to one that ensures a unique determinate

equilibrium. They then ask whether an econometrician would correctly diagnose the source

of their simulated Great Moderations. They �nd that standard econometric approaches would

tend to diagnose �good luck�instead of correctly diagnosing �good policy�since the change in

monetary policy regime alters the transmission mechanism of shocks.

Bernanke (2004) and King (2005) are explicit about this. The issue is how much of a contribution this has

made.
5Subsample estimates of monetary policy reaction functions by [Clarida et al] suggest that the responsiveness

of nominal interest rates to in�ation increased in the 1980s and 1990s. The study of [Lubik and Schorfeide]

found similar results when estimating a small New Keynesian model over subsamples of US data.
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In this paper, we also use simulated data to test whether econometricians can correctly

diagnose the cause of changes in their time series properties. But our simulated data are

generated from a model characterised by private sector learning. This model captures the idea

that changes in monetary policy behaviour can change the properties of the economy through

the expectations formation process when those expectations are not formed rationally. Non-

rational expectations may be seen as both emprically plausible and useful when thinking about

monetary policy. Indeed, Bernanke (2007) himself argues that �many of the most interesting

issues in contemporary monetary theory require an analytical framework that involves learning

by private agents and possibly the central bank as well�.

Several recent papers have also examined the extent to which econometric techniques are

able to uncover changes in the time series properties of data that are generated by non-rational

expectations models. Perhaps the closest exercise to ours is that of Milani (2007). Milani�s

interpretation of Bernanke�s conjecture in very similar to ours. Milani studies how data

generated by a model of adaptive learning would be interpreted by an empirical model that

was agnostic about expectations. Our exercise di¤ers from his in two respects. Our model

of learning is less sophisticated. Milani includes endogenously time-varying gain to capture

the idea that the amount by which agents discount past data will depend on their view of

the usefulness of that data for predicting the future. Our empirical strategy is, however, a

little more advanced. While Milani looks for whether the econometrician will detect spurious

ARCH/GARCH e¤ects in the volatility of shocks to regression equations linking in�ation and

the output gap to a constant and one lag, the VARs we estimate incorporate time-variation in

both the propagation parameters and the shock variances. We also identify monetary policy

shocks from the other shocks.

Brazier et al. (2008) illustrate how endogenous changes in expectations-formation can alter

the in�ation process such that an econometrician will interpret these switches as �uctuations

in the volatility of shocks to in�ation, even though the underlying volatility of shocks is no

di¤erent. They suppose that the econometrician runs very simple autoregressions for in�ation.

Aoki & Kimura (2008) study how a model of two-way learning between the private sector

and the central bank could account for the Great Moderation. He notes how the resolution,

through learning, of uncertainty about private sector perceptions of the in�ation target by the

central bank, and uncertainty about the in�ation target by the private sector can lead to a

reduction in the estimated persistence of in�ation as measured by simple autoregressions for

in�ation.

Our paper proceeds in three steps. First, we set out out a simple New Keynesian model

of the economy in which agents�expectations are formed by �constant gain� learning about

the structure of the economy. This speci�cation means that agents discount past data more
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heavily than if they made use of the entire history of data. Putting a relatively high weight

on recent data makes sense if the correlation and persistence properties of the variables in

the economy change over time �as is the case in Great Moderation episodes. We simulate

the model many times under each of two scenarios. In the �good luck�scenario, we reduce

the variance of the shocks to demand and pricing at the midpoint of the sample, which

proxies a reduction in the variance of the shocks hitting the economy. In the �good policy�

scenario, we reduce the variance of shocks to the monetary policy rule at the midpoint of

the sample, proxying an improvement in monetary policy behaviour (fewer shocks to interest

rate setting). Both scenarios induce changes in the time series properties of output, interest

rates and in�ation, which agents learn about gradually over time. We describe the model and

simulation output in Section 2.

Second, we describe the econometric tools that we will use. We use a time-varying VAR

framework to diagnose the causes of the observed changes in the time series properties of a data

set. The time-varying VAR approach permits both the coe¢ cient matrices and the covariances

of the innovations to evolve (as random walks) over time. We use two alternative assumptions

to identify the shocks to the VAR that provide alternative (estimated) separations of monetary

policy and other shocks. The �rst identi�cation assumption is a standard ordering assumption

(Cholesky decomposition) and the second is based on sign restrictions on the impulse response

functions. The setup of the VAR is described in detail in Section 3.

The third step is to confront the time-varying VAR approach with the data generated by the

learning model: we do this in Section 4. The question we pose is whether an econometrician

confronted with data from the �good luck�and �good policy�scenarios and armed with the

time-varying VAR technology would be able to correctly identify the sources of the changes in

the time series properties of the data. To do so we estimate VAR models on many data sets

produced by each scenario. We then analyse the properties of the shock processes that we

identify and the impulse responses of the VAR with respect to those shocks. We also conduct

counterfactual experiments as follows. We split each sample and impose the properties of

certain shocks in the second (more stable) subsample on the �rst (less stable) subsample. So

for example, we can impose the properties of the identi�ed monetary policy shocks from the

second subsample on the �rst to see what would have happened in the �rst subsample under the

assumption that monetary policy shocks had the same properties as in the second subsample

If the �rst subsample looks very di¤erent when the policy shocks from the second subsample

are applied, then this can be interpreted as evidence that �good policy�was the driver of the

change in time series properties. Similarly, we can impose the properties of the non-policy

shocks from the second subsample on the �rst to examine the �good luck�explanation These

experiments mirror those performed on actual UK data by Benati & Mumtaz (2006).
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Our results suggest that the e¤ects of better monetary policy on expectations can be

correctly identi�ed as �good policy� by a time-varying VAR approach, when expectations

formation is described by adaptive learning. These results contrast with those of Benati

& Surico (2006), who �nd that, time-varying VARs are unable to correctly identify �good

policy�in data generated by a rational expectations model under the assumption that policy

changes from using an �indeterminate�policy rule to using a �determinate�rule. This suggests

that the ability or otherwise of time-varying VARs to identify the contributions to the Great

Moderation depends on the nature of the expectations and learning processes that characterise

private sector behaviour.

In Section [x] we conclude by asking how one should we read our results in light of the

fact that studies using time-varying parameter VARS on actual data tend to diagnose Great

Moderations as being generated by good luck We argue that one interpretation is that our

results lead us to put less weight on Bernanke�s scepticism about the ability of empirical

tools to correctly diagnose the Great Moderations caused by good policy. We �nd that

appropriately identi�ed time-varying parameter VARs are able to correctly uncover the true

source of Great Moderations simulated from a model in which policy-induced changes in

expectations formation are important. But we also argue that our �ndings may lead us to

put less weight on the notion that the Great Moderation can be explained using a simple

model with adaptive learning: our model is perhaps too stylised to replicate the patterns in

time series data that characterise the Great Moderations we observe in actual macroeconomic

data. And given the extreme �exibility of the time-varying parameter VAR, our Monte Carlo

experiments may not provide a stern enough test of the technique. It must surely remain a

possibility that good luck played a role in the Great Stability. The Governor of the Bank of

England himself acknowledged that "Lady Luck smiled on us" in producing what he called

the NICE (non-in�ationary-continuously-expanding) decade of the 1990s. But how much this

was a factor is an open question.

2 An adaptive learning model for simulating Great Mod-

erations

2.1 The model

We simulate Great Moderations using a New Keynesian model modi�ed so that expectations

are formed by constant gain, adaptive learning. Since the model has been discussed and

motivated exhaustively elsewhere, our discussion here is extremely brief. Linearized versions

of the model�s three equations, with all variables expressed as log deviations from steady state,
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comprise an in�ation equation; an aggregate demand or IS equation; and a policy rule.

�t � ��t�1 = �Et [�t+1 � ��t] + �xt + "�;t; (1)

Note that our in�ation equation includes a term in lagged in�ation. This term can be

justi�ed by the assumption that price setting is governed by a Calvo (1983) contracting scheme

and that �rms that do not reoptimise their prices index them to an average of lagged in�ation

(with weight �) and trend in�ation.6 We set this weight to be 0.1, since we are including

other sources of persistence, via the shocks, and via learning.

xt = Etxt+1 � ��1(irt � Et�t+1) + "x;t; (2)

irt = '��t + 'xxt + "ir;t; (3)

Policy is therefore set using a Taylor rule. We set the output gap coe¢ cient to be 0.5 and

the in�ation coe¢ cient to be 1.5. These coe¢ cients are familiar benchmark values and help

to ensure stability in our model.

We assume that our shocks follow persistent processes:

"�;t = ��"�;t�1 + �z�z�;t (4)

"x;t = �x"x;t�1 + �zxzx;t (5)

"ir;t = �ir"ir;t�1 + �zirzir;t (6)

We collect together the variables that agents have to forecast in the vector Y :

Yt =

2664
�t

xt

irt

3775
and we assume that agents form their expectations by projecting from past values, thus:

Et(Yt) = 	tYt�1

Agents�forecasting coe¢ cients are updated each period according to the following recur-

sion:

	t = 	t�1 + R
�1
t (Y �	t�1Yt�1)

Rt = Rt�1 + (Rt�1 � Yt�1Y 0t�1)

Note that here we are simply substituting out for terms in EtYt using agents�VAR-based

forecasts. Preston (2005) refers to this as the �Euler equation�approach to learning models,

6See [Woodford].
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and notes that it arguably does some violence to the underlying microfoundations of the

model. We side-step the issue in the hope that this approach nevertheless provides an adequate

approximation to the behaviour that would characterise a sticky-price learning model.7

We simulate using the following calibration of our model:

� 0:99

� 0:2

� 0:1

� 5

�� 0:4

�x 0:4

�r 0:9

'� 1:5

'x 0:5

 0:03

In common with other researchers using learning models of this type, we are forced to use

what is known as a �projection facility�to guarantee stability of our learning model. Our

facility is one that allows agents to use the updated forecast coe¢ cients provided that the

modulus of the maximum eigenvalue of 	t is less than unity. If this condition fails, agents

are assumed to carry forward last period�s forecast coe¢ cients to this period. This facility is

not itself enough to guarantee that the model is stable. But, together with our calibration of

the gain at 0.03 �a value comparable to that used by other researchers in this literature �it

ensures that explosive simulations are relatively rare.

2.2 Designing �better policy�and �good luck�induced Great Mod-

erations

We simulate two sets of 1000 Great Moderations, one that are brought about by events that we

characterise as �better policy�, the second brought about by �good luck�. For each simulation,

we simulate the model for 1000 periods, and then extract the �nal 160 periods.8 We think

of our model as a quarterly model, so 160 periods is meant to match the roughly 40 years

7There is a debate about the importance of this simpli�cation. [Harrison and Taylor] compare the behaviour

of a simple New Keynesian model with non-rational expectations solved using the Euler equation approach

and Preston�s �long horizon expectations�method. They �nd that the models behave quite similarly as long

as the deviation from rational expectations is relatively small.
8Prior to the 1000 periods of model simulation, we �burned in�the shocks for 3000 periods to eliminate

pseudo-randomness in these draws.
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of post-war history that are focused on in studies of the Great Moderation, with the �rst 20

being characterised by a �Great Immoderation�and the �nal 20 featuring an improvement of

one sort or other. To construct our �good luck�Great Moderations, after period 80 we halve

the variance of the shocks to the in�ation and aggregate demand equations from 0.2 to 0.1.

Our �better policy�simulations are based on cutting the variance of the shocks to the monetary

policy equation from 0.2 in the �rst 80 periods, to 0 in the �nal 80 periods.

Table 1: Properties of the DGP

Subsample 1 Subsample 2

Median lower upper Median lower upper

DGP with change in the volatility of the monetary policy shock

Standard deviation

In�ation 0.23 0.20 0.27 0.22 0.19 0.26

Output Gap 0.28 0.23 0.34 0.23 0.20 0.26

Interest Rate 0.39 0.34 0.47 0.32 0.28 0.38

AR1 Coe¢ cient

In�ation 0.61 0.48 0.72 0.56 0.42 0.69

Output Gap 0.67 0.52 0.77 0.54 0.41 0.65

Interest Rate 0.55 0.37 0.69 0.50 0.35 0.66

DGP with change in the volatility of the non-policy shocks

Standard deviation

In�ation 0.35 0.27 0.50 0.18 0.14 0.25

Output Gap 0.29 0.24 0.36 0.15 0.13 0.19

Interest Rate 0.54 0.43 0.75 0.32 0.26 0.41

AR1 Coe¢ cient

In�ation 0.77 0.65 0.87 0.76 0.65 0.86

Output Gap 0.67 0.55 0.77 0.65 0.55 0.75

Interest Rate 0.69 0.53 0.84 0.55 0.33 0.73

Table 1 presents some basic statistics calculated using the two DGP�s across the two

subsamples. The estimated standard deviation of the endogeneous variables is lower in the

second subsample with this di¤erence greater in the dataset generated under the good luck

hypothesis. There is little evidence for a change in persistence as measured by the AR(1)

coe¢ cient.
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3 Monte Carlo experiments

In this section we explain the Monte Carlo experiments that we perform. In Section 3.1 we

brie�y outline the key elements of the experiment design, before outlining the speci�cation

and estimation of the time-varying VAR model in Section 3.2. We explain the �counterfactual�

simulations in Section 3.3.

3.1 Experiment design

The design of the Monte Carlo experiments is based on the following three steps:

Step 1. Use the model in equations (1) to (3) as the data generating process and simulate two

data-sets from the model under di¤erent assumptions about the change in policy and

non-policy shocks (as described in Section 2.2).

Step 2. Estimate a time-varying VAR with stochastic volatility using each dataset and con-

duct counterfactual experiments to determine the source of any estimated change in the

volatility of the endogenous variables.

Step 3. Repeat the above 500 times

3.2 The time-varying VAR: speci�cation and estimation

We estimate a time-varying VAR(1) (TVP-VAR) with stochastic volatility using each of the

generated datasets. The choice of the TVP-VAR as an empirical approximation of the data

re�ects that fact that (a) it has been the model of choice in several recent studies on the great

moderation (see for e.g. Cogley & Sargent (2005) and Primiceri (2005)) and (b) that it is

a �exible device to model time-variation in the dynamics and volatilities incorporated in the

DGP.

Speci�cally, we estimate the following time-varying parameter VAR:

Zt = �t +
LX
l=1

�l;tZt�l + vt (7)

where Z contains generated data on in�ation, output and the interest rate. We �x the lag

length L=1. The parameters of the model �t = f�t; �l;tg evolve as random walks

�t = �t�1 + �t

The covariance matrix of the innovations vt is factored as

V AR (vt) � 
t = A�1t Ht(A�1t )0 (8)
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The time-varying matrices Ht and At are de�ned as:

Ht �

2664
h1;t 0 0

0 h2;t 0

0 0 h3;t

3775 At �

2664
1 0 0

�21;t 1 0

�31;t �32;t 1

3775 (9)

with the hi;t evolving as geometric random walks,

lnhi;t = lnhi;t�1 + �t

Following Primiceri (2005) we postulate the non-zero and non-one elements of the matrix

At to evolve as driftless random walks,

�t = �t�1 + � t , (10)

and we assume the vector [ v0t; �
0
t, �

0
t, �

0
t]
0 to be distributed as266664

vt

�t

� t

�t

377775 � N (0; V ) , with V =
266664

t 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 G

377775 and G =

266664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

377775 (11)

The model in equations 7 to 11 is estimated using Bayesian methods. A detailed description

of the prior distributions and the sampling method is given in Appendix A. Here we summarise

the basic algorithm which involves the following steps:

1. Use the �rst 30 observations in the sample to set priors and starting values9.

2. Conditional on a draw for the VAR coe¢ cients �t, sample the VAR covariance matrix.

This involves the following draws:

� The o¤-diagonal elements of the covariance matrix �t are simulated by using the
multi-move Gibbs sampler in Carter & Kohn (2004)

� The volatilities of the reduced form shocks Ht are drawn using the Metropolis-

Hastings scheme introduced in Jacquier et al. (2004).

3. Conditional on the draw for Ht and �t draw the VAR coe¢ cients �t: This is carried

using the methods in Carter & Kohn (2004).

9This implies that the e¤ective sample (used for estimation) consists of 130 periods with a structural break

imposed in period 50.
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4. Conditional on the draw for Ht, �t and �t draw the hyperparameters Q;S and G from

their respective distributions.

5. Go to step 2.

We take 20000 draws from these conditional posterior distributions and retain the last

1000 draws for inference. This choice of the total number of draws is dictated primarily by the

need to keep the monte-carlo experiment computationally tractable. Using code written in the

OXTM programming language, 20000 draws from the posterior are obtained in approximately

25 minutes implying that one set of monte carlo experiments (with 500 replications) takes

about 10 days to complete.

3.2.1 Identifying monetary policy shocks

We identify monetary policy shocks based on two identi�cation schemes. Firstly, as in Prim-

iceri (2005) we use a Choleski decomposition of 
t with the interest rate ordered last. Secondly,

following Benati (n.d.) we use sign restrictions to identify the monetary policy shock. Our

identi�cation strategy imposes the restriction that the contemporaneous impact of the mon-

etary policy shock be non-negative on the interest rate and non-positive on in�ation. In

selecting this �agnostic� identi�cation strategy we follow Uhlig (2005). In addition, the ag-

nostic nature of the identi�cation scheme substantially reduces the computational burden10.

This identi�cation scheme is implemented as follows. We compute the time-varying structural

impact matrix, A0;t, via the procedure recently introduced by Rubio et al. (2005). Speci�-

cally, let 
t =PtDtP
0
t be the eigenvalue-eigenvector decomposition of the VAR�s time-varying

covariance matrix 
t, and let ~A0;t � PtD
1
2
t : We draw an N � N matrix K from the N(0; 1)

distribution. We take the QR decomposition of K. That is we compute Q and R such that

K = QR: We then compute a candidate structural impact matrix as A0;t = ~A0;t � Q0: If A0;t
satis�es the sign restrictions we keep it. Otherwise we draw another matrix K and recompute

A0;t:

3.3 Outline of the counterfactual experiments

We evaluate the performance of the TVP-VAR in two ways. Firstly, we assess if the parameter

estimates accurately re�ect the changes in the dynamics and the volatility of the endogenous

10In particular, we found it very di¢ cult to impose a contemporaneous fall in both the output gap and

in�ation (in response to an increase in interest rates) in the second half of the sample with the algorithm

repeatedly getting stuck for a long period of time.
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variables built in to the DGP. Secondly, we investigate if we can accurately identify the mon-

etary policy shock and correctly infer its importance in bringing about any estimated changes

in dynamics or volatilities. Re�ecting the methods adopted in Primiceri (2005), Sims & Zha

(2006) and Benati (n.d.) we carry out this second exercise through counter-factual exper-

iments. In particular, we identify the monetary policy shock in the estimated TVP-VAR.

We then impose the volatility of the monetary policy shock and parameters of the interest

rate equations estimated in the second half of the sample on the �rst half of the sample.

This counterfactual sequence of VAR parameters and shock volatilities is used to re-estimate

the unconditional volatility of in�ation, the output gap and the interest rate. This is then

compared to the actual estimates of these volatilities to gauge if the TVP-VAR can correctly

identify the source of the structural change. For example, when data is generated under the

good policy scenario and if the change in the volatility of the policy shocks is accurately cap-

tured by the TVP-VAR, then we would expect the counterfactual estimate of the variance of

in�ation, output gap and the interest rate to be substantially below the actual estimate.

4 Results

This section presents the main results from our Monte Carlo experiments. We describe the

results using data from simulations in which Great Moderations are generated by improvements

in monetary policy in Section 4.1. Then in Section 4.2 we describe the results using data from

simulations in which Great Moderations are generated by good luck. Each of these sections

begins by describing the properties of the posterior estimates, before moving on to discuss the

structural

4.1 Detecting �Great Moderations�generated by good policy

4.1.1 A summary of the posterior

Here we describe our estimates of volatility and persistence obtained using the estimated TVP-

VAR. Note that the �gures below present the distribution of these moments obtained across

the 500 replications. In other words, we save the median estimate for each estimate of the

TVP-VAR and present the median and the 90% con�dence interval estimated over the 500

Monte Carlo replications.

The top 3 panels of �gure 1 presents the estimates for the elements of Ht (see equation

9). There is little change in the volatility of the shock to the output and in�ation equation.

In contrast, there is strong evidence of a decrease in the volatility of the shock to the interest

rate equation after period 50, with the estimated volatility close to zero. The top right panel

13
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Figure 1: Estimated volatility for Great Moderations generated by good policy
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presents the estimated prediction variance. This is de�ned as ln det (
t) and measures the

total shock variation in the VAR system. The results suggest a sharp decline in the total

prediction variance after period 50. The bottom panel of the �gure presents the estimates of

the unconditional volatility of each variable. We approximate the unconditional volatility asR
$
ftjT (!), where the spectrum ftjT (!) is calculated as

ftjT (!) = s(I3 � �tjT e�i!)�1

tjT
2�

�
(I3 � �tjT e�i!)�1

�0
s0 (12)

where I3 denotes a 3� 3 identity matrix , s is a selection vector that picks out the coe¢ cients
associated with the ith variable in the VAR and $ denotes the frequency. The estimated

unconditional volatility of all three variables declined after period 50. Note, however that

the estimated con�dence intervals are quite wide possibly indicating that the evidence on the

decline of volatility provided by the TVP-VAR is not clear cut. This is, however, consistent

with the fact that the degree of the reduction in volatility seen in this DGP is relatively small

(see table 1).

Figure 2 presents the estimated normalised spectral density of each variable at $ = 0:

We de�ne the normalised spectrum as
ftjT (!)R
$ ftjT (!)

and use this as a measure of persistence (see

for e.g. Cogley & Sargent (2005) ). Figure 2 suggests some evidence for a change in the

persistence of in�ation and the output gap with the spectral density lower after period 50.

4.1.2 Structural estimates

Figure 3 plots the estimated standard deviation of the monetary policy shock obtained using

the two identi�cation schemes. In both cases, this standard deviation is calculated as�
s
�
A�100;t 
tA

�1
0

�
s0
�0:5

where A0 denotes the structural impact matrix obtained using either the Choleski decomposi-

tion or the sign restrictions algorithm of Rubio et al. (2005) and s denotes a selection vector.

Figure 3 suggests two interesting conclusions. First, regardless of the identi�cation scheme

used, the TVP-VAR correctly identi�es a fall in the volatility of the monetary policy shock

after period 50. However, the degree of reduction in the standard deviation of monetary policy

shocks is smaller when sign restrictions are used to identify the shock. Secondly, the standard

deviation of the monetary policy shock is substantially smaller (in the �rst 50 periods) when

the sign restriction scheme is used. This suggests that the role played by the monetary pol-

icy shock may potentially be under-estimated when sign restrictions are used to identify the

shock.

Figure 4 plots the estimated median time-varying impulse response functions with the top

panel displaying the estimates under recursive identi�cation and the bottom panel displays

15
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those obtained under the sign restriction scheme. Both estimates share one feature: the magni-

tude of the response of the output gap and in�ation depends entirely on the magnitude of the

monetary policy shock with little evidence of variation in the transmission mechanism. How-

ever in their other features the responses are starkly di¤erent. Under the Cholesky scheme, a

contractionary policy shock decreases in�ation and output. Under sign restrictions, the in�a-

tion response displays a price puzzle in the second subsample. Similarly, the response of the

output gap is positive in the second sub-sample. These anomalies suggest that the minimal

restrictions incorporated in this scheme may not be enough to correctly identify the monetary

policy shock in this setting.

4.1.3 Counterfactual experiments

Counterfactual experiments form a key piece of evidence in several recent papers that deal with

the great moderation (see for e.g. Primiceri (2005), Sims & Zha (2006) and Benati (n.d.)).

In our Monte Carlo experiment we further analyse the ability of the TVP-VAR to diagnose

the causes of the great moderation by investigating the performance of two counterfactual

experiments.

Under the �rst experiment, we impose the elements of the monetary policy rule estimated

after period 50 over the entire sample. In other words, we combine the coe¢ cients of the

monetary policy equation and the volatility of the monetary policy shock from the �good

policy period� with the estimated non-policy blocks of the TVP-VAR coe¢ cients and the

covariance matrix. We refer to the �rst experiment as the policy counterfactual. In the

second experiment we combine the non-policy shocks from the second sub-sample (i.e. after

period 50) with the estimated policy block of the VAR. We refer to this experiment as the

non-policy counterfactual.

In both cases we use these counterfactual sequence of VAR parameters and shocks to

re-estimate the unconditional volatility of the three endogenous variables. We then compare

these counterfactual estimates with those presented in the bottom panel of �gure 1. We report

results for the both counterfactual experiments under each of our identi�cation schemes.

In practical terms, the counterfactual experiments involve the following steps for each

Monte Carlo replication

1. For Gibbs iteration i, divide the sequence of drawn �t; At andHt into the two subsamples

S1 and S2 ( where the second subsample S2 starts after period 50). Take a random

draw from the sequences �t; At and Ht from S2. Call these ~�; ~A and ~H.

2. Construct the covariance matrix ~
 using ~A and ~H and then �nd the structural impact

matrix ~A0 using either the Choleski decomposition or the sign identi�cation. Use this
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to calculate the variance of the structural shocks as ~H� = ~A�100
~
 ~A�10 where ~H� is a 3� 3

diagonal matrix with the variance of monetary policy shock as the last element.

3. Using the structural impact matrix A0;t obtained at each date t, estimate the volatility

of structural shocks at each date H�
t = A

�10
0;t 
tA

�1
0;t .

4a. In the �rst counterfactual experiment construct a new sequence of the VAR covariance

matrix �
t by replacing the last element of H�
t with the last element of ~H

� (this forces

the volatility of the monetary policy shock to equal the estimate in S2) and combining

with A0;t: In addition, replace the coe¢ cients of the interest rate equation in �t with

those from ~�: Call this counterfactual sequence of VAR coe¢ cients ��t:

4b. In the second counterfactual experiment construct a new sequence of the VAR covariance

matrix �
t by replacing the �rst two element of H�
t with the �rst two element of ~H

� (this

forces the volatility of the non-policy shock to equal the estimate in S2) and combining

with A0;t:

5. Using �
t and ��t (for experiment 1) construct the spectral density using equation 12 and

estimate the unconditional volatility.

6. Repeat for Gibbs iteration i=1...100.

Counterfactual experiments using Cholesky identi�cation Figure 5 presents results

for the policy counterfactual using the Choleski decomposition to obtain A0;t and ~A0. The

black lines in the top three panels represent the estimated unconditional standard deviation

(also shown in �gure 1). The blue and the red lines represent the distribution of the uncondi-

tional volatility under the assumption that the elements of the monetary policy rule estimated

after period 50 prevail over the entire sample. It is clear from these �gures that under this

counterfactual assumption, the median estimate of volatility is substantially lower in the �rst

50 periods and remains �at over the sample period. This suggests that in this experiment the

TVC-VAR correctly assigns the cause of the great moderation to a change in the elements of

the monetary policy rule. The bottom panel of the �gure tries to assess the signi�cance of the

di¤erence in the counterfactual and actual estimate of the unconditional volatility. In partic-

ular, it shows the estimated mean probability that the counterfactual estimate of volatility is

less than the actual estimate. This probability is close to 90% for all three variables in the

�rst 50 periods of the counterfactual experiments and then drops to around 50% over the rest

of the sample. Therefore, there is a high probability that the TVC-VAR correctly diagnoses

the cause of the great moderation in this experimental setting.
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Figure 5: Policy counterfactual (Choleski identi�cation; data generated by good policy)
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Figure 6: Non-policy counterfactual (Choleski decomposition; data generated by good policy)
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Figure 7: Policy counterfactual (sign identi�cation; data generated by good policy)

Figure 6 shows the results for the non-policy counterfactual using the Choleski identi�cation

scheme. The �gure suggests that if the volatility of the non-policy shocks estimated after

period 50 is imposed on the sample, there is very little change in the estimated volatility of

the endogenous variables. The probability that the counterfactual estimate of volatility is less

than the actual estimate is substantially lower than that depicted in �gure 5.

Counterfactual experiments using sign restriction identi�cation Figure 7 presents

the estimates for the policy counterfactual when the sign identi�cation scheme is used. In

contrast to Choleski identi�cation (see 5), the results are far less clear. Although the median

counterfactual estimates of volatility are lower than the actual ones, the di¤erence is smaller

in magnitude and the estimated probabilities shown in the bottom panel are only around 70%

in the �rst half of the sample.

Figure 8 presents results from the non-policy counterfactual when sign restrictions are used

to identify the shocks. The counterfactual estimates are quite close to the actual estimate of

unconditional volatility. Therefore as with the Choleski scheme, the TVC-VAR does not lead

to an overestimate of the importance of non-policy shocks.
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Figure 8: Non-policy counterfactual (sign restrictions; data generated by good policy)
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Figure 9: Estimated volatility for Great Moderations generated by good luck

4.2 Detecting �Great Moderations�generated by good luck

4.2.1 A summary of the posterior

Figure 9 plots the estimated stochastic volatility (top panels) and the unconditional volatility.

The estimates indicate a change in the volatility of the orthogonalised shocks to the in�ation

and output equation with the volatility falling after period 50. In contrast the shock to the

interest rate equation shows little change in its volatility. The bottom panel of the �gure

shows the unconditional volatility is estimated to decline for all three variables.

Figure 9 shows that the TVC-VAR produces little evidence to support that the persistence

of the endogenous variables has changed. This is in line with the simple AR(1) coe¢ cients

reported in Table 1.

4.2.2 Structural results

In this subsection we present results based on the structural version of the TVC-VAR. As

before, we identify the shocks based on a Choleski decomposition and on sign restrictions.

Figure 11 displays the standard deviation of the monetary policy shock obtained using the

two identi�cation schemes. The two estimates display little time-variation and this feature
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Figure 11: Estimates of standard deviation of the monetary policy shock for simulated Great

Moderations generated by good luck
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Figure 12: Impulse Responses to a monetary policy shocks

is consistent with the DGP. However as in the previous experiment (see �gure 3) the sign

identi�cation scheme produces a substantially smaller estimated for the standard deviation

of the monetary policy shock suggesting again that this identi�cation scheme assigns a less

important role to the policy shock.

Figure 12 presents the responses to a monetary policy shock under both identi�cation

scheme. The Choleski decomposition scheme produces a large price puzzle with in�ation

positive for one period after the shock. The response of output under the sign restriction

scheme is positive. Note also that the responses under the sign restriction scheme suggest a

dampening of the transmission mechanism, with the in�ation and output response become

weaker towards the end of the sample period. In summary, the impulse response functions

from the two identi�cation schemes are quite unclear and contradictory suggesting that the

TVC-VAR is unable to provide a clear picture of time-varying structural dynamics in this

DGP.
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Figure 13: Policy counterfactual (Choleski identi�cation; data generated by good luck)

4.2.3 Counterfactual experiments

Counterfactual experiments using Cholesky identi�cation In this section we again

assess the ability of the TVC-VAR to diagnose the factors behind the structural change im-

posed in this DGP.

The top panels of �gure 13 present the estimates of the policy counterfactual (the uncondi-

tional volatility calculated under the assumption that the elements of the policy rule estimated

after period 50 prevails over the entire sample). The �gure shows that the counterfactual es-

timates (blue lines) are virtually indistinguishable from the actual estimate (black line). The

bottom panels show the probability that the counterfactual estimate is less than the actual

estimate hovers around 0.5.

The results for the non-policy counterfactual in �gure 14 are quite di¤erent. This �gure

presents results from the counterfactual experiment where the volatility of non-policy shocks

estimated after period 50 are imposed over the entire sample. The counterfactual estimates of

volatility are lower than the actual estimates suggesting that the TVC-VAR correctly assigns

the structural break to non-policy shocks. This observation is further re-enforced by the fact

that the estimated probability shown in the bottom panel is around 90% before period 50.
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Figure 14: Non-policy counterfactual (Choleski decomposition; data generated by good luck)
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Figure 15: Policy counterfactual (sign identi�cation; data generated by good luck)

Counterfactual experiments using sign restriction identi�cation Figures 15 and 16

present the results from the counterfactual experiments using the sign identi�cation scheme.

The results point to the same conclusions as the Choleski identi�cation. When the volatility

of the policy shocks estimated after period 50 is imposed over the entire sample, the resulting

estimate of unconditional volatility is little di¤erent from the ctual estimate. In contrast, when

the volatility of �good�non-policy shocks is imposed over the entire sample, the counterfactual

volatility estimates are lower than actual estimates. Note, however, that under the sign

identi�cation scheme the results are less precise. In particular, in the non-policy counterfactual

, the probability that the counterfactual volatility is lower than actual volatility is only around

70% in the �rst half of the sample. This suggests that there is some non-trivial probability

that the TVC-VAR (with sign restrictions) erroneously assigns importance to structural shifts

in the volatility of policy shocks.

4.3 Summary and discussion of the results

Table [x] below, summarises some of the information contained in the lower panels of Figures

5�8 and 13�16.
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Figure 16: Non-policy counterfactual (sign identi�cation; data generated by good luck)
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Great Moderations generated by:

Good policy Good luck

Detection probabilities Detection probabilities

Counterfactual Identi�cation Variable Subsample 1 Subsample 2 Subsample 1 Subsample 2

Policy Cholesky In�ation 0.92 0.46 0.63 0.50

Output gap 0.96 0.47 0.63 0.50

Interest rate 0.89 0.49 0.46 0.49

Sign In�ation 0.66 0.46 0.49 0.49

Output gap 0.67 0.49 0.47 0.44

Interest rate 0.65 0.47 0.47 0.48

Non-policy Cholesky In�ation 0.64 0.50 0.83 0.50

Output gap 0.57 0.50 0.91 0.50

Interest rate 0.68 0.50 0.90 0.50

Sign In�ation 0.47 0.49 0.67 0.45

Output gap 0.48 0.49 0.67 0.45

Interest rate 0.47 0.49 0.66 0.43

The table splits our experiments into four large panels. The columns de�ne the conditions

under which the simulated data were generated: by good policy or good luck. The rows

de�ne the counterfactuals: policy and non-policy respectively. Within each column we report

�detection probabilities�for two subsamples. Subsample 1 is the period prior to the simulated

Great Moderations and subsample 2 is the remainder of each simulation. The detection

probabilities are simple the average values of the lines in the bottom rows of 5�8 and 13�16

and are reported for each variable under each of our two identi�cation schemes.

Loosely speaking, if the TVP-VAR performs well in diagnosing the true cause of our

simulated Great Moderations, we would expect to see more marked di¤erences in the detection

probabilities across subsamples for the �on diagonal�panels of the table. This is most clearly

the case when the shocks are identi�ed using the Cholesky decomposition, which is unsurprising

given the discussions in previous subsections.

In summary, when the simulated data sets contain Great Moderations generated by a fall in

the variance of policy shocks, the TVC-VAR does well in recovering the source of the structural

change. This is particularly true when the shocks are identi�ed using a Cholesky scheme. The

results from the sign restriction identi�cation are more mixed. This is primarily because

under this identi�cation scheme the estimated change in the volatility of the monetary policy

shock is smaller than under Cholesky identi�cation. When the simulated data contain Great

Moderations generated by good luck, we again �nd that the TVC-VAR performs reasonably
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well in diagnosing the cause of the structural change. And again, these results depend, to

an extent, on the identi�cation scheme used. When sign restrictions are used to identify the

monetary policy shocks, conclusions from the counterfactual experiments are less precise.

5 Conclusions

In this paper we construct simulated data from a New Keynesian model with learning for each

of two scenarios. The �rst scenario generates �Great Moderations�by reducing the variance

of monetary policy shocks (�good policy�). The second scenario generates them by reducing

the variance of non-policy shocks (�good luck�). We then ask if time-varying VAR models can

correctly identify the source of the Great Moderations in data sets from both scenarios. We

�nd that, in general, they can. For example, in data sets with Great Moderations generated

by good policy, the VAR correctly identi�es a downward shift in the policy disturbance. And

it shows that if the policy shocks associated with the latter part of the sample (during which

policy is conducted well) are applied to the earlier part of the sample, the implied variances

of output, in�ation and interest rates would have been much lower. Likewise, for data sets

generated by �good luck�, the VAR correctly identi�es a downward shift in the variance of non-

policy shocks. And counterfactual experiments correctly identify the role of non-policy shocks

in determining the changes in the variances of output, in�ation and interest rates observed in

the data sets.

An important caveat to our results is that they appear to be sensitive to the method used to

identify monetary policy shocks. When we use a Cholesky decomposition, the VAR provides

quite clear evidence in favour of the correct explanation for our simulated Great Moderations

When sign restrictions are used, however, the conclusions from the counterfactual experiments

are somewhat less precise.

Our results suggest that the e¤ects of better monetary policy on expectations can be

correctly identi�ed as �good policy� by a time-varying VAR approach, when expectations

formation is described by adaptive learning. These results contrast with those of Benati

& Surico (2006), who �nd that, time-varying VARs are unable to correctly identify �good

policy�in data generated by a rational expectations model under the assumption that policy

changes from using an �indeterminate�policy rule to using a �determinate�rule. This suggests

that the ability or otherwise of time-varying VARs to identify the contributions to the Great

Moderation depends on the nature of the expectations and learning processes that characterise

private sector behaviour.

Since econometric analysis of actual data using time-varying parameter VAR models �such

as Benati & Mumtaz (2006) �suggests that the Great Moderation was generated by �good
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luck�, how should we read our results? One interpretation is that they lead us to put less

weight on Bernanke�s scepticism about the ability of empirical tools to correctly diagnose the

Great Moderations caused by good policy. Bernanke argues that changes in the expectations

formation process caused by improvements in monetary policy may appear as �good luck�in

the data. We use a model with private sector learning so that changes in monetary policy

behaviour will have an e¤ect on the economy via changes in the expectations formation process.

Even so, we �nd that appropriately identi�ed time-vary parameter VARs are able to correctly

uncover the true source of Great Moderations simulated from this model.

Of couse, this leads us to another interpretation: our �ndings may lead us to put less weight

on the notion that the Great Moderation can be explained using a simple model with adaptive

learning. While the model incorporates plausible learning behaviour by private sector agents,

it is perhaps too stylised to replicate the patterns in time series data that characterise the

Great Moderations we observe in actual macroeconomic data. Given the extreme �exibility of

the time-varying parameter VAR, one could argue that our Monte Carlo experiments generate

data that is �easy�for the econometric technique to analyse. One caveat, of course, is that

the results are sensitive to the way that economic structure is imposed on the VAR: that

is, the way that monetary policy shocks are identi�ed. This suggests that more exotic data

generating mechanisms, for example models featuring switches in expectations behaviour such

as those analysed by Milani (2007) and Brazier et al. (2008) may prove a sterner test for the

time-varying VAR approach. We leave this conjecture for future work.
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A Appendix: Priors and Estimation

A.1 Priors

Elements of �l;t
The starting value for �l;t is derived by estimating a �xed coe¢ cient VAR on the �rst 30

observations in each simulated dataset. The prior for the matrix Q (which essentially controls

time-variation ) is described below

Elements of Ht
Let v̂ols denote the OLS estimate of the VAR covariance matrix estimated on the pre-

sample data (�rst 30 observations). The prior for the diagonal elements of the VAR covariance

matrix (see 9 ) is as follows:

lnh0 � N(ln�0; I3 � 10)

where �0 are the diagonal elements of the cholesky decomposition of v̂
ols:

Elements of At
The prior for the o¤ diagonal elements At is

A0 s N
�
âols; V

�
âols
��

where âols are the o¤ diagonal elements of v̂ols, with each row scaled by the corresponding

element on the diagonal. V
�
âols
�
is assumed to be diagonal with the diagonal elements set

equal to 10 times the absolute value of the corresponding element of âols:

Hyperparameters

The prior on Q is assumed to be inverse Wishart

Q0 s IW
�
�Q0; T0

�
where �Q0 is assumed to be var(�̂

OLS
)� 10�4� 3:5 and T0 is the length of the pre-sample used

for calibration.

The prior distribution for the blocks of S is inverse Wishart:

Si;0 s IW ( �Si; Ki)

where i = 1::5 indexes the blocks of S: �Si is calibrated using âols. Speci�cally, �Si is a diagonal

matrix with the relevant elements of âols multiplied by 10�3:

Following Cogley & Sargent (2005) we postulate an inverse-gamma distribution for the

elements of G,

�2i � IG
�
10�4

2
;
1

2

�
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A.2 Simulating the Posterior Distributions

Time-Varying VAR coe¢ cients

The distribution of the �l;t is linear and Gaussian:

'l;T jZi;t;� s N
�
�l;T jT ; PT jT

�
�l;tj�lt+1;Zi;t;� s N

�
�ltjt+1;�lt+1 ; Ptjt+1;Ft+1

�
where t = T � 1; ::1; � denotes a vector that holds all the other VAR parameters and:

�lT jT = E (�lT jZt;�)

PT jT = Cov (�lT jZt;�)

�ltjt+1 = E (�ltjZt;�)

Ptjt+1 = Cov (�ltjZt;�)

As shown by Carter & Kohn (2004) the simulation proceeds as follows. First we use the

Kalman �lter to draw �lT jT and PT jT and then proceed backwards in time using:

�tjt+1 = �tjt + PtjtP
�1
t+1jt

�
�t+1 � �t

�
Ptjt+1 = Ptjt � PtjtP�1t+1jtPtjt

Elements of Ht
Following Cogley & Sargent (2005), the diagonal elements of the VAR covariance matrix

are sampled using the methods described in Jacquier et al. (2004).

Element of At
Given a draw for �t the VAR model can be written as

A0t

�
~Zt

�
= ut

where ~Zt = Zt �
LX
l=1

�l;tZt�l = vt and V AR (ut) = Ht: This is a system of equations with

time-varying coe¢ cients and given a block diagonal form for V ar(� t) the standard methods

for state space models described in Carter & Kohn (2004) can be applied.

VAR hyperparameters

Conditional on Zt, �l;t, Ht, and At, the innovations to �l;t, Ht, and At are observable,

which allows us to draw the hyperparameters� the elements of Q, S, and the �2i� from their

respective distributions
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A.3 Convergence

As mentioned above, the total number of Gibbs sampling replications employed in each

monte carlo replication are limited to 20,000 in order to keep the experiment computationally

tractable. We assess convergence of the Gibbs sampler by constructing cumulative means of

the key model parameters over the retained draws.

Cumulative means of Gibbs draws.

The �gure above plots the average estimate of the cumulative means (i.e. averages over the

Monte-Carlo draws). The cumulative means are computed for the sequence of vectorised

TVC-VAR parameters over every 10 retained Gibbs draws. The �gure shows that there is

little �uctuation in these mean estimates. This provides some evidence for convergence of the

Gibbs sampler (on average over the Monte-Carlo replications).
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