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Abstract: 
We propose an information-theoretic approach to assess the performance of a discrete choice 

model used to analyze land use and land use change. We show that our disaggregated measure 

can be used to compare robustness of predictions across land use categories and across models. 

Furthermore, a proper reformulation of the problem shows that a disaggregated (observation by 

observation) log-likelihood lends itself to an information theoretic interpretation, which allows 

comparisons performance across models. 

 

Corresponding author: 

Alessandro De Pinto, Assistant Professor, Department of Economics, University of Redlands. 

 

                                                 

1 Selected paper prepared for the American Agricultural Economics Association annual meeting, Long Beach, 

California, July 23 - 26, 2006.  

The authors are solely responsible for the analysis and conclusions presented here. 

Copyright 2006 by: De Pinto, A. and Nelson, G.C. All rights reserved. Readers may make verbatim copies of this 

document for non-commercial purposes by any means, provided that this copyright notice appears on all such 

copies. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6554774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Introduction 
Spatially explicit models of land use and land use change focus on the statistical estimation of 

the determinants of land use or the estimation of transition probabilities of land use units. One of 

the challenges is testing performance. The variable to be explained, land cover or land use, is 

discrete and therefore the usual regression measure, R2, with its useful interpretation of 

accounting for unexplained variation, does not apply.  

Arguably the most common test used to assess goodness-of-fit of a model is the likelihood ratio 

index (McFadden, 1974; Ben-Akiva and Lerman, 1985). This index is often used as a pseudo R2 

since its value is one if the model predicts perfectly and zero if it has the predictive power of the 

null model. The problem with this measure is that there is no direct correspondence between the 

value of the index and accuracy of prediction: a likelihood ratio index value close to one this 

does not necessarily mean that the model predicts well. But it is precisely with predictions that 

we are most concerned because predicting land use change is one of the most appealing features 

of discrete choice models that use spatially explicit data.  

Other commonly used measures of performance indices are derived from the map accuracy 

literature. These include user and producer accuracy, the kappa statistic (Nelson and Hellerstein 

(1997), Walker (2003)) and the confusion matrix. The rationale behind the use of these indices is 

that a “good” model is one that has a high ratio of correctly predicted choices.  

The central problem with these measures of performance is that they are based on predictions, 

typically using a winner-take-all approach. However, the output of a discrete choice model is a 

series of probability values, one for each category, and, as Train (2003) points out, the researcher 

can only make claims on the probability of a choice to be made. When a prediction is made, as is 

necessary to construct all prediction-based performance measures, the probabilistic nature of the 
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discrete choice model output is severely distorted because the probabilities of the other possible 

choices collapse to zero. An observation can be assigned to a particular choice category even 

when the predicted probability value for that category is low, as long as the probability values for 

the other categories are lower. As a consequence, the information regarding how strong a 

prediction is, the uncertainty present in a prediction, is lost. Moreover, the prediction – the 

assignment to one choice category – depends entirely on how probabilities are translated into 

predictions. Each of the possible applicable rules to map probabilities into predictions is 

essentially arbitrary. 

Assessing the strength of predictions: a first attempt and 
shortcomings 
A researcher with perfect knowledge of the underlying decision process that relates exogenous 

variables to the land use choice could construct a model that predicts each of the choices 

observed with probability 1 and the choices that are not made with probability 0. With this 

“perfect” model as a benchmark, it is intuitive to consider one model superior to an alternative if 

it predicts observed choices with a higher probability than the alternative model.  

This idea is the rationale behind a comparison of the performance of three discrete choice model 

specifications by Nelson et al. (2004). The authors compare what they call the “strength” of 

predictions by computing the average probability value of the predicted land use across models. 

However, this procedure is not completely accurate because the term “strength” is misleading. 

The problem is better framed in terms of the uncertainty present in a prediction. In that case, the 

uncertainty is dependent on the whole probability output and cannot be assessed by looking only 

at the category that obtains the highest probability value.  
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As an example, consider a location with seven possible land use categories. For a particular 

location, a model generates the following probabilities: [0.7, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]. 

When a winner-take-all prediction rule is used, the first category is chosen and information 

regarding the 0.3 probability of making a mistake is lost. This particular probability outcome is 

also interesting because for the researcher interested in the consequences of making a mistake, 

there is not much more information that can be gained. The remaining six categories all have 

equal predicted probability. This is rather different from a situation where the predicted 

probabilities are [0.7, 0.299, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002]. There is still a 0.3 

probability of making a mistake with the winner-take-all rule. However, if a mistake is made it is 

most likely at the expense of the second category. In other words there is a greater uncertainty in 

the first prediction than in the second. 

Entropy as a quantitative measure of uncertainty 
In an attempt to exploit the information contained in all the predicted probability values, we turn 

to the concept of entropy. This rather widely used concept has its roots in both thermodynamics 

and information theory.  We use an interpretation from the information theory literature. 

Define X as the set of n possible events and { }nppP .....1=  the probability of occurrence of each 

event in xn, where∑
=

=
n

i
ip

1
1. The occurrence of each event xn is said to carry an amount of 

information I(xn) that is dependent on the initial probability scheme. Suppose that a certain event 

occurs with probability .999. One would be hardly surprised when receiving a message that this 

event has indeed occurred. This message has very little information content. In contrast, if an 

event has an occurrence probability of .001 a message that tells us that that event occurred has 

high information content. It is evident that the information content of the message is a decreasing 
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function of the probability p: the more unlikely the probability of the event before the message of 

its occurrence, the larger the information content of the message. 

In principle, any decreasing function in p could be chosen to describe this relationship between 

prior probability and information, but traditionally the function used is the logarithm of the 

reciprocal of the probability p: n
n

n p
p

xI log1log)( −== . 

Using this function it also possible to measure the uncertainty associated with a probability 

scheme { }npp .....1  before any of the possible events takes place ∑
=

−=
n

i
ii ppXH

1
log)( , where the 

function )(XH  is called entropy and can be interpreted as the average amount of information 

carried by events with a certain probability scheme. In this paper we normalize our entropy 

measure by using 

n

pp
XH

n

i
ii

log

log
)( 1

∑
=

−
= ,   (1) 

thereby ensuring that the value of entropy is bounded below by zero and above by unity. 

If one of the possible events occurs with probability 1 there is no uncertainty in the probability 

scheme ( 0)( =XH ). On the other hand, if each event is equally probable the uncertainty reaches 

its highest value ( 1)( =XH )2.  

                                                 

2 In information theory the base of the logarithm is traditionally 2. So that the information associated with the 

occurrence of one of two equally probable events x1 and x2 is 1 (1 bit): 

12
1log)()( 21 =−== xIxI .  
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If we go back now to the example provided in the previous section and measure the entropy of 

the two probability schemes we can see how the difference in uncertainty is fully captured by the 

entropy measure. The entropy is 0.59 for the first set of probabilities and 0.32 for the second set. 

In the next section we will use the concept of entropy as an exploratory tool. We will compare 

the performance of each model by looking at the uncertainty present in those predictions that a 

winner-take-all rule assigned to the correct category. A model with little or no uncertainty in 

those correct predictions is preferable to a model that has a greater uncertainty.  

An empirical application 
As an application of this new proposed method we recreated the results obtained by Nelson et al. 

(2004). The objective of that study was to simulate the overall land use change and its location 

caused by a proposed road improvement project in Panama’s Darién province. The authors 

compared the performance of three specifications: Multinomial Logit (MLogit), Nested Logit 

(NLogit), and Random Parameters Logit (RPLogit).                                          

The authors used 2,555 observations to estimate the parameters of interest. These estimated 

parameters are then used to generate probability values and winner-take-all predictions for the 

remaining 63,894 observations in the data set. The diverse landscape present in the area is 

aggregated into seven categories of land use: three different types of forest, two categories of 

human intervention, and two of natural vegetation. The authors use a variety of measures of 

predictive power in the attempt to select the best model:  

• a pseudo-R2 

• a probability-based measure of the power of prediction for each category and  

• prediction matrices for the different models.  
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The pseudo R2 values were 0.627 for the MLogit model, 0.639 for the NLogit model and 0.595 

for the RPLogit model. The log-likelihood values (not reported in the paper) were:  -1434.253, 

-1389.352, and  -1557.1683. These results suggest the NLogit specification is best. 

However, when the category-specific probability-based measure is used, the results are less 

clear. Table 1 shows the average probability value for all locations that were correctly predicted 

to be in a certain land use.  

The NLogit makes stronger predictions in the first four categories and the MLogit in the 

remaining three. The RPLogit lags behind the other two specifications. 

Table 1: From Nelson et al. (2004), Table 4. Average probability value for predicted categories 

 MLogit NLogit RPLogit 

 Forest without cuipo (0)  0.937 0.952 0.936 

 Forest with cuipo (1)  0.822 0.851 0.797 

 Forest with cativo (2)  0.460 0.463 0.397 

 Agriculture (3)  0.386 0.435 0.392 

 Pasture (4)  0.626 0.621 0.578 

 Brush (5)  0.488 0.461 0.433 

 Marshes (6)  0.707 0.695 0.665 

Note: The bold values indicate the model with the highest average probability value for the 

category in that row. 

Table 2 reports the model comparisons using prediction matrices. Using the winner-take-all 

assignment rule, the MLogit predicts better than the other models in six out of seven categories, 

the MLogit predicts better than the others in category 5. The ratio of correct to total is also 
                                                 

3 These are the log-likelihood values for the various models estimated with the sample of 2,555 observations. 
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slightly higher for the NLogit (0.799) than the other two models; 0.792 for the MLogit and 0.769 

for the RPLogit. Since it is impossible to perform statistical inference on these numbers, we 

cannot really say that 0.799 is better than 0.792. 

Table 2: -Prediction matrices by estimation method, (Rows are predictions, columns are actual)  
Category Id Total 0 1 2 3 4 5 6 Ratio, correct 

to total
 Logit     
 Forest without 
cuipo (0)  

17,970 16,887 970 0 26 51 36 0      0.919 

 Forest with cuipo 
(1)  

27,562 1,427 23,533 553 620 122 948 359      0.893 

 Forest with cativo 
(2)  

217 1 32 84 48 18 31 3      0.092 

 Agriculture (3)  1,380 1 125 28 775 38 409 4      0.289 
 Pasture (4)  7,126 8 149 2 352 4,323 2,264 28      0.734 
 Brush (5)  7,067 9 1,330 132 798 1,234 3,228 336      0.450 
 Marshes (6)  2,572 36 209 111 61 100 257 1,798      0.711 
 Total  63,894 18,369 26,348 910 2,680 5,886 7,173 2,528      0.792 
 Nested Logit   

0 18,233  
17,044 1,095 - 26 32 36 

 
- 

     0.928 

1 27,452 1,280 23,713 465 505 145 968 376      0.900 
2 341 0 82 148 28 5 72 6      0.163 
3 1,943 2 200 31 1,052 64 588 6      0.393 
4 7,874 9 170 5 499 4,581 2,576 34      0.778 
5 5,387 2 833 127 504 966 2,674 281      0.373 
6 2,664 32 255 134 66 93 259 1,825      0.722 

Total 63,894 18,369 26,348 910 2,680 5,886 7,173 2,528      0.799 
Random parameters logit  

0 18,031 16,890 1,016 0 26 62 37 0      0.919 
1 28,183 1,404 23,243 591 920 356 1,347 322      0.882 
2 168 0 41 40 46 26 12 3      0.044 
3 1,333 0 98 16 784 57 374 4      0.293 
4 6,090 21 754 0 48 3,276 1,924 67      0.557 
5 7,382 21 1,008 158 764 1,922 3,142 367      0.438 
6 2,707 33 188 105 92 187 337 1,765      0.698 

Total 63,894 18,369 26,348 910 2,680 5,886 7,173 2,528      0.769 
Note: Diagonal (bold) cells indicate correct predictions. Source:  Nelson et al. (2004), Table 4. 

We now revisit these results using the concept of entropy introduced earlier. We computed the 

normalized entropy (equation 1) for each of the correctly-predicted observations (winner-take-all 
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assignment rule). Table 3 reports the average values of the normalized entropy for each category. 

Lower values indicate that predictions have a lower level of uncertainty. We focus our attention 

on the NLogit, which seemed to perform better than the other two models, and contrast its 

performance with the MLogit and RPLogit models. To do this, we used a t-test to determine 

whether the average entropy values for MLogit and RPLogit are significantly different from the 

values obtained for the NLogit. 

 

Table 3: Share predicted correctly and average entropy values for each correctly-predicted land 

use category 

 NLogit MLogit RPLogit 

 Share 
predicted 
correctly 

Ave. 
Entropy 

Share 
predicted 
correctly

Ave. Entropy Share 
predicted 
correctly 

Ave. Entropy

Land use  0 0.928  0.047 0.919  0.062*** 0.919  0.064*** 

Land use 1 0.900  0.181 0.893  0.211*** 0.882  0.242*** 

Land use 2 0.163  0.626 0.092  0.594*** 0.044  0.629 

Land use 3 0.393  0.669 0.289  0.696*** 0.293  0.692*** 

Land use 4 0.778  0.448 0.734  0.464*** 0.557  0.490*** 

Land use 5 0.373  0.663 0.450  0.650*** 0.438  0.685*** 

Land use 6 0.722  0.379 0.711  0.363*** 0.698  0.425*** 

 

Note: The lower the average entropy number the less uncertainty, on average, that the average 

location is predicted correctly. Bold figures indicate lowest values for the category in that row. 

***, **, and * indicate levels of significance at the 1, 5, and 10 percent level respectively that the 

value differs from the Nlogit value in the same row. 
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We start with a closer look at the results for the NLogit model. There is little correspondence 

between the number of observations correctly predicted and average uncertainty present in 

predictions. Consider category 2; the share of correct predictions is only 0.163, the worst ratio of 

any other category. Yet, the average entropy value is lower (better) than the value for category 3 

and 5 and, although not indicated in the table, the difference is statistically significant. One 

interpretation is that the average correct prediction for land use 2 is more robust than land uses 3 

and 5. Similarly, category 6 has a lower correct-to-total ratio than category 4 but the average 

entropy value is lower. On the other hand, average entropy values and share of correct 

predictions are much better for land uses 1 and 2 than for the other land uses. 

Moving on to a comparison across model specifications, our results confirm that the RPLogit has 

the worst performance, a result with the earlier findings. The average entropy values are higher 

for all categories indicating a higher uncertainty in the predictions. One small but interesting 

exception is category 2. The NLogit model correctly predicts 148 pixels, more than three times 

the 40 predicted by the RPLogit. However, there is no statistically significant difference between 

the two measures of entropy.  

The NLogit model seemed to outperform the MLogit when looking at the number of correct 

predictions: six categories out of seven exhibited a higher correct-to-total ratio. Our analysis tells 

a less clear story and is somehow more similar to the alternative analysis proposed by Nelson et 

al. shown in Table 1. When looking at the uncertainty present in the models predictions, the 

NLogit performs better in four categories (0, 1, 3, 4) while the MLogit does better in the 

remaining three (2, 5, 6).    
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An information-theoretic measure of goodness of fit, 
Kullback-Leibler divergence  
The analysis we performed above has several limits but most importantly it provides information 

only on the uncertainty present in the observations that are correctly predicted in a certain 

category. It does not tell us anything about the observations that were predicted incorrectly in the 

same category and those that are in that category in reality but are predicted as one of the 

alternatives. A model that predicts wrongly with very little uncertainty is a poor model. Therefore, 

in order to truly compare the performance of various models we need a measure that rewards a 

model if predicts correctly with little or no uncertainty and penalizes it if predicts wrongly with 

little uncertainty. 

In probability theory and information theory, Kullback-Leibler divergence (Kullback and 

Leibler, 1951) is a natural distance measure of an arbitrary probability distribution q from a 

"true" probability distribution p. 

For probability distributions of a discrete variable the K-L divergence is defined to be: 

( ) ∑=
i i

i
i q

p
pqpKL log;      (2) 

Equation 2 can be rewritten as: 

( ) ∑ ∑−=
i i

iiii qpppqpKL loglog;   (3) 

In information theory, Kullback-Leibler divergence can be interpreted as the loss of information 

for an individual when she uses distribution q instead of p. It is always nonnegative – with values 

that range from 0 to +∞  –and zero only if p = q. 

Each observed choice can be translated into a probability scheme where one of the choices has 

probability one of occurring and the others zero; following our example with seven categories 
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the probability values are [1, 0, 0, 0, 0, 0, 0]. The original probability scheme is transformed by 

the model into a probability scheme in which each choice has a probability of occurring greater 

than zero. We use the Kullback-Leibler divergence to measure, for each observation, the distance 

between the true probability distribution and the model output. 

Note that the first term on the right hand side of equation 3 is the negative of the entropy for 

probability distribution p and that the entropy of the true probability distribution is always equal 

to zero. Therefore, equation 3 is reduced to: 

( ) ∑−=
i

ii qpqpKL log; . (4) 

Table 4 shows the average value for the Kullback-Leibler divergence for each category. As 

before, we contrast the performance of the NLogit model with those of  the MLogit and RPLogit 

models. We use a paired t-test to see whether the averages for MLogit and RPLogit differ 

significantly from the values obtained for the NLogit model. 

Results show that the NLogit performs statistically significantly better than then the MLogit in 

three categories 2, 4, and 6, and that the MLogit performs statistically significantly better than 

the NLogit in category 0. There is no significant difference for categories 1, 3, and 5. These 

results confirm that the RPLogit performs worse than the other two in all categories.  
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Table 4: Average values of Kullback-Leibler divergence for each land use category 

 NLogit MLogit RPLogit 

Category 0 0.284 0.268* 0.274 

Category 1 0.468 0.469 0.541*** 

Category 2 3.151 3.334** 3.511*** 

Category 3 3.708 3.533 3.740 

Category 4 1.204 1.361*** 1.660*** 

Category 5 1.988 1.986 2.033 

Category 6 1.143 1.303* 1.499*** 

Bold figures indicate lowest values. 

***, **, and * indicate levels of significance at the 1, 5, and 10 percent level respectively. The 

test is for significant difference between the MLogit or RPlogit result and the Nlogit result for a 

category. 

 

Finally, we computed the average Kullback-Leibler divergence across ALL categories for each 

model. This measure indicates that there is no significant difference between the performance of 

Nested and MLogit, and it shows that they are both superior to the RPLogit model. 

 

Table 5: Average values of Kullback-Leibler divergence across land use category 

 NLogit MLogit RPLogit 

Overall K-L divergence 0.854 0.866 0.949*** 

Bold figure indicate lowest values. 

***, **, and * indicate levels of significance at the 1, 5, and 10 percent level respectively. 
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General Discussion and Conclusions 

There is a relatively wide range of discrete choice models that can be used to analyze issues 

related to land use and land use change. In some cases, theory or model limitations such in the 

case of the assumption of irrelevant alternatives for the multinomial logit, might guide the 

researcher through model selection. In other cases, for instance choosing a distribution for some 

of the parameters in a random parameters logit, the researcher is left without guidance. When 

theory or model limitations cannot be of assistance, researchers have used measures of predictive 

power as a tool for model selection. The use of and attention to predictions is also justified by the 

fact that the ability to make location-specific predictions of land use change is an important 

feature of discrete choice models that use spatial data. However, the use of predictions as in the 

case of confusion matrices has severe practical and theoretical limitations. 

In this paper we have proposed an information theoretic measure for the comparison of model 

performances that acknowledges the probabilistic nature of discrete choice model outputs and 

accounts for the uncertainty present in a prediction. The concept of entropy can be used to 

compare across models the uncertainty present in those observations that were correctly 

predicted.  

Applying this new method of assessment of predictive power to a previous study changed 

somewhat the identification of the best model. The analysis of log-likelihood values, pseudo-R2, 

and correct predictions suggested that the nested logit performed better than the multinomial 

logit. The information theoretic approach shows no significant difference between the two 

models. Our analysis confirms that the random parameters logit had the worst performance 

among the three specifications. 
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Although the assignment rule remains arbitrary (winner-take-all), the researcher has now some 

information regarding how robust a prediction in a certain category is. Land uses are not equally 

important. If the researcher is concerned with agriculture encroaching on forested land, she 

should be particularly interested in having low uncertainty in the prediction of agriculture.  

The analysis of those observations that are correctly predicted does not tell us much about the 

overall performance of each model. To achieve this goal we used another measure based on 

information theory, the Kullback-Leibler divergence. This measure allows us to assess model 

performance considering all observations, correctly and incorrectly predicted. For the analysis 

we reviewed, the Kullback-Leibler divergence measure confirms the results obtained using the 

entropy measure: there is no statistically significant difference in the performance of multinomial 

logit and nested logit and both are superior to the random parameters logit. This is in contrast to 

what the pseudo R2 and prediction matrices would suggest, that the nested logit is the best model. 

We believe that the these new measures should become part of the standard toolkit of land use 

researchers with spatial data. 
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