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Abstract— The paper analyses agricultural TFP 
growth across Italian regions during the 1952-2002 
period, and aims at identifying those factors that 
favour or hinder regional agricultural TFP growth 
convergence. Of major relevance is whether regions, 
despite their inescapable heterogeneity, tend to share 
common technological improvements, that is, to move 
along the same productivity growth rate. TFP growth 
decomposition ultimately allows attributing observed 
productivity performance to convergence and 
divergence forces. Appropriate testing and estimation 
procedures are adopted to take into account panel 
unit-root issues and cross-sectional dependence.  
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I. DRIVING FORCES OF TFP GROWTH: A 
SHORT OVERVIEW 

Several empirical contributions investigated 
agricultural productivity differences across countries 
and states and also attempted to explain why these 
differences may permanently occur, [1], [2], [3], [4], 
[5], [6]. Following this stream of research, this paper 
analyses agricultural Total Factor Productivity 
(TFP) growth across Italian regions aiming at 
identifying those forces eventually promoting or 
impeding TFP growth convergence. Italian 
agriculture productivity growth has been 
investigated in a series of contributions also paying 
attention to its major drivers, [7], [8], [9], [10]. More 
recently, emphasis have been put also on regional 
differences in this respect, [9], [11], [12], [13], [14]. 

Technological progress (hence, TFP growth) can 
be the result of either intended or unintended 
decisions of economic agents. Analogously, 
technological progress may be either strictly 
confined into a single farm (or firm), sector, country 
or region (internal effects), or freely extend to a 
large set of other contexts (external effects, often 
interpreted as unintended consequences), [15].  

For a given unit of observation (a farm/firm, a 
country, a region), internal effects firstly concern 
own R&D effort, but also often unintended 
cumulative processes usually as consequence of 
learning. In addition, individual productivity 
patterns may be driven by idiosyncratic, permanent 
as well as short-term or cyclical, characters. All 
these factors restrict their effect on TFP within the 
unit of observation (namely, the region in the 
present case). Consequently, whenever these factors 
operate with different magnitude across units, 
different TFP growth rates are going to be observed 
and, if persistent in the long-run, they will imply 
diverging TFP levels (diverging forces). Two other 
forces, however, operate outside the limits of a any 
specific unit: public R&D investments and spillover 
effects. These two external forces eventually tend to 
equalize TFP growth rates across units and, if 
persistent in the long run, to make TFP levels 
converge (convergence forces) (Table 1).   

Agriculture, in particular, presents some specific 
characters in this respect. On the one hand, R&D 
effort is mostly made by public institutions so it 
expected to generate public knowledge and largely 
accessible innovations as an intended effect [16]. On 
the other hand, however, if we consider regional 
agricultures as units of observation, we should 
distinguish between R&D largely available and 
accessible to all regions, and whose results can be 
indifferently adopted in all cases, from that part of 
public R&D which is actually strongly region-
specific, thus whose results are not transferable to 
other regions being focused on quite specific 
characters (products, structures, markets) of regional 
agricultures. Moreover, in this specific case, 
spillover effects can be relevant across sectors of the 
same regions, particularly from non-agricultural 
industries to agriculture, but weak across regional 
agricultures. 
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Consequently, both public R&D and spillovers 
may indeed generate either convergence or 
divergence forces across regions, depending on how 
their impact is distributed between intraregional and 
interregional effects. This specific dimension of 
agricultural productivity growth and its causes has 
been substantially disregarded in empirical 
literature. Although many papers analyse how public 
agricultural R&D, [6], and spillovers, [2], [17], 
affect agricultural TFP, not much has been done in 
understanding whether these effects actually 
facilitate TFP growth levelling across units of 
observation.    

II. THE MODEL 

We consider, as units of observation, N regional 
agricultural sectors observed over T years. 
Following a widely used representation [23], we 
represent the i-th regional agriculture (∀i = 1,…,N) 
at time t (∀t = 1,…,T) with an augmented Cobb-
Douglas production function:     

( ) ( )βααγ itititititit RKLSY −= 1                                          (1) 

where itY  is agricultural output, itL  and itK  are the 

conventional agricultural labour and capital inputs, 
respectively;1 for these conventional factors of 
production, constant returns to scale are assumed. 
Non conventional production factors are in square 

brackets: itR  indicates the R&D input (R&D stock), 

while ( ) ititit AS =γ  is the standard disembodied 
productivity here represented as a combination of an 
exogenous component (itγ ) and a scale (namely, 

learning as clarified below) effect (itS ).                                                                 
Taking logarithms and totally differentiating (1),2 

we obtain the conventional non-parametric measure 
of TFP growth, or Solow 
residual3:

( )
•••••••

++=−−−= ititititititit RSKLYTFP βγαα 1        (2) 

                                                           
1  K aggregates also agricultural land and materials, [12]. 

2 For a generic variable xit, 
t

x
x it

it ∂
∂=

• ln
.   

3 This conventional index-number TFP calculation implies 
constant returns to scale with respect to conventional inputs, and 

In (2), TFP growth depends on the combination 

of three effects (
•••

ititit RS ,,γ ). After adding an 
autoregressive (AR(1)) term, we can detail them 

(and 
•

itR , in particular) further into the following 7 
components (Table 1): 

1. AR(1) component: 1−
•

itTFPρ . It is a term 
representing the short-term persistence or cyclical 
behaviour (expressed by parameterρ ) often 
observed in TFP growth rates, [24].  
2. Idiosyncratic permanent component: 

t
it

ieλγ =  therefore iit λγ =
•

, it is the standard 
exogenous disembodied technical change proxied by 
a time trend. 

3. Learning component: 
••

+= itiit YS ϕβ ~~
ln . It is 

the scale effect generally expressed by the direct 
relation existing between output growth and 
productivity growth (Verdoorn-Kaldor Law). 
Productivity growth generated by increasing scale of 
production is often associated to learning processes 
(thus, here identified as “learning component”, for 
simplicity). In fact, learning4 has been often 
modelled as a scale effect with major long-term 
growth implications. [23] model this effect as 

( ) i
itiitit YSS ϕβ+= − 11 , thus itiiit YS lnln ϕβ +≅

•
 

whenever ( ) ( )itiiti YY ββ ≅+1 , but it may also assume 
more complex functional forms, [19]. In the case of 
geographical units (countries or regions), however, 
it seems more realistic and suitable to return to the 
original Verdoorn-Kaldor formulation, that is, to 
assume TFP level be an increasing function of 
cumulative output, [15], [23, p.382], namely, TFP 
growth be an increasing function of output growth in 

the form 
••

+≅ itiit YS ϕβ ~~
ln , where iβ~ln  and 

ii ∀= ,~~ ϕϕ  are unknown region-specific and region-
invariant parameters, respectively. [20] use this 

                                                                                              
also assumes Hicks-neutral technical change and perfect 
competitive markets for output and conventional inputs, [12].  

4 Alternatively assuming the form of learning curve, learning-
by-doing, learning-by-using. 
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latter specification in estimating the causes of U.S. 
agricultural TFP growth.5  
4. Intraregional intersectoral spillover: 

•

EitRβφ . This term represents that part (φ ) of 

other sector’s R&D spilling in regional agriculture 
within the same region. β  is the Cobb-Douglas 
parameter of R&D and indicates its impact 
(elasticity) on TFP. 
5. Public agricultural R&D: 

••
+ AtiAt RR βχδβ . Entering public agricultural 

research in (2) is problematic for two major reasons. 
Firstly, we only have data on the aggregate public 
agricultural R&D expenditure observed at the 
national level, AtR .6 Secondly, even if we had 
statistical information on region-by-region R&D 
expenditure, nonetheless this would not correspond 
to the actual R&D input any region can exploit, as 
research done in one region can (and usually does) 
spill into other regions, especially the closer ones in 
geographical and economic terms. We can try, 
however, to partition AtR  in two components. The 
first component (5a) concerns the region-specific 
and rival expenditure, thus corresponding to N 
different shares on total (national) expenditure; the 
second (5b) is the common (nation-wide) and non-
rival part and equally applies to all regions. We can 

thus write: NiRRR AtAt

N

i
iAt ,...,1,

1

=∀+=
••

=

•

∑ δχ , 

where iχ  parameters indicate the region-specific 

shares of public R&D, while δ  indicates the non-
rival R&D component. It follows that 

•••
+= AtiAtit RRR χδ . Evidently, the following 

                                                           
5 It should be noticed that learning is sometimes also modelled 
relating TFP growth (or cost reduction) to cumulative 
investments; the use of cumulative output, however, has become 
prevalent, [19].   
6 As clarified below, AtR  actually indicates the aggregate 

(national) public agricultural R&D stock. 

relation must hold: 1
1

=+∑
=

δχ
N

i
i , where 

ii ∀≥ 0χ , and 0≥δ .7  
6. Interregional spillover: 

∑∑
=

•

−
=

N

j
sjtij

S

s
s TFPw

11

η . Interregional intra and 

intersectoral spillover is here modelled through 
lagged TFP and not directly through R&D, not only 
because, as mentioned, we have not data on 
regional-level agricultural R&D, but mostly because 
spillover can either come from other regions’ R&D 
or from other sources, namely learning processes 
themselves, [23], [15]. Therefore, interregional 
spillover is here modelled through the following 

term: SsNjTFPw
N

j
sjtij

S

s
s ,...,1,,...,1,

11

=∀=∀∑∑
=

•

−
=

η  

where wij ’s are region-specific normalized weights 
expressing spatial contiguity,8 and sη ’s express the 

spillover effect on TFP. 
Equation (2) is therefore rewritten as follows (see 

Table 1 for a detailed explanation of expected 
parameter values and signs): 

                                                           
7 Overall increasing returns to scale in (1) are eventually 
motivated by two effects: the direct contribution of R&D to 
production (β) and partial non-rivalry of public agricultural 
R&D (δ). 
8 wij ’s are elements of a NxN matrix (W) where, for i-th region, 
wii =0 and wij =0 (if the j-th region is not contiguous) or wij =1/M 
(when j-th region is one of the M border regions).  
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where Di’s are region-specific dummies.9 
Appending the usual spherical disturbance itε , i.i.d. 

N∼(0,σ2), equation (3) becomes a conventional 
dynamic panel model with Fixed Effects (FE). This 
model makes explicit why, here, the emphasis is on 
TFP growth difference across regions rather than on 
TFP convergence by itself, [3], [25]. Emphasizing 
the former has two major justifications. Firstly, it 
seems reasonable to admit a structural and 
permanent difference among agricultural TFP levels 
because of regional heterogeneity in terms of natural 
resources, climate conditions, historical characters 
that no catching-up can actually reduce [3, p. 373-
375]. 

The second, and more important, justification is 
theoretical. Evidently, if long-run/stable TFP growth 
is the same across units, TFP levels may differ only 
for the different initial values that we can attribute to 
the above-mentioned inescapable heterogeneity, but 
also eventually prevent regional TFP levels from 
converging. After all, in the longer run, whenever 
TFP level convergence was achieved, we should 
rather observe prevalence of very close TFP growth 
rates (henceforth, we refer to this tendency toward 
equal TFP growth rates as the TFP growth 
convergence hypothesis). On the contrary, if TFP 
growth convergence was not observed, as 
divergence forces prevail, TFP level convergence 
would be just temporary evidence, if any. Therefore, 
over a long-enough time period, the key issue (in 
both theoretical and empirical terms) behind 

                                                           
9 To avoid singularity, the dummy of Valle d’Aosta, the 
smallest Italian region, is dropped. Such selection makes 

approximation 













+≅ ∑

−

=

1

1

N

i
iχδββ  more strictly hold (see 

Table 1).   

equation (3) becomes whether convergence forces 
prevail on divergence ones, eventually making 
regional TFP growth differences just temporary and, 
consequently, statistically not significant in the 
longer run.  

Hence, this hypothesis of TFP growth 
convergence can be simply tested by computing the 
difference between regional and aggregate (national) 
TFP growth rates and, then, testing for 
nonstationarity according to the following equation, 
[5], [26, p.225]: 

it

S

s
sititiiit etDDD ++∆++=∆ ∑

=
−− βπρµ

1
1            (4) 

where 
••

−= N
titit TFPTFPD , N

tTFP  is the 
aggregate (national) agricultural TFP growth rate 
and ite  is a spherical disturbance term. Equation (4) 

is a conventional Augmented Dickey-Fuller (ADF) 
unit-root test with intercept and deterministic trend. 
For TFP growth convergence to be observed, we 
must reject the hypothesis of unit root (namely, 

0≠ρ ) and find not significant intercept and 

deterministic trend (namely, 0, =βµi ). In other 

words, itD  must behave as: ititiit eDD +=∆ −1ρ  with 

0≠ρ . 

 
                                                                                                           

•

itR  

( ) it

S

s

N

j
sjtijsAt

N

i
AtiiEitititiiit TFPwRRDRYTFPTFP εηβδχβφβϕρβλ ++++++++= ∑ ∑∑

= =

•

−

•−

=

•••

−

••

1 1

1

1

1
~~

ln                             

                                         Divergence factors (internal effects)                   Convergence factors (external effects) 

 

(3) 
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Table 1 Drivers of regional agricultural TFP growth and expected sign and theoretical values of model parameters (equation (3)) 

Forces Effects Theoretical parameter values 
1.Autoregressive component 
 

-1< ρ <1, for stationary series, and close to 0 in case of low persistence.  

2.Idiosyncratic permanent 
component ( )ii βλ ~

ln+ >0, as both iλ  and iβ~ln  are expected to be ≥0. For Italian agriculture, [7] 

report an estimate of λ  ranging between .02-.03. iβ~ln  expresses the learning effect that 

remains even when output is constant (thus, distinguishing learning on “old processes” from 
learning on “new processes”, i.e. ϕ ). [18] report a non-statistically significant estimate of 

iβ~ln .  

3.Learning 10 << ϕ , for diminishing returns in learning. This parameter is also called speed of 

learning [19, p.99] however with a different interpretation with respect to the present 
specification. With an analogous approach to U.S. agriculture¸ [20, Table 4B] find a non-
statistically significant value, always lower than .0001. 

4.Intraregional intersectoral 
spillover 

10 << φ , hence ββφ <<0 , as confirmed by [21, Tables 4-6] where, for non-

manufacturing, values of φ  ranging between .047 and .057 are reported. For Italian 

agriculture, [22] reports an estimate of .028. As we actually estimate βφ , φ  can be 

indirectly computed once estimated β  (see 5a). 

Internal effects 
 
 
 
 
Divergence forces 

5a.Public agricultural R&D: 
region-specific part  ii ∀<< ,1,,0 χδβ , thus ii ∀<< ,1,0 βχβδ  with 1

1

=+∑
=

N

i
iχδ . As we 

only estimate (N-1) iχ  parameters, we can indirectly compute β  from 











+≅ ∑

−

=

1

1

N

i
iχδββ  provided that the dropped region is a small one ( 0≅Nχ ). [8] 

find a value of β  ranging between .05 and .20 for Italian agriculture. [21, Tables 4-6] 

reports β  around .10 for non-manufacturing. 

 
5b.Public agricultural R&D: 
common part 

See 5a. External effects 
 
 
 
 
Convergence forces 

6.Interregional spillover ss ∀<< ,10 η  [19, p.99]. [21, Tables 4-6] confirms this result for R&D international 

spillover in non-manufacturing. For Italian agriculture, [22] reports for ∑s sη an estimate 

of .594. 

 

III.  DATA 

The model (equations (3) and (4)) is here applied 
to the 20 Italian (NUTSII) regions over the post-
WWII period (1951-2002). The dataset, thus, 
includes 1040 observations of the four model 
variables, itTFP , itY , EitR , AtR .  itY  is the value of 
regional agricultural production expressed in 1995 
prices (millions €). Regional series are taken from 

the 1951-2002 AGREFIT database, [12]. itTFP  is 
taken from the same database and computed by [12] 
aggregating outputs and inputs with chain Fisher 

ideal indexes.10  

                                                           
10 These are not multilateral TFP indices, [25], thus do not 
allow direct comparison of TFP across regions, though still 
make TFP growth rates comparable. As interest here is on TFP 
growth differences, not on TFP level convergence, calculating 
an appropriate multilateral TPF index is not required.  



 6 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

AtR  is the national public agricultural R&D 

stock expressed in 1995 millions €. Sources of 
public agricultural R&D data to 2002 are detailed in 
[7]. R&D stock series are computed from 
investment data using methodology and parameters 
discussed in [8]. We apply this same methodology to 
reconstruct the EitR  stock series from the respective 

non-agricultural investment (expressed in 1995 
millions €), [21]. For EitR , harmonized regional 

data are taken from CRENoS, [27],  and 
ISTAT/EUROSTAT databases.  

IV.  ECONOMETRIC ISSUES 

Estimation of equation (3) entails three major 
econometric issues. The first concerns stationarity of 
model variables over T preventing spurious 
regression. The initial estimation step thus tests for 
the presence of unit roots in model variables. 
Among possible alternative unit-root tests proposed 
for panel data, [28], the IPS test is here adopted.  

The second issue relates to the assumption of 
spherical disturbances that excludes Cross-sectional 
Dependence (CD) of the error term across the N 
units. Disregarding CD in designing unit-root tests 
may lead to wrongly reject nonstastionarity and, 
more generally, to undesirable finite sample 
properties of the IPS test itself, [29]. The general 
diagnostic test for cross-sectional dependence (CD 
test) proposed by [30] is therefore applied. If such 
test rejects the hypothesis of cross-sectional 
independence, one viable solution is to perform 
individual Cross-sectionally Augmented Dickey-
Fuller (CADF), then finally assessing 
nonstationarity within the panel with the Cross-
sectionally augmented IPS (CIPS) test proposed by 
Pesaran (2007).11 This same approach to panel unit-
root testing is adopted to asses TFP growth 
convergence according to equation (4). In this case, 
abovementioned CIPS test assesses stationarity 
within the panel under CD, while individual unit-

                                                           
11 In principle, if present, cross-sectional dependence can also 
undermine estimation of equation (3) itself. In (3), however, 
correction for CD is achieved through the inclusion of spatially 
lagged TFP values (see also [31] for a similar application).   

root ADF tests are performed to evaluate the 
presence of intercept and deterministic trend, [26, p. 
257]. 

The third major econometric issue concerns the 

presence of the lagged dependent variable ( 1−
•

itTFP ) 
among regressors, that is the AR(1) terms of 
equation (3). This term makes conventional panel 
Least Squares (LS) estimators potentially incur into 
the so-called Nickell bias, [32, p. 85]. LSDV (Least 
Squares with Dummy Variables) estimates are 
consistent whenever T goes to infinity, [32, p. 90], 
but are biased in the small sample and this bias may 
be large. Even though in the present case (i.e., N=20 
and T = 52) bias is expected to be small, beside 
OLS-pooled and LSDV, we also perform Arellano-
Bond GMM estimation.12  

V. RESULTS 

A. TFP growth convergence and unit root tests 

Table 2 reports unit-root tests on itD (equation 
(4)), therefore on TFP growth convergence 
hypothesis. Within the panel, and regardless the 
specification (with or without intercept and trend), 
the presence of CD is largely accepted. Results of 
the IPS test, therefore, must be confirmed by 
correcting for CD, i.e. by the CIPS test. Evidently, 
IPS and CIPS are concordant in rejecting unit-root 
in itD . To fully assess TFP growth convergence, 
however, it must be noticed that individual unit-root 
tests confirm rejection of unit-root in itD in all 
regions. Moreover, intercept and deterministic trend 
are not statistically significant: except three regions, 
in all other cases the hypothesis of TFP growth 
convergence is fully supported by data. 

Table 3 displays panel unit-root tests on equation 
(3) variables. Evidence is clear, regardless the 
adopted test specification. All model variables are 
stationary though, at the same time, all tests suggest 
cross-sectional dependence. With respect to the 
adopted empirical model, we can conclude that 
equation (3) do not incur in spurious regression 

                                                           
12 We only use the One-step GMM-DIFF estimator (see [32] 
for more details on this aspect).      
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problems and hence represents an appropriate 
specification and also the inclusion of spatially-

lagged dependent variables, taking into account the 
observed spatial dependence, seems appropriate. 

Table 2 – Panel and individual unit-root tests on itD  (equation (4)) – standard error in parenthesis 

Panel unit-root tests With intercept and trend  With intercept, no trend No intercept, no trend 
IPS -16.134* -17.395* -16.718* 

CD  -2.196* -2.182* -2.295* 
CIPS  -6.698* -6.583* -6.448* 

Parameters  Parameters Individual unit-root tests 
(ADF) ρ  µ  β   ρ  µ  β  

Northern regions        

Friuli (FR) 
-2.126* 
(.370) 

-.0188 
(.015) 

.001 
(.001) 

Marche (MA) 
-1.480* 
(.331) 

-.005 
(.013) 

.0002 
(.0004) 

Liguria (LI) 
-1.407* 
(.322) 

.004 
(.032) 

.0005 
(.0010) 

Toscana (TO) 
-2.367* 
(.363) 

.007 
(.014) 

.0000 
(.0004) 

Lombardia (LO) 
-2.120* 
(.292) 

-.018* 
(.008) 

.0005 
(.0003) 

Umbria (UM) 
-1.982* 
(.355) 

-.015 
(.011) 

.0008 
(.0004) 

Piemonte (PI) 
-1.924* 
(.355) 

-.026* 
(.012) 

.0004 
(.0003) 

Southern regions    

Trentino Alto-Adige (TR) 
-2.514* 
(.404) 

-.035* 
(.016) 

.0008 
(.0005) 

Basilicata (BA) 
-2.401* 
(.331) 

.009 
(.031) 

-.001 
(.001) 

Veneto (VE) 
-1.849* 
(.360) 

.005 
(.011) 

.0001 
(.0003) 

Campania (CA) 
-.884* 
(.177) 

.008 
(.012) 

.000 
(.001) 

Valle d’Aosta 
-1.654* 
(.307) 

-.013 
(.015) 

.0001 
(.0004) 

Calabria (CL) 
-2.074* 
(.379) 

.030 
(.027) 

-.001 
(.001) 

Central regions    Molise (MO) 
-2.104* 
(.331) 

-.001 
(.023) 

.0001 
(.0007) 

Abruzzo (AB) 
-2.700* 
(.361) 

.023 
(.013) 

-.001 
(.001) 

Puglia (PU) 
-2.989* 
(.403) 

.013 
(.027) 

-.0004 
(.0008) 

Emilia-Romagna (ER) 
-1.891* 
(.336) 

-.004 
(.012) 

-.000 
(.001) 

Sardegna (SA) 
-1.445* 
(.367) 

-.021 
(.018) 

.0002 
(.0006) 

Lazio (LA) 
-2.086* 
(.350) 

.016 
(.011) 

-.0004 
(.0003) 

Sicilia (SI) 
-1.986* 
(.343) 

-.022 
(.019) 

-.0008 
(.0006) 

*denotes statistical significance at 5% confidence level. Note: For CIPS tests critical values are taken from [29]; all tests admit one-year lag (s=1) 

Table 3 – Panel unit-root tests on model variables (equation (3)) 

Model Variables 
Panel unit-root tests 

With intercept and trend  With intercept, no trend No intercept, no trend 

•
TFP  

   

IPS -13.061* -15.037* -7.687* 
CD  16.172* 15.912* 14.013* 
CIPS -5.057* -5.012* -5.168* 

•

itY     

IPS -14.036* -14.421* -12.127* 
CD  20.586* 22.929* 20.192* 
CIPS  -5.497* -5.506* -5.283* 

•

EitR     

IPS -13.361* -12.031* -5.216* 
CD  50.629* 48.809* 50.007* 
CIPS  -4.012* -3.787* -3.347* 

•

AtR **    

ADF  -6.423* -4.844* -2.892* 

*denotes statistical significance at 5% confidence level; ** AtR has only a time-series dimension, as we do not observe regional data for it. Non-

stationarity is thus tested through a conventional ADF test. Note: For CIPS tests critical values are taken from [29]; all tests admit one-year lag (s=1)  
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B. Model estimates 

Equation (3) estimates are shown in Table 4. 
Firstly, OLS-pooled results (where constant term is 
assumed equal across regions) can be compared with 
the LSDV estimates (i.e., where FE are admitted). 
For most parameters, estimates are very close in the 
two cases (and R2, as well), major differences 
emerging only for few iχ ’s and, consequently, for 

indirect parameters β . This is confirmed by the F-
test on region-specific fixed-effects indicating that 
these terms are not statistically different across 
regions. As TFP growth convergence is accepted, it 
should not surprise that exogenous technical change 

rate and learning on “old processes” are the same 
across regions (see Table 1).    

Although OLS-pooled and LSDV estimators can 
be thus considered as statistically equivalent, it 
should be reminded that both may produce biased 
estimate for the presence of the AR term, whereas 
GMM estimates are, in fact, consistent. Tests on 
GMM estimation confirm that both selection of 
instruments (Sargan test) and AR(1) specification 
(LM tests) are appropriate. GMM results present 
some differences with respect to LS previous 
estimates, but they do not substantially alter the 
overall picture. 

  

 Table 4 – OLS-pooled, LSDV and GMM estimates of equation (3) - standard error in parenthesis 

Parameter OLS-Pooled LSDV GMM Parameter OLS-Pooled LSDV GMM 

( )ii βλ ~
ln+  

.011* 
(.002) 

.008* 
(.003) 

.001 
(.001) LIβχ  

.046* 
(.008) 

.016 
(.029) 

-.005 
(.089) 

ρ  -.142* 
(.070) 

-.148* 
(.073) 

-.161* 
(.024) LOβχ  

.129* 
(.004) 

-.067 
(.040) 

-.099 
(.081) 

ϕ~  
.599* 
(.160) 

.596* 
(.161) 

.550* 
(.019) MAβχ  

.011* 

(.003) 
.032 

(.035) 
.033 

(.099) 

1η  
.226 

(.118) 
.229 

(.119) 
.236* 
(.033) MOβχ  

.072* 
(.011) 

.048 
(.031) 

.113 
(.084) 

2η  
.126* 
(.062) 

.131* 
(.063) 

.140* 
(.034) PIβχ  

-.013 
(.017) 

-.104* 
(.039) 

-.182* 

(.085) 

βφ  .012 
(.029) 

.017 
(.030) 

.011 
(.032) PUβχ  

-.005 
(.013) 

.036 
(.023) 

.099 
(.085) 

βδ  -.076* 
(.021) 

-.053 
(.043) 

.017 
(.130) SAβχ  

.040* 
(.015) 

.115* 
(.014) 

.192* 
(.083) 

ABβχ  
.102* 
(.006) 

.075* 
(.016) 

.107 
(.094) SIβχ  

-.119* 
(.020) 

-.093 
(.068) 

-.089 
(.087) 

BAβχ  
.010 

(.022) 
-.126 

(.072) 
-.078 

(.081) TOβχ  
.072* 
(.003) 

.066* 
(.019) 

.125 
(.089) 

CAβχ  
.106* 
(.008) 

.063* 
(.014) 

.118 
(.092) TRβχ  

.109* 
(.015) 

.050 
(.030) 

.090 
(.086) 

CLβχ  
.042 

(.024) 
.054* 
(.009) 

.069 
(.090) UMβχ  

-.068* 
(.004) 

-.003 
(.055) 

-.029 
(.094) 

ERβχ  
.050* 
(.010) 

.099* 
(.035) 

.105 
(.092) VEβχ  

.056* 
(.004) 

-.031 
(.027) 

-.005 
(.081) 

FRβχ  
.016 

(.009) 
-.042 

(.060) 
-.039 

(.086) 

Indirect parameter: 

β  

 
.077* 
(.009) 

 
.082* 
(.026) 

 
.100 

(.091) 
 OLS-Pooled LSDV GMM 

H0: ( ) ( ) jijjii ,,
~

ln
~

ln ∀+=+ βλβλ  (F-test)  .789  

Adj. R2 .724 .723  
LM-1 test   -3.591* 
LM-2 test   -1.319 
Sargan test   3.302 
*denotes statistical significance at 5% confidence level 

Therefore, regardless the adopted estimator, the 
economic interpretation of results is largely 
correspondent. Firstly, the constant term assumes a 

fairly small value. It should indicate exogenous 
technical change rate and learning on “old 
processes” in the dropped region (Valle d’Aosta) 
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but, as discussed, it is not very much different from 
other regions’ fixed-effects. We can thus conclude 
that both exogenous technical change and learning-
on-“old processes” rates are <.010, lower than 
values reported in previous studies (Table 1). 
Secondly, the autoregressive component, albeit 
statistically significant, indicates limited persistence 
(about -.15) and, thirdly, parameter associated to the 
learning component is statistically significant and 
very close in the three alternative estimates, i.e. 
about .55-.60. 

Less clear-cut results emerge for R&D and 
spillover variables. Interregional spillover, proxied 
by spatially lagged TFP, is significant for both lags 
only in GMM estimation.13 Nonetheless, values are 
quite close in three estimations and the overall 
spillover effect (i.e., the sum of 1η  and 2η ) is about 
.375. It is a remarkably high value if compared to 
some previous estimates of interregional (or 
international) spillover (Park, 2004), but consistent 
with results reported by [22] for Italian agriculture 
(Table 1).  

On the contrary, intraregional intersectoral 
spillover is small and not statically significant; even 
for this parameter, the three estimators provide 
similar results with βφ  ranging between .010 and 
.017. However, if we consider the implicit value of 
φ  as derived by indirect estimation of β , value 
obtained with LSDV is much higher (about .080), 
though still lower than results previously reported 
for intersectoral spillover in agriculture (Table 1).  

Finally, parameters associated to public 
agricultural R&D incorporate three different effects. 
On the one hand, the three estimates of β , 
indicating  returns to R&D stock, range between .65 
and .20, but it is statistically significant only under 
OLS-pooled estimation. Nonetheless, such returns 
are remarkably high when compared to previous 
estimate (Table 1). On the other hand, The 
distinction between a common and region-specific 
part indicates that the former (expressed by δ, 
implicitly derived from β  estimates) is either not 
statistically different from 0 or implausibly negative 

                                                           
13 Following equation (3), s=2 is assumed, i.e one-year (η1) and 
two-year (η2) lags of spatially lagged TFP are included as 
regressors. 

in the case of OLS-pooled estimate. Region-specific 
parts ( iχ ’s) are statistically significant in few cases 
(2 regions in the GMM estimation, 8 in LSDV), but 
their size would suggest a larger value that the 
common component (δ). 

C. Decomposition of TFP growth 

The relative importance of different drivers of 
TFP growth, however, can not be simply evaluated 
by looking at the estimated parameters. Beside them, 
directly interpretable as elasticities, the overall 
variation of the respective variables is also relevant. 
Table 5 decomposes the overall TFP growth rate 
(averaged over the whole panel) into the seven 
components indicated in Table 1. Percentage 
contributions to TFP growth have been computed by 
simply taking the estimated (GMM) parameters and 
the average growth rates (over the whole panel) of 
respective model variables. 

It emerges that major driving forces of TFP 
growth are interregional spillover, learning and 
public agricultural R&D. This latter, however, 
mostly impact productivity through its region-
specific part ( iχ ’s), as the common component (δ) 
shows a very limited contribution. Idiosyncratic 
component and intraregional spillover are almost 
negligible, too, while the autoregressive term 
corrects TFP growth rates downward for about 18% 
per year. 

By assigning these effects to the two groups of 
“convergence” and “divergence” forces, we obtain 
an almost perfect equilibrium: forces favouring TFP 
growth convergence (mostly, interregional spillover) 
are almost completely counterbalanced by forces 
acting individually across regions (learning and 
region-specific public R&D). It is also worth 
stressing that public agricultural R&D, whose 
alleged effect should go in the direction of common 
TFP growth trajectories, actually behaves as a 
divergence force.  

Convergence factors slightly prevail, eventually, 
and this confirm results obtained in terms of TFP 
growth convergence, but this prevalence does not 
seem strong enough to justify that clear-cut 
evidence. In this respect, further investigations are 
thus required. 
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Table 5 – Aggregate TFP growth decomposition – sample 
averages, GMM estimates 

Effects % Contribution 

1. Autoregressive component -18,51% 

2. Idiosyncratic permanent component 5,53% 

3. Learning 38,01% 

4. Intraregional intersectoral spillover 1,82% 

5a. Public agricultural R&D: region-specific part  22,04% 

Divergence forces 48,89% 

5b. Public agricultural R&D: common part 6,43% 

6. Interregional spillover 44,68% 

Convergence forces 51,11% 

Total TFP Growth rate 100,00% 
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