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Summary 
 
In many technology fields, standardization is the primary method of achieving 
alignment between actors. Especially if strong network effects and increasing returns 
are present, the market often ends up with a single standard that dominates the 
technical direction, activities and search heuristics, for at least one full technology 
generation. Although literature has addressed such decision processes quite extensively, 
relatively little attention has been paid to the way in which standards affect - and are 
affected by - technological change. Building upon the concepts of technological regimes 
and trajectories (Dosi, 1982), and on the methodology proposed by (Hummon & 
Doreian, 1989) to empirically investigate such trajectories, this papers aims to study the 
interplay between standardisation and technological change.  
 
We conclude that the empirically derived technological trajectories very well match the 
standardisation activities and the main technological challenges derived from the 
engineering literature. Moreover, we also observe that the Hummon & Doreian 
methodology can indeed reveal technological discontinuities. To the best of our 
knowledge, this has not been the case in earlier studies using this technology, and 
refutes concerns that this methodology has a (too) strong bias towards incremental, 
continuous technological paths. Finally, we compare the set of patents in the most 
important technological trajectories to the set of so-called essential patent claims at 
standards bodies, and conclude that there is no significant relationship. This confirms 
earlier arguments that essential patents are not necessarily ‘important’ patents in a 
technical sense.  
 
 
1. Technological trajectories as an indicator of the main paths of technological 
change 
 
For a long time, orthodox economics has largely neglected the detailed study of 
technological change and its underlying knowledge. Starting in the 1980s, this gap was 
addressed by concepts such as technological paradigms (also referred to as 
technological regimes) and technological trajectories. The underlying theoretical 
backgrounds were developed by (Nelson & Winter, 1982), (Rosenberg, 1976) and 
(Sahal, 1981). These works were accumulated in a seminal paper of (Dosi, 1982). 
Following these theoretical conceptualizations, several efforts have been devoted to 
empirically study technological paradigms and trajectories. These recent studies 
generally used patent citations networks in order to construct and understand 
technological development and knowledge flows. Some of the first studies to use this 
methodology were on the development of fuel cells (Verspagen, 2005) and on telephony 
switching equipment (Martinelli, 2008). Others have used a similar approach for 
studying the medical sector (Mina, Ramlogan, Tampubolon, & Metcalfe, 2007). 
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Standards, on the other hand, are widely believed to influence technological change, 
whilst at the same time being the result of technological change. Especially in markets 
that exhibit strong network effects, standards are an alignment mechanism in which 
stakeholders negotiate and decide on the direction of technology. As such, they are a 
mechanism to align technological choices (Schmidt & Werle, 1998). There are several 
modes in which the market comes to such a widely supported standard. Sometimes this 
is through negotiation within a single Standards Developing Body (SDO), sometimes 
through competition between several SDO, consortia or fora and sometimes – though 
considerably less often - through competition between end user products in the market 
place (e.g. Blu Ray vs. HD-DVD). An interesting framing is that of (Anderson & Tushman, 
1990). These authors see technological development as periods of ferment (with design 
competition, technological races, and technological discontinuities), followed by long 
periods of more incremental technological change, with an elaboration of dominant 
designs. It is likely that, in many cases, standards are in fact the embodiment of such 
dominant designs. 
 

In many network markets and/or markets with compatibility standards (e.g. colour 
television, Compact Disc, fax, mobile telephony, bank/chipcards, RFID tags, MP3 players, 
DVD), the availability and content of the standards affected both the rate and the 
direction of technological change. One could be forgiven to expect that this relationship 
would be clear from empirical literature. However, this is not the case. After a stream of 
literature addressing the role of compatibility standards by ((Katz & Shapiro, 1994) 
(David & Steinmueller, 1994) (Schmidt & Werle, 1998) (Besen & Saloner, 1989)), few 
papers actually studied or tested the relationship between standards and the direction 
of technological change. (A notable exception to this is (Fontana, Nuvolari, & Verspagen, 
2009)). With this paper we hope to address this omission. In order to do so, we study 
the link between standardisation and research in economics on technological 
development using the concept of technological trajectories. We assume this to be a 
two-way relationship: technological trajectories open windows of opportunities to 
create standards, whereas standards influence the further development of these 
trajectories - and, at one point in time, might be challenged again by new technological 
opportunities. 

This paper continues with a technical account of the area in question, which is wireless 
technologies. Section 3 briefly introduces our methodology, describes our patent data 
set, and discusses the empirical result, both at the patent level and at the firm level. In 
Section 4 we address the relationship between the patent networks and claimed 
‘essential patents’. Section 5 concludes. 

 
2. Technological change and standardisation in wireless technologies  
 
In this paper, we collect and analyze data in the technological field of wireless 
communications. This sector has experienced substantial technological changes and 
strong economic growth, and the development and adoption of standards (such as GSM 
and W-CDMA1) are believed to be instrumental in these. Also the use and impact of 
patenting in this sector have received considerable academic interest (Leiponen, 1985) 
(Bekkers, Duysters, & Verspagen, 2002) (Lemley & Shapiro, 2006). Wireless and mobile 
telecommunications involve a wide range of relevant technologies. Here we focus 
specifically on what is perhaps the most important single technology area: the way radio 
signals are coded and transmitted (called the radio transmission protocol and the 

                                                             
1 In Europe also known as UMTS.  
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modulation techniques) and the way in which larger numbers of users are 
simultaneously served, sharing common radio spectrum resources (called multiplexing 
techniques). In order to be able to interpret the technological trajectories in Section 3 
below, we will now summarise and discuss the main developments and engineering 
challenges in mobile telecommunications for various generations (generally referred to 
as 1G, 2G, 3G, and 4G), and the associated standards. Annex A summarises these 
generations and their most important aspects.  

In the early 1980s, the first cellular mobile telephony systems were introduced (dubbed 
1G). For such systems, the coverage area was divided into cells, each with their own 
capacity, and within every single cell each simultaneous call is assigned its own 
frequency. Handing over a call from one cell to another for a moving caller was one of 
the main technological challenges, as well as a mobility management system able to 
trace users and forward incoming calls to them. Although these first generation systems 
were much more successful than expected, their total system capacity was limited and 
the costs per user were high. The technology was also fragmented, with almost a dozen 
different standards in use.  
 
A breakthrough was reached with the development of a single, harmonised European 
standard for digital cellular systems, called GSM. This standard was developed by the 
European Telecommunications Standards Institute, ETSI. Being the dominant second-
generation standard, it offered a high system capacity, of up to dozens of millions of 
subscribers per network. Their TDMA techniques, whereby a number of users share the 
same transmitters, enabled considerably lower costs per user. The main engineering 
challenges can be traced in the technical literature during the early development period, 
in particular by looking at the proceedings of IEEE conferences that brought together 
researchers in this area (see, for instance, (Fuhrm & 
Fremin, 1986), and handbooks (e.g. (Garrard, 1998), (Hillebrand, 2003), (Mouly & 
Pautet, 1992). Particularly revealing are the proceedings of the ‘Nordic seminar on 
digital land mobile radiocommunication’ (Nordic_Seminar, 1995). The main engineering 
challenges – identified as such - included the synchronisation and timing within a cell 
(addressed by a method called timing advance), dealing with reflection of fast radio 
signals (‘multipath fading’), and efficient compression of digital speech (see Annex A for 
more details). GSM eventually became the dominant world standard, now serving more 
than 3 billion users.  
 
Although the 2G technology was upgraded to support data transmission, its data speeds 
and other features made it quite unsuitable for many data applications that were 
becoming popular in fixed networks (e.g. internet access). One of the main design 
challenges for 3G was much better support for data services. At the same time, 3G 
systems were supposed to meet many other – often conflicting - design requirements, as 
shown in Annex A. Perhaps most importantly, given the expected growth of data usage 
and the limited willingness of subscribers to pay more, the new technology had to 
reduce considerable the cost price per unit of data (Annex C illustrates how these unit 
costs decrease per generation). For this paper, again, the technical challenges were 
identified by studying the technical literature (e.g. (Berruto, 1998),(Evci & Kumar, 
1993), (Buitenwerf, 1994)) and (IEEE) conferences proceedings, as well as several 
handbooks (Hillebrand, 2003), (Holma & Toskala, 2000). Fierce technical discussions 
took place, both within and outside the relevant standards bodies. The standard that 
eventually would become most successful came (again) from ETSI and was later aligned 
with standards bodies around the world. At the decision stage, five different basic 
technologies were proposed (see (Bekkers, 2001) for a detailed discussion). The CDMA 
technology, in which the transmissions of different users are identified by very fast, 
unique codes, finally emerged as the winner. This technology was pioneered by the US 
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firm Qualcomm that had already commercialised a 2G CDMA a few years earlier. 
Although this system (called IS95/cdmaOne) arrived when GSM had already reached a 
critical momentum and was not able to win a substantial part of the world market, it did 
show that CDMA technology could be successfully employed in a real life system. More 
specifically, it proved that power control, the single biggest engineering challenge for a 
functioning CDMA system, could be mastered. Qualcomm’s patented open and closed 
loop power control methods proved the critics wrong.2  
 
Around 2008, the standards for the latest generation of mobile telecommunications 
networks (often dubbed 3.9G3 or 4G) were published. One of the main design was to 
cater for the ever increasing data speeds per user, and – again - bring costs per data unit 
down. Initially several technical proposals competed in this field, including Mobile 
WiMax/IEEE 802.16e, Ultra Mobile Broadband (UMB) and Long-Term Evolution (LTE). 
Currently it seems as if the latter technology, which evolved from the current W-CDMA, 
will be the winner. 4G systems, again, turn to a rather different radio technology, in this 
case OFDM. Howeverm it is till to early to expect these developments to be found in our 
empirical analysis below as methods based on patent citations require some time lag for 
such citations to be collected. 
 
 
3. Empirical analysis of technological trajectories 
 
The dataset for this paper was constructed using the Derwent Innovation Index (DII). 
One advantage of this database is that patent families are classified in a sensible way 
(see (Sipapin & Kolesnikov, 1989), among other papers, for a discussion on the different 
ways in which patent families can be constructed) while the so-called manual code and 
re-phrased abstracts help to adequately assess the scope of patents. On the basis of a 
combination of a keyword search and a technological classification search, aiming at a 
focussed set yet having a high recall, we identified 17,402 patent families that contained 
at least one US patent. A number of patent families contained more than one US patent; 
this can happen with patent continuations or divisional patents; for a discussion see 
(Hegde, Mowery, & Graham, 2007). After recalling these patents4, we constructed a 
database of 19,196 unique US patents related to our selected technological field. For 
constructing the citation relationships between the patents, we utilised the NBER patent 
database (Hall, Jaffe, & Trajtenberg, 2001). We used the update of this data set through 
2006 that was compiled by Bronwyn H. Hall and made available in March 2009. Note 
that this data set does not include the most recent patents we retrieved, resulting in a 
final effective data set of 12,288 patents, with granting dates up to 2006.5 Assignee 
matching was, however, not done via the Compustat concordance table, but rather via 

                                                             
2 This scepticism is obvious from the following quote: ‘From the beginning, critics warned that the compelling 
theoretical potential of CDMA would never prove out in the field; dynamic power control in rapidly fading 
environments would be its Achilles heel; interference would vastly limit capacity; systems under heavy load 
would be unstable; and power balancing would make infrastructure engineering a nightmare.’ Source: Bill 
Frezza, Wireless Computing Associate, “Succumbing to Techno-Seduction,” Network Computing, April 1, 
1995. http://www.networkcomputing.com/604/604frezza.html 
3 The term ‘3.9G’ has been coined because the current version of the most promising standards, LTE, does 
not met yet the criteria that the International Telecommunications Union (ITU) defined for fourth 
generation networks.  
4 Our earlier efforts to construct technical trajectories were unsatisfactory, which in retrospect can be (at 
least partly) attributed to the fact that the structure of patent families in the US can result in the masking of 
key patents. Particularly for patents that are considered to be very valuable to their owner, it is worth the 
cost and effort associated with divisional and continuation patents.  
5 As the main technology decision for 2G/UMTS was taken in January 1998, and the first release of the 
standard was published in January 2000, we believe this time frame to be sufficient to analyze the 
technological field up to and including 3G. 
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the DII database6, as this proved to be more appropriate in our context. In cases where 
patents were assigned both to individual persons and to companies, we attributed the 
patent to the company in question. Finally, the data on essentiality claims for standards 
(see Section 4 below) was retrieved from the public ETSI IPR database 
(www.etsi.org/ipr) and cleaned using the OECD/EPO PatStat database.  
 
In order to see the changes over time, we analysed five distinct periods, each starting in 
1976 and ending in 1985, 1990, 1995, 2000, and 2003 respectively. We assigned patent 
to these periods according to their priority dates, as we believe this data comes closes to 
the actual invention. Table 1 shows all firms owning 100 or more in our data set, in their 
presence in the various networks (i.e. all patents that are not isolates). Note the 
relatively long tail; there are another 1350 patent owners in the data set, of which 1130 
own 5 patents or less. Slightly more than 10% of the 1350 entities are individual owners 
(i.e. patents for which only one or more individuals are mentioned as assignees).  
 
Table 1: Patent ownership in the networks at the different time periods 

Firm Data set 
Network 
1976-1985 

Network 
1976-1990 

Network 
1976-1995 

Network 
1976-2000 

Network 
1976-2003 

Ericsson 877   12 140 663 790 
Motorola 869 4 49 214 576 744 
Lucent 804 18 38 113 570 699 
Qualcomm 762   6 61 414 685 
Nokia 712     47 454 633 
NEC 672 28 61 143 475 576 
Interdigital 444     33 156 413 
Samsung 394     5 230 335 
Northern Telecom 326   2 15 240 294 
Matsushita 312     31 197 273 
Philips 231 5 27 55 154 189 
Sony 228   1 18 147 191 
Fujitsu 223 6 11 33 129 178 
NTT 193 3 5 31 118 177 
Siemens 191 2 3 19 129 158 
Alcatel 161     35 123 141 
Toshiba 156   2 30 83 131 
Mitsubishi 136   2 17 74 120 
LG 124     2 70 103 
Hitachi 121   4 14 69 97 
Other 4352 84 230 821 2450 3435 
Total 12288 150 453 1877 7521 10362 

 
 
The networks were analysed using the method proposed by (Hummon & Doreian, 
1989), which we will refer to as HDA (Hummon and Doreian Approach). The results are 
depicted in Figure 1. The top path of the earliest network (1976-1985) includes seven 
patents, starting with US 4,028,496. This patent can be found at the top left side of the 
smaller of the two components shown in the figure. From Annex B, which summarises 
the main focus of each of the patents in this figure, it can be seen that all patents in this 
earliest network are related to FDMA or TDMA systems (i.e. 1G or 2G systems). Indeed, 
we do see the various engineering challenges that were presented in Section 2 above, 
such as time offset / advance timing and burst synchronisation / formatting. Channel 
equalisation techniques do not show up in the top main path. Also speech compression 
techniques are absent, but can be attributed to the fact that our data set focused on 
                                                             
6 In the DII database, owners are categorized into standardized names using a ‘who-owns-who’-type of 
approach, where all subsidiary owners for 50% or more are attributed to a mother firm. Some firms using 
different legal entities were merged manually.  

http://www.etsi.org/ipr


  -- 7 -- 

radio interface technologies, which is a distinctly different field. Extending the period up 
to 1990 ‘bends’ the trajectory to include some other patents, but the technology fields 
do not change much.7  

 

 
 

Figure 1: Trajectories for the five time periods 

Interestingly, if the time period is extended to cover all patents with priority dates 
between 1976 and 1995, the trajectory ‘breaks’. This is a feature that, to our knowledge, 
has not yet been observed in papers using this methodology in a technological field. 
There has been concern that the HDA methodology would have a (too) strong bias 
towards incremental, continuous technological paths (see Nomaler & Martinelli, 2010 
for a discussion). Our finding, however, refutes such concerns and shows that if a newer, 
robust trajectory is emerging, which is solidly linked to other sets of early patents, the 
methodology is able to abandon the original path instead of trying to stick to it.  
 
This third trajectory starts at the lower right corner in Figure 1 and ends at the bottom 
left corner, coinciding in time with the development of the third generation CDMA 
systems. Indeed, if we look at the engineering challenges (see Section 2), we observe 
that CDMA came with its own, unique set of engineering challenges, often completely 
different from those relating to 2G/TDMA technologies. The major challenge, power 
control, is firmly embedded in the trajectory, including US patent No. 5,056,109, 
invented by K. Gilhousen8 and assigned to Qualcomm. This is the fourth patent in the 
trajectory, preceded by a patent from Harris, an American company that produces 
                                                             
7 Note that two of the three patents encompassed in this new trajectory are end points, and it is known that 
in the Hummon and Doreian methodology, the resulting start and end points of top main paths may be 
relatively arbitrary. 
8 K. Gilhousen is a co-founder of Qualcomm and is listed as inventor in over 47 US patents, often together 
with another Qualcomm co-founder, I.M. Jacobs (who long served as chief executive officer of this firm). 
They both feature on two top citing patents, collecting a total of 1,160 and 782 citations in DII respectively. 
Both men worked together on aeronautical research in the 19070s for NASA. 
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military equipment. Even though the CDMA technology originates from the military 
field, this particular patent is not really CDMA related and should be seen as an arbitrary 
starting point. That is not true for the two following patents, both invented by W. 
Schmidt of Philips Kommunikation Industrie (PKI) in Nürnberg, Germany, part of the 
Philips Company. These two patents are the earliest ones in our network actually using 
the words ‘Code Division Multiple Access’. Interestingly, the first patent concerns 
asymmetric multiplex technologies for the up- and downlink, an idea that was not 
ultimately used for 3G but would eventually be chosen for 4G. The fourth and fifth 
trajectory keep the same starting leg as the third one, but bend towards other patent 
sets, something that is often observed in HDA analysis. Power control technologies 
(including open and closed loop ones) are becoming more and more prominent.  
 
All in all, we can conclude that the results of the HDA analysis are to a very large degree 
consistent with the standardisation roadmap, and are in line with the associated 
technical challenges identified in the technical literature.  
 
Analysis at the firm level 
 
Up to this point, we have basically taken individual patents as the unit of analysis. Now, 
we move one abstraction level higher and take firms as the unit of analysis. In order to 
do so, we aggregate the full, relevant patent stock to the firm level. Annex D shows the 
statistics of this operation for each of the periods we distinguish. Firstly, we address the 
question whether there are clear-cut relations between various indicators that, over 
time, have been taken by authors as proxies for the importance of firms in such 
networks. More specifically, we focus on received citations (which we corrected for the 
average yearly citation rate as well as for self-citations), the SPL as specified in the 
Hummon & Doreian methodology, and the betweenness centrality (as known from 
Social Network Analysis). Table 2 reports on the rank correlation between these 
indicators and shows that they are all strongly and significantly related, in each of the 
time periods. In other words: firms that are supposedly ‘important’ in the technology 
field score high on all indicators.  
 
 
Table 2: Rank correlations for (corrected) citations, SPLC, and betweenness 

Variables 1976-1985 1976-1990 1976-1995 1976-2000 1976-2003 

Rank citations 0.7124* 0.6207* 0.6988* 0.7744* 0.6131* 

Rank SPL 0.6209* 0.5172* 0.6346* 0.7451* 0.7434* 

Rank betweenness 0.5359* 0.5616* 0.6381* 0.7085* 0.6242* 

Observation 18 29 34 41 45 
Note: Tau Kendall Rank Correlation. Citations are corrected for self-citations and for the average number of 
citations of patents in the same year. ‘*’ indicates 5% significance level. 
 
Next, we have examined the citation network between firms (Figure 2 to Figure 6). 
Detailed data of the citation behaviour of each of the firms can be found in Annex E, 
which also reports on the self-citing. Not surprisingly, given our earlier findings, these 
networks grow and get more intertwined over time. Especially the network in the latest 
period can be characterized as a dense network, not dominated by a single party from 
which knowledge flows to others (as far as patent citations do represent knowledge 
flows at all) but rather a network in which a about a dozen of central players regularly 
draws upon each other’s knowledge.  
 



  -- 9 -- 

 
Figure 2: Firm network, 1976-1985 

 
Figure 3: Firm network, 1976-1990 

 
Figure 4: Firm network, 1976-1995 

 
Figure 5: Firm network, 1976-2000 

 
Figure 6: Firm network, 1976-2003 

Note: In the figures above, the thickness of the lines represents the strength of the ties (as the sum of 
incoming & outgoing citations) and the arrows represents the direction in which the knowledge is flowing. 
The size of the node is proportional to the number of self citations. 
4. The relationship between patent networks and claimed ‘essential patents’ 
 
Standards bodies face the challenge of ending up in situations whereby patent owners 
would not be willing to license other parties that want to adopt the standards. This is 
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especially troublesome for so-called ‘essential patents’: those patents that are 
indispensible in order to make products that comply with the standards, because there 
are no alternative means to do so. To this end, most formal standards bodies have 
adopted a so-called FRAND (Fair, Reasonable and non-obligatory) policy. Under this 
policy, members are obliged to notify of any essential patent they hold, and are 
requested to issue a public statement that they are willing to license these under the 
FRAND conditions (which almost every member eventually does9). Over time, the 
number of patents notified under FRAND policies has grown strongly. For recent mobile 
telephony standards, over 1,000 unique patents are claimed by more than 60 different 
owners (Bekkers & West, 2009). This may lead to considerable transaction costs and 
delays, as well as to high cumulative licensing costs (‘royalty stacking’), though the latter 
point is a subject of discussion (see (Lemley & Shapiro, 2006) and (Geradin, Layne-
Farrar, & Padilla, 2008) for proponents respectively opponents of this view.  
 
A fascinating question is whether the claimed essential patents are also the technically 
most important or valuable patents in the particular field of technology. Whether this is 
the case will depend, among other things, on the technical inclusion process: on the 
basis of what considerations do the committees that draft standards include patented 
technology? Recent work presented evidence that both patent quality and the 
bargaining position of its owner are significant determinants of this inclusion, though 
the effect of the latter is stronger (Bekkers, Bongard, & Nuvolari, 2009).  
 
For this paper, we compared essential patent claims with our data set. Data on 
essentiality claims were taken from the public ETSI IPR database. After cleaning up and 
harmonising the entries, we identified 538 USPTO patents. Of these, 219 also appear in 
our sample. (Note that essential patents may cover all different aspects of a standard, 
and since our study focuses on radio interface technologies only, patents in areas such 
as signalling, compression, human interface, etc. will not be present). We can observe 
that the ownership of essential patents is – roughly speaking – in the hands of the same 
group of firms that are central in both the patent data set and in the top main paths 
(Table 3), but that their relative shares differ considerably.10 More specifically, 
Interdigital and Qualcomm have a much higher share in essential patents than in the 
other measures.  
 
Table 3: Patent essentiality claims share vs. other patent shares 

 Data set Claimed essential 
at ETSI? 

Network 2003 Toppath trajectory 
2003 

Ericsson 7% 2% 8%  
Motorola 7% 5% 7%  
Lucent 7% 1% 7% 1 
Qualcomm 6% 24% 7% 29% 
Nokia 6% 8% 6% 5% 
NEC 5% 2% 6%  
Interdigital 4% 41% 4% 19% 
Samsung 3%  3% 5% 
Northern Telecom 3% 3% 3%  
Matsushita 3%  3% 5% 

                                                             
9 If a patent owner refuses to do so, the standards body eventually has to find an alternative definition for 
the standard, not drawing upon that patented technology, or has to abandon the work on the standard 
altogether. 
10 Please note that these numbers may differ considerably from those presented in other papers, as they 
reflect essential patent claims on radio interface technologies only. Firms that score low here might, in fact, 
have a considerable overall share in essential patents because of patents in other technological areas.  
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Philips 2%  2% 1 
Sony 2%  2%  
Fujitsu 2%  2%  
NTT 2%  2% 5% 
Siemens 2%  2%  
Alcatel 1%  1% 5% 
Toshiba 1%  1%  
Mitsubishi 1%  1%  
LG 1%  1%  
Hitachi 1%  1%  
Other 34% 14% 31% 7% 

 
We performed an analysis on the individual patent level: does the fact that a patent is in 
the top main path increase the likelihood to be claimed as being essential? Our results 
show that essentiality claims do show a significant relation to any of the indicators we 
tested (overall patent share, patent share in network, patent share in toppath 
trajectory). This generates further evidence for the view that essential patents are 
included in a standard often for other reasons than merely their importance in the 
technical field.  
 
 
5. Conclusion and discussion 
 
Our understanding of standardisation has grown far off that of being a narrow, technical 
issue, interesting for engineers only. It is increasingly recognised as a core alignment 
mechanism, in which the interest of various types of stakeholders are being negotiated. 
It has major economic and political consequences, and covers not only technical but also 
many social, economic and legal aspects. Especially in ICT and other sectors in which 
network effects reign, dominant compatibility standards can be expected to determine 
the rate and direction of technical change. Despite considerable attention that has 
recently been paid to the investigation of technological trajectories by analysing patent 
networks, few papers have explored the link between technological change and 
standardisation. This paper aims to address that gap.  
 
Studying one of the prominent ICT topics, wireless communications, this paper uses a 
large patent data set in order to analyse technological trajectories. In a data set based on 
over 17,000 patent families within the ‘wireless mutiplexing’ technology (a narrowly 
defined but nevertheless one of the most important technological areas for wireless 
systems) we find that the discovered technological trajectories correspond by and large 
with standardisation processes. More specifically: we observe that the major 
engineering challenges, as identified by examining the technical literature, are indeed 
central to the trajectories found by applying the Hummon & Doreian methodology. This 
confirms the usefulness of this method in identifying the main technology contributions 
in a given field. Having no intention to hypothesise a causal link from patenting 
networks to standards, or the other way around, we would like to characterise our 
finding as evidence of the interplay between both.  
 
Another finding is that when analysing the patent network for different time periods, 
the so-called top path does not only bend but also breaks. To the best of our knowledge, 
this has not been the case for published studies using this methodology to date. This 
dismisses concerns that this methodology has a (too) strong bias towards incremental, 
continuous technological paths and would therefore not be a proper representation of 
the real flow of technical development. Our network structure of firms is much less 
concentrated than one might tend to think, in the context of ‘tipping’ markets and strong 
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positive externalities. After careful name cleaning (using a ‘who owns who’ type of data 
base), we still count almost 1400 different patent owners in our narrowly defined 
technological area. (Consistency checks on the titles have assured that all patents belong 
to the selected technology area.) A little less than 10% of these are (only) assigned to 
individual owners. With the largest patent owners not having more than 6% of the total 
patent stock in this field, we calculate an HHI of only 0.026. The largest 20 patent 
owners are part of a dense network in which all companies cite each other’s knowledge, 
without apparent domination. Measures such as (corrected) received citations, SPL, and 
betweenness centrality are all strongly correlated for the firms in our sample. 
 
In most formal standard setting environments, companies are obliged to adhere to an 
IPR policy requiring them to report the ownership of patents that are essential to the 
standard (i.e. patents that are indispensible in order to make products that comply with 
the standards). Interestingly, there is little or no relationship between patents being 
claimed as ‘essential’, and the position of these patents in the knowledge network. This 
is in line with recent arguments that these claimed essential patents are more the result 
of strategic manoeuvring by the parties drafting the standard than due to their technical 
merit.  
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Annex A. Summary of main technological generations / standards 

 1G 2G 3G 4G 
Most successful 
standard(s), main 
decision 

AMPS/TACS (1970s) 
NMT (1970s) 

GSM (1986) W-CDMA/UMTS (1998) 3.9G: LTE (frozen 
December 2008)  
4G: LTE-A 

Commercial services11  1983 (US), NMT (1981) 1992 2002  2009 (small scale) 
Sub-standards 
/improvements 

 2.5G: GPRS (2000): packet 
data services 
EDGE (2003)  

3.5G: HSPDA (2006): 
Improved data rates 

 

Design requirements - Low to medium 
capacity mobile 
telephony 

- High-capacity voice 
capacity at lower 
system price 

- Cost-efficient coverage 
in both urban and rural 
areas 

- Support wide diversity 
of services including 
internet access 

- Substantial 
improvement in data 
speed 

- Low costs for base 
stations and terminals.  

- Low power 
consumption at 
terminals 

- Up to 300 km/h 
- Cost-efficient coverage 

in both urban and rural 
areas 

- Handoff to 2G systems 
- Minimizing required 

number of cell cites / 
antenna towers 

- Substantial 
improvement in data 
speed 

- Lowering 
infrastructure costs per 
capacity unit 

- All-IP core network 
integration 

- Flexible spectrum use 

Candidate technologies 
(*: winner for most 
successful standard) 

*FDMA (analogue) FDMA (analogue) 
*TDMA 
CDMA 

TDMA (A-TDMA) 
TDMA/CDMA hybrid 
*W-CDMA 
OFDM/ODMS 

CDMA  
*OFDM12  

Main technological 
challenges 

Various, including 
handover and handsets 

- Synchronisation and 
timing within a cell 
(solved by ’timing 
advance’) 
- Multipath fading (solved 
by the channel equalizer 
(‘Viterbi equaliser’) and 
frequency hopping) 
- Speech compression 
- Handover processes 
- Energy consumption 

- Power control within a 
cell 
- PN code sets 
- Timing/synchronization 
between adjacent cells 
- Signaling / pilot channel 
- Integration with 2G (inc. 
handoff) 

Signal to noise ratio  

 

                                                             
11 It is often hard to determine when the actual introduction of commercial services takes place, as 
technology demonstrators and trials gradually become commercial services. This row aims to indicate the 
date when which the first real commercial services with a substantial geographical coverage were offered.  
12 Combined with SC-FDMA uplink and with MIMO/ SDMA. 
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Annex B. Trajectory evolution: Analysis of the patents in the top main paths for 
each time period 

Patent # Assignee 19
85 

19
90 

19
95 

20
00 

20
03 

Priority 
year 

Main challenge addressed 

US4028497 NEC 1 1    1977 Handling frequency variations 
US4107608 NEC 1 1    1979 Burst synchronisation 
US4346470 IBM 1 1    1981 Burst synchronisation 
US4715033 NEC 1     1985 Burst formatting 
US4797678 NEC 1     1985 Time offset / advance timing 
US4574379 Lucent 1     1986 Other 
US4644534 ANT Nach-

richtentechnik 
1     1986 Time offset / advance timing 

US4418425 IBM  1    1983 Burst synchronisation 
US4835731, US4905302, 
US5020132 

General Electric  1    1988 Other 

US5131007 General Electric  1    1991 Other 
US4528656 Harris   1 1 1 1985 Frequency allocation 
US4697260 Philips   1 1 1 1986 Asymmetric multiplexing for up- and downlink 
US4765753 Philips   1 1 1 1987 Handover 
US5056109 Qualcomm   1 1 1 1991 Power control (loop) 
US5164958 Cylink    1   1992 Handover 
US5295153 Ericsson   1   1993 Frequency block allocation 
US5363404 Motorola   1   1994 Other 
US5530716 Motorola   1   1996 Identification of coded signal 
US5642348 Lucent   1   1996 Other 
US5629934 Motorola   1   1997 Power control (loop) 
US5768269, US5966376 Terayon   1   1997 Other 
US5950124 Aironet   1   1997 Dynamic parameters (e.g. PN codes) 
US6137840 Qualcomm   1   1997 Power control (loop) 
US5805583 Terayon   1   1998 Modulation/demodulation 
US5267262 Qualcomm    1 1 1993 Power control (loop) 
US5383219 Qualcomm    1 1 1995 Power control (loop) 
US5461639 Qualcomm    1 1 1995 Power control (loop) 
US5570353 Nokia    1 1 1995 Power control (loop) 
US5694388 NTT    1 1 1996 Modulation/demodulation 
US6034952 NTT    1  1997 SIR 
US6385184, US6487188, 
US6526032, US6590883, 
US6490263 

Matsushita    1  2000 Pilot channel & power control combination 

US6512931 Samsung    1  2000 Power control (loop) 
US6654358 Samsung    1  2000 Power control (loop) 
US6831910 Samsung    1  2000 Signalling 
US6747969 Philips    1  2001 Signalling 
US6868279 Ericsson    1  2001 (power) 
US6999427 NTT    1  2001 Power control (loop) 
US6311070 Northern Telecom    1  2002 Power control (loop) 
US6795712 Skyworks    1  2004 Power control (loop) 
US6055231 Interdigital     1 1998 Modulation/demodulation 
US6208632 Sharp     1 1999 Pilot channel 
US6490263 (same family 
as US6385184) 

Matsushita     1 2000 Pilot channel & power control combination 

US6564067 Alcatel     1 2001 Power control (loop) 
US6748234 Qualcomm     1 2002 Power control (loop) 
US7106700 Lucent     1 2002 Dynamic parameters 
US6934526 Samsung     1 2003 Dynamic parameters / system mode changes 
US7136666 Lucent     1 2003 Power control (loop) 
US6907010, US7126922 Interdigital     1 2004 Dynamic parameters 
US6985473 Qualcomm     1 2005 Dynamic parameters / system mode changes 
US7009955 Interdigital     1 2005 Power control (loop) 

 

Notes: patents that are members of the same family and present in the same trajectory are shown 
in one column.  The years indicate the periods in question, being 1976-1985; 1976-1990; 1976-
1995; 1976-2000; and 1976-2003. 
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Annex C. Illustration of costs per data unit dropping per generation 

 

 

This figure is taken from a report by the Global mobile Suppliers Association (GSA, 
2005). 

 

 

Annex D. Partitioning the network into companies 

 Raw Network Company Partitions Reduced Company Partitions 

 
Patent

s 
Citation

s 

No 
Isolate

s 

Companie
s 

Arcs 
Loop

s 
Min Max 

Cutpoint
s 

Companie
s 

(reduced) 

Links 
(reduced

) 
198

5 
333 153 150 11 32 6 1 40 2 7 17 

199
0 

734 713 453 21 103 9 1 138 4 11 40 

199
5 

2375 6058 1877 36 423 24 1 811 42,54 11 32 

200
0 

8660 31185 7521 45 
103

0 
36 1 

293
4 

76,21 19 74 

200
3 

12288 43861 10362 45 
117

3 
40 1 

406
1 

105,1 18 71 
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Annex E. Citing patterns between the 20 largest firms, 1976-2003 

The table below shows for each company in a row how often it is cited by the companies 
in the columns. The grey cells report the number of self-citations, whereas the last 
column (‘self-cites’) expresses the percentage of the total number of citations received.  

cited → 
↓ citing eri mot luc qua nok NEC int sam not mat phi son fui NTT sie alc tos mit hit Other Total 

self-
cites 

Ericsson 844 206 293 195 360 134 450 92 92 100 61 33 28 54 69 75 14 47 24 800 3971 21% 

Motorola 383 544 317 330 213 112 170 114 88 74 36 64 45 58 41 47 33 58 29 891 3647 15% 

Lucent 215 148 532 276 114 88 348 91 70 35 27 20 23 35 25 21 11 21 24 935 3059 17% 

Qualcomm 371 405 305 1622 206 163 770 241 166 122 35 44 37 74 22 35 16 30 83 934 5681 29% 

Nokia 244 96 122 129 569 72 133 95 66 52 28 31 28 52 51 32 11 29 34 376 2250 25% 

NEC 120 86 80 78 100 299 139 42 27 83 29 28 67 44 18 33 28 27 28 494 1850 16% 

Interdigital 66 29 48 65 45 31 506 45 13 23 7 4 11 7 5 14 2 21 18 253 1213 42% 

Samsung 28 31 42 41 18 25 26 95 24 5 5 4 4 3 2 8 2 18 4 85 470 20% 

Northern 77 35 79 76 47 23 40 51 69 9 11 7 12 7 6 3 1 4 17 170 744 9% 

Matsushita 31 12 35 16 31 77 23 21 3 91 4 11 13 18 12 14 16 21 20 87 556 16% 

Philips 70 42 43 83 55 26 92 6 6 10 32 11 5 6 16 14 5 10 6 208 746 4% 

Sony 23 9 13 21 16 23 29 11 1 17 6 65 8 3 5 4 4 4 10 67 339 19% 

Fujitsu 23 9 13 19 13 50 11 19 6 13 4 2 32 9 1 5 3 18 3 66 319 10% 

NTT 68 18 35 52 46 98 81 36 12 102 7 15 29 84 2 13 9 38 36 132 913 9% 

Siemens 12 10 16 36 18 14 47 7 7 2 4 2 4 5 28 3 1 16 6 84 322 9% 

Alcatel 56 16 26 19 44 8 22 6 10 3 5 0 1 7 17 29 6 6 4 104 389 7% 

Toshiba 29 23 22 14 40 39 21 20 8 29 6 15 16 3 6 9 64 5 6 79 454 14% 

Mitsubishi 20 14 16 9 22 19 19 5 2 6 2 8 7 4 4 0 3 40 2 42 244 16% 

Hitachi 13 10 9 19 11 28 38 25 6 17 6 5 5 8 4 3 2 0 39 42 290 13% 

Other 517 365 451 482 272 212 790 135 117 147 117 109 63 86 72 68 56 58 74 n/a   

Total 3210 2108 2497 3582 2240 1541 3755 1157 793 940 432 478 438 567 406 430 287 471 467    
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