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An Agnostic Look at Bayesian Statistics and Econometrics

RUSSELL DAVIDSON∗†
McGill University, CIREQ, and GREQAM

Bayesians and non-Bayesians, often called frequentists, seem to be perpetually at logger-
heads on fundamental questions of statistical inference. This paper takes as agnostic a
stand as is possible for a practising frequentist, and tries to elicit a Bayesian answer to
questions of interest to frequentists. The argument is based on my presentation at a debate
organised by the Rimini Centre for Economic Analysis, between me as the frequentist “ad-
vocate”, and Christian Robert on the Bayesian side.
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1 Introduction

Bayesians are of course their own worst enemies. They make non-Bayesians accuse them of
religious fervour, and an unwillingness to see another point of view. I’m not going to engage in
a religious war – history shows that such wars achieve nothing at a very high cost. In a sense,
it is easy for non-Bayesians to take cheap potshots at Bayesians, and I hope I will resist the
temptation to do that. Rather, I will expound some matters of current concern to frequentist
econometricians, and ask some questions about what a Bayesian take on these might be. It
is no doubt just as easy for Bayesians to take cheap potshots at unthinking frequentists, who
may think, for instance, that the problems posed by some asymptotic theory or another are
fundamental, while a Bayesian perspective reveals these to be non-problems. I won’t take the
time to defend such frequentists either.

The outlook I take in this paper is what I term “agnostic”. By that I mean not only that I
won’t come down on one side or the other, for or against Bayesian methods, but further that I
don’t see any interest in trying to do so. It seems plain that both Bayesian and non-Bayesian
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approaches have contributed a lot to our understanding of the workings of the economy, and of
important issues in many other disciplines.

Notwithstanding, in my presentation at the Rimini debate, I set myself up as the Counsel
for the Prosecution, apparently making a case against Bayesian methods, but in fact trying to
pose some hard questions about how a “practising” Bayesian would set about tackling issues
that have earned much recent attention in the literature styled as “frequentist”; all of this from
the point of view of a “practising” frequentist. In taking this position, I was aware that I threw
Christian Robert, my “opponent”, on the defensive, but this was not just a debating trick (al-
though I confess it was that), but also a way for me to elicit answers from Bayesians to questions
to which I genuinely had no answers. Since as a frequentist I was very much in the minority at
the Rimini meeting, I convinced myself that my tactics were legitimate, and I believe that, both
at the meeting in many of the presentations made there and in Christian’s reply, satisfactory
answers to many of my points were made.

2 What I Won’t Discuss

Out of the many points that have traditionally aroused passions on one side or the other, here
is a list of those that, as a good agnostic, I do not wish to discuss. Some interesting discussion
of some of these points is found in an exchange between Gelman (2008) and Senn (2008), that
has a certain resemblance to the current exchange between Christian Robert and me. I try not
to repeat their discussion.

• The likelihood principle as fundamental to all inference.

I think that many, and probably most, Bayesians do adhere to this principle. Chris-
tian Robert asserts that he “simply does not believe meaningful inference is possible
without this likelihood function.” Well, I don’t agree, but I won’t attack this issue
head on, as I think that there are quite deep issues, about which I will say more in the
next section, concerning meaningful inference, about which we may agree indepen-
dently of belief or not in the likelihood principle.

• Point estimates (with standard errors) are inferior/superior to a posterior distribution.

Here I adopt a perfectly agnostic point of view. Since we have all learned many useful
things using each one of these approaches, it seems unnecessarily combative to try to
rank them.

• The Bayesian approach is the only coherent method for incorporating prior knowledge.

There are many circumstances in which we really, honestly, do have prior knowledge,
and I am happy to concede that the standard Bayesian way of combining a prior
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distribution with the information in a data set, as represented by a likelihood, is much
more straightforward to implement that any non-Bayesian approach that I know of.
This is a topic where frequentists, or other non-Bayesians, might well devote some
research effort to try to come up with a comparably simple methodology that doesn’t
involve assigning a probability measure to the parameter space.

• Probability theory is mathematics, and so is not about anything until we apply it to some-
thing.

No fight from me about different applications of the same mathematical structure.
One of the points of disagreement between Bayesians and frequentists is what is
modelled as random, and what as deterministic. Above I allude to a probability mea-
sure on the parameter space. Why not? No mathematical reason, certainly, and so,
if you can come up with a useful interpretation of such a measure, as Bayesians do,
there’s no reason to suppose that there’s anything wrong with two different applica-
tions of the same mathematical theory, one Bayesian, the other frequentist.

• Frequentists make (too frequent?) use of asymptotic theory.

I have heard frequentists reproached by Bayesians for their belief in “asymptopia”,
that is, their regular use of asymptotic theory. I am no great friend myself of many
of the asymptotic methods currently in use. But asymptotic theory is just a way of
getting tractable approximations to distributions the exact forms of which are analyt-
ically intractable. As soon as something better comes along, like the bootstrap, of
which more later, then I for one am happy to leave asymptotics behind.

• Bayesian methods are often too computer intensive.

Here I might take a potshot at those people on both sides of the fence who put no
value on attempts to reduce the computational burden of various computer-intensive
techniques, claiming that it’s more effective to let the computer spend time on a prob-
lem for which a known solution method exists than to devote valuable research time
to speeding up the computations. But research ostensibly aimed at improving algo-
rithms has led many times to improved understanding of the procedures that make use
of the algorithms. I feel strongly that it is important to understand what the computer
is up to when it provides us with an “answer”, and not just treat computer software
as black boxes.

• Bayesian/frequentist methods are unscientific.
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We are all trying to be as “scientific” as we can in our use of econometrics, and I see
no reason for either side to accuse the other of being “unscientific”. Unfortunately
such accusations have been too frequent in both camps.

• There are many difficulties in formulating Bayes’ Theorem in the formalism that is used,
say, in financial economics/econometrics.

I’m not going to argue about its status as a mathematical result. It was nonetheless
a surprise for me that the only formulation of Bayes’ theorem I could find that sits
on top of the usual (Ω,F , P) definition of a probability space was singularly hard to
interpret. I suspect that this is just another manifestation of the fact that the Bayesian
and frequentist approaches are different.

3 Genuine Difficulties for Meaningful Inference

For a frequentist, a model is a set M of data-generating processes (DGPs). Usually some struc-
ture is imposed on the set, the most important being the parameter-defining mapping, which
maps M into a parameter space Θ ∈ Rk. It is often possible to extend the parametric structure to
a group structure. There are so many ways to do this that I won’t discuss them here: suffice it
to say that many of the attempts to import the ideas of differential geometry into statistics make
use of such a structure.

If the group is locally compact, then there exists a left Haar measure on the group, unique
up to a multiplicative constant, which is invariant under left-translation by the group opera-
tion; see, for an early reference Halmos (1950), and a more recent expository one, Rubinstein-
Salzedo (2004). This property makes the Haar measure, defined either on the parameter space
or on the set M, an ideal candidate for an uninformative prior.

However, frequentists, and, I suspect, many Bayesians, use models that are not locally com-
pact in any usable topology. No Haar measure can be defined on these models, viewed as groups
or not, and so no uninformative prior exists for such models. Here we can take note of the vari-
ous attempts to define “improper” priors, noting at the same time that this has been a source of
much controversy among Bayesians themselves.

There exists a much less well-known problem in frequentist theory, one that arises from
similar topological considerations with models that are not locally compact. The problem is set
out in a classic paper, Bahadur and Savage (1956), that has been scandalously neglected except
by a few conscientious frequentists, see for instance Dufour (2003). Here, I wish to illustrate the
problem they raise, because it strikingly sets limits to the extent to which frequentist inference
is possible if one tries to make use of too unconstrained a model. If one can reasonably draw
an analogy between the use of an informative prior by a Bayesian and a frequentist’s use of a
model with assumptions that restrict the sorts of probability distributions the model admits, then

156



RUSSELL DAVIDSON An Agnostic Look at Bayesian Statistics and Econometrics

there is a message from Bahadur and Savage’s result that is relevant to both camps, namely that
no valid inference is possible unless prior information, in some form or another, is available.

The paper of Bahadur and Savage contains a number of impossibility results about inference
on the expectation of a distribution based on an IID sample drawn from it. The thrust of all the
results is that, unless some restrictions, over and above the mere existence of the expectation of
the distribution, are placed on the class of distributions that constitute the model, such inference
is impossible. Impossible in the sense that the size of a test of a specific value for the expectation
is independent of the significance level, and that no valid confidence intervals exist.

The model for which these impossibility results hold must be reasonably general, and the
precise regularity conditions made by Bahadur and Savage are as follows. Each DGP of the
model is characterised by a cumulative distribution function (CDF), F say. The class F of
those F that the model contains is such that

(i) For all F ∈ F , μF ≡
∫ ∞
−∞ x dF(x) exists and is finite;

(ii) For every real number m, there is F ∈ F with μF = m;

(iii) F is convex.

Let Fm be the subset of F for which μF = m. Then Bahadur and Savage prove the following
theorem.

Theorem 1 For every bounded real-valued function φ defined on the sample space (that is, Rn

for a sample of size n), the quantities infF∈Fm
Eφ and supF∈Fm

Eφ are independent of m.

From this theorem, the main results of their paper can be derived. The argument is based
on the fact that the mapping from F , endowed with the topology of weak convergence, to the
real line, with the usual topology, that maps a CDF F to its expectation μF is not continu-
ous. (Actually, Bahadur and Savage use a seemingly different topology, based on the metric of
absolute-variational distance, defined for two CDFs F and G as

δ(F,G) = sup
φ∈Φ
|EFφ − EGφ|, (1)

where Φ is the set of real-valued functions of the sample space taking values in the interval
[0, 1].)

This failure of continuity is of course not specific to the first moment of a distribution. It
applies equally well to all moments, and the impossibility result has recently been extended by
Dufour to wider sets of circumstances, such as the linear regression model.

The Bahadur-Savage result casts a shadow of doubt over the whole enterprise of nonpara-
metric statistics, where most theorists and practitioners want to make as few and as unrestrictive

157



Review of Economic Analysis 3 (2010) 153–168

a set of assumptions as possible about the distributions of the random elements in their mod-
els. I now give an illustrative example of the problem, concrete enough for us to acquire some
intuition about it. I present a one-parameter family of distributions, all with zero expectation.
If an IID sample of size n is drawn from a distribution that is a member of this family, one can
construct the usual t statistic for testing whether the expectation of the distribution is zero. I
will then show that, for any finite critical value, the probability that the t statistic exceeds that
value tends to one as the parameter of the family tends to zero. It follows that, if all the DGPs
of the sequence are included in F , the t test has size one.

Each distribution in the family is characterised by a parameter p ∈ [0, 1]. A random variable
from the distribution can be written as

U = Y/p2 + (1 − Y)W − 1/p (2)

where W ∼ N(0, 1) and

Y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with probability p

0 with probability 1 − p,
(3)

W and Y being independent. It is evident that EpU = 0. Suppose we have a sample of n IID
drawings Ut, each from the above distribution for given p. Let N be

∑n
t=1 Yt. The value of N

is thus the number of drawings with value (1 − p)/p2. We see that Pr(N = 0) = (1 − p)n. The
t statistic for a test of the hypothesis that E U = 0 can be written as

T =
μ̂

σ̂μ
, where μ̂ = 1−n

n∑
t=1

Ut, and σ̂2
μ =

1
n(n − 1)

n∑
t=1

(Ut − μ̂)2. (4)

Conditional on N = 0, μ̂ = −1/p + W̄, where W̄ = n−1 ∑
Wt is the mean of the Wt. Thus the

conditional distribution of n1/2μ̂ is N(−n1/2/p, 1). Then, since Ut − μ̂ = Wt − W̄ if N = 0, the
conditional distribution of nσ̂2

μ is χ2
n−1/(n − 1). Consequently, the conditional distribution of T

is noncentral tn−1, with noncentrality parameter −n1/2/p. We can compute as follows for c > 0:

Pr(|T | > c) > Pr(T < −c) > Pr(T < −c and N = 0) = Pr(N = 0) Pr(T < −c |N = 0). (5)

Now
Pr(T < −c |N = 0) = Fn−1,−n1/2/p(−c), (6)

where Fn−1,−n1/2/p is the CDF of noncentral t with n − 1 degrees of freedom and noncentrality
parameter −n1/2/p.

For fixed c and n, let p → 0. Then we see that Pr(N = 0) → 1. Further, it is clear that
Pr(T < −c |N = 0) also tends to 1, since the noncentrality parameter tends to −∞, which means
that the probability mass to the left of any fixed value tends to 1. It follows from this that the
rejection probability tends to 1 whatever the critical value c, and so the test has size 1 if DGPs
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characterised by random variables distributed according to the present scheme are admitted to
the null hypothesis.

Whatever restriction we may impose in order to restore the possibility of valid inference, we
know that the restriction must exclude the distributions with small p. We are therefore led to
consider a uniform bound on some higher moment. We want to show that such a bound renders
the mapping from F to the expectation continuous. Suppose then, that F is restricted so as to
contain only distributions such that, for some θ > 0, E|U |1+θ < K, for some specified K.

A short proof shows that this restriction restores continuity to the mapping from the model M

to the expectation of the distribution F. Note, however, that, if we want to know the size of a
test concerning the value of the expectation, it is not enough to suppose the existence of the
bound K. We must actually specify what K is numerically in order to bound the Type I error of
the test.

The Bayesian approach normally does not come up against the Bahadur-Savage problem,
because the likelihood is parametrically specified. Of course, the model containing the trouble-
some distributions above is also parametrically specified. Here, then, is the first of my questions
that I wish to pose to Bayesians:

Question:

If we wish to be as agnostic about distributions as do the nonparametric frequentists, within
the Bahadur-Savage limits, is there a Bayesian procedure that can attain comparable generality?
In particular, do the Bahadur-Savage limits manifest themselves in the Bayesian approach?

4 Estimating Equations

The generalised method of moments (GMM) has had much success with econometricians
since it was introduced by Lars Hansen in Hansen (1982). An embarrassingly large number of
econometricians don’t seem to know of the concepts of estimating functions and estimating

equations, introduced by V. P. Godambe back in 1960; see Godambe (1960) and Godambe and
Thompson (1978). It took a while for people to notice, but GMM and the methods related to
estimating equations are more or less the same thing.

A starting point for understanding how to build models based on estimating functions is
the notion of an elementary zero function. A function ft(yt, θ) is an elementary zero function
associated with the observation yt of a sample if the expectation of ft(yt, θ0) is zero, where
θ0 is the true parameter vector (very non-Bayesian!). A little more formally, if we start from a
model M and a parameter-defining mapping θ : M → Θ, then a function f is a zero function
for this model if

Eμ
(
f (y, θ(μ))

)
= 0 for all μ ∈ M. (7)

This states that, if the zero function is evaluated at the true parameters of some DGP, then its
expectation under that DGP is zero. To be useful, a zero function should have a nonzero expec-

159



Review of Economic Analysis 3 (2010) 153–168

tation when evaluated at a value of θ other than the true value. An elementary zero function is
just a zero function that is associated with a specific observation in the sample.

Alternatively, given a set of elementary zero functions, we could define the model M so as
to contain all DGPs for which the functions are indeed zero functions. Here, of course, we run
head on into the Bahadur-Savage problem. Since all that we are specifying is an expectation
(read “moment”), inference is impossible until we impose further restrictions.

If we are prepared to impose such restrictions, then, as the GMM people have abundantly
demonstrated, we can set up and estimate models of formidable generality. Thus:

Question:

What Bayesian approach can allow us to base models on specified moments?

This question is quite probing, since the notion of an elementary zero function is a very
profound one. In fact, an elementary zero function can be considered the fundamental unit
of statistical information. It is informative (or not) about the model parameters, and, being
associated with one single observation, it lets us know just how informative that observation is
about the various model parameters.

One can, theoretically at least, define the optimal instrument for a particular parameter and
a particular elementary zero function. The definition is as follows:

Fti(θ) = Eθ

(
∂ ft

∂θi

∣∣∣∣ Ft

)
, (8)

where the set of sigma-algebras Ft constitutes a filtration that specifies the information available
for conditioning with observation t. Formally,

Eμ
(
ft(yt, θ(μ)) | Ft

)
= 0. (9)

If we can arrange things so that the zero functions ft are homoskedastic and serially uncorre-
lated, then the optimal estimating equation for θi is

n∑
t=1

Fti(θ̂) ft(yt, θ̂) = 0. (10)

In fact, the optimal instrument Fti(θ) is the weight given to the elementary zero function ft(yt, θ)
in the estimating equation for θi that minimises the asymptotic variance of the estimator. Thus
the optimal instrument can serve as a measure of the quantity of information about a particular
parameter provided by a particular zero function. An optimal instrument Fti(θ) that is zero
indicates that the zero function ft(yt, θ) is uninformative about the parameter θi.

5 The Bootstrap

The bootstrap has been among my most pressing research preoccupations for nearly fifteen
years now. It seems to be one of the most promising statistical tools for inference. Unfortu-
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nately, many people think that the bootstrap is synonymous with resampling ( la Efron (1979)),
but, nowadays at least, the bootstrap is by no means limited to methods based on resampling.

Let me state here two “Golden Rules” for bootstrapping. They are extensions and reformu-
lations of “guidelines” for bootstrap hypothesis testing found in Hall and Wilson (1991).

Golden Rule 1 The bootstrap DGP μ∗ must belong to the model M that represents the null

hypothesis.

If, in violation of this rule, the null hypothesis tested by the bootstrap statistics is not satis-
fied by the bootstrap DGP, a bootstrap test can be wholly lacking in power. Test power springs
from the fact that a statistic has different distributions under the null and the alternative. Boot-
strapping under the alternative confuses these different distributions, and so leads to completely
unreliable inference, manifested by extreme loss of power, even in the asymptotic limit.

Golden Rule 2 Unless the test statistic is pivotal for the null model M, the bootstrap DGP

should be as good an estimate of the true DGP as possible, under the assumption that the true

DGP belongs to M.

A pivotal quantity for a given model is a function of the data generated by a DGP in the
model the distribution of which is the same for all DGPs in the model. How this second rule
can be followed depends very much on the particular test being performed, but quite generally
it means that we want the bootstrap DGP to be based on estimates that are efficient under the
null hypothesis.

Question:

What is the Bayesian bootstrap, and for what is it useful?

I ask this question largely out of ignorance, since there have been few Bayesian contributions
to the bootstrap literature. One early article, Rubin (1981), is entitled “The Bayesian Bootstrap”,
and, as only to be expected at that time, equates the bootstrap with resampling. What is plainly
a more sophisticated, and more distinctly Bayesian, approach is taken by Lo (1987). Alas, it
also makes use of asymptotics.

Let me take this opportunity to denounce a view that is too often heard, namely that the
bootstrap is an asymptotic procedure. It is not. What is true is that current bootstrap theory

is very heavily dependent on asymptotic notions, but that is a failing of the theory, not the
bootstrap.

Although students and others sometimes find their heads spinning on first acquaintance with
the bootstrap, it is in fact a simple enough idea, muddled and confused by the term “bootstrap”,
with its unreasonable suggestion of getting something for nothing. But its basis is unrepentantly
frequentist. The “true DGP” is essential to it, and inference is based on bootstrap P values that
estimate a rejection probability under that true DGP.
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My meagre reading on the Bayesian bootstrap leads me to believe that it is a resampling
procedure. Of course, it is intended to estimate by simulation a posterior distribution, something
that a great many Bayesian computational methods try to do. But that is, I believe, almost
incidental to the use of the bootstrap, which, after all, can be put to very numerous uses.

I think it is fair to say that the Bayesian approach is more parametrically oriented than most
currently fashionable frequentist approaches. The very best bootstrap, in terms of reliability
of inference, and also of theoretical tractability, is the parametric bootstrap, which, although
simulation-based, makes no use of resampling.

Question:

Would it not be interesting to see how to apply the parametric bootstrap to Bayesian infer-
ence?

I can almost see in my head how to go about it! I would be more convinced by that than by
any resampling Bayesian bootstrap.

6 Simulation

There is no doubt that the entire Bayesian enterprise has been “rebooted” by the rediscovery
of the Gibbs sampler, and the other MCMC methods, based on the Metropolis-Hastings algo-
rithm. I remember asking Tony Lancaster why the Gibbs sampler is so called, and being told
(quite correctly) that it is in honour of J. Willard Gibbs, the great American father of statisti-
cal physics. However, “in honour of” does not mean “invented by”. The Metropolis-Hastings
crew, however, were also physicists (including the dreaded Edward Teller), who, at the very
outset of the computer era, developed an algorithm for simulating equations of state based on
the Boltzmann distribution.
Question:

Just how reliable are MCMC methods?

The idea is of course beautifully elegant. And it certainly suits the Bayesian program, so
full of conditional distributions. But the conditions for it to work are rather restrictive. The
expressions “ergodicity” and “metrical transitivity” come back to me from the time of my work
in statistical physics, and these issues were regarded with great caution, as it was known that
these conditions cannot be taken for granted.

It’s not just a question of “burn-in”, as it might be with the simulation of a time series of
which the stationary distribution is unknown, as is still the case with ARCH and GARCH mod-
els. (The alphabet soup stands for autoregressive conditional heteroskedasticity, and the same
thing generalised.) If that was all, then we could just let the computer run as long as needed.
But, even once one believes that a simulated value is a realisation of the desired distribution,
there is little guarantee that the whole sequence of subsequent realisations can be considered a
random sample from that distribution, since the algorithm can be imprisoned – not for ever, just
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a long time – in a region of the distribution from which escape is a low-probability event.

Question:

Have there been improvements I haven’t heard about in this technology?

Question:

What about the curse of dimensionality? Does it affect MCMC simulations?

7 Nonparametrics

In the frequentist approach to nonparametric problems, nonparametric regression for instance,
a parametric specification of the DGPs in the model under study is replaced by conditions on
the smoothness of otherwise unknown functions. I confess to a bit of a dislike for the theory
of most of these methods, since it relies on asymptotic theory of a particularly ugly kind. The
“asymptotic fictions” (I quote my co-author James MacKinnon in using this phrase) needed to
prove some results are not only complicated and hard to interpret, but also provide no usable
guide for such practical issues as the choice of bandwidth.

Question:

Is it possible to formulate smoothness conditions in the context of a prior distribution?

Since frequentists deal with function spaces here, the spectre of the non-existence of Haar
measure raises its head again, since these spaces are not locally compact. Is that a genuine
obstacle? Or perhaps Bayesians have a quite different approach (that I don’t know about) to
what the frequentists think of as nonparametric problems.

8 Some Other Topical Issues

In this section, I mention some topics that have generated much interest and voluminous lit-
erature in the last couple of decades. My questions are all motivated by a wish to know how
Bayesians approach these topics, and whether they have insights so far denied to frequentists.

8.1 Weak identification

For the last dozen years or so, the frequentist literature has betrayed an obsession with the
problem of “weak instruments”. More recently, it has been seen that it is more profitable to
think of the problem as one of weak identification, since there are circumstances in which
instrumental variables are not directly involved that also display the same sorts of difficulties for
estimation and inference as the weak-instrument problems. The latter were of course inspired by
empirical work, and so were of immediate practical interest. But other problems characterised
by weak identification are not devoid of interest.

The work on weak instruments has brought back into fashion work of the 1970s and 1980s
on the exact distributions of IV estimators, always under the assumption of Gaussian distur-
bances. That work, frequentist to the core, had been more or less set aside once GMM came in.
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It has, however, succeeded in clearing up some problems revealed by the weak instrument lit-
erature, especially when the bootstrap is used intelligently for implementing robust procedures,
as in Davidson and MacKinnon (2008) and (2010).

Question:

Do Bayesians regard these problems as non-problems that disappear when priors and likeli-
hoods are properly specified?

It is certainly true that combining prior information with sample information can alleviate
identification issues, but frequentists would dispute the existence of any relevant prior informa-
tion in most cases they consider.

If Bayesians think that the Bayesian approach really does sidestep issues of weak identifi-
cation, then what do they think of this very voluminous literature? One answer might be to say
that it was valuable to be shown empirically that some earlier conclusions based on estimation
with what turned out to be weak instruments were unfounded, while still maintaining that all
the theoretical follow-up on weak instruments is sound and fury. I would be much interested to
hear a considered Bayesian response to this question.

8.2 Distribution-Free Inference

Much statistical and econometric work on income distribution is said to be “distribution free”.
This means in practice that we can estimate the standard error of estimates of quantities of in-
terest, like the Gini index or other indices of inequality or poverty, without making assumptions
on the functional form of the distribution from which our sample was drawn.

This is of special value for bootstrapping, since it permits pre-pivoting, that is, the con-
struction of test statistics that, under the null, have an asymptotic distribution that is nuisance-
parameter-free.

Question:

Suppose I want to construct a confidence interval for an inequality index on the basis of a
random sample from the population under study. How best to do this as a Bayesian?

In a way, I hope that there is no glib answer to this question. Just last year, I worked out a
way to do asymptotic inference on the Gini index that turned out to give pretty reliable inference
(using confidence intervals) when bootstrapped; see Davidson (2009). Can theoretical advances
of this sort be put to constructive use in the context of Bayesian inference? The frequentist
problem is characterised by being nonparametric – the distribution-free aspect – but concerned
with a particular parameter, namely the index in question. It would seem hard to formulate a
likelihood adapted to such a problem.

8.3 Unit roots and Cointegration

This is a topic where Bayesians may well have the right to call frequentist practitioners of the
arcane art of working with cointegration misguided. In particular, I have some difficulty with
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the current fad for fractional cointegration, even though some of my best friends work on the
topic.

At the 1995 World Congress of the Econometric Society, Chris Sims voiced some skepticism
about the whole unit root enterprise. At the time, I didn’t really agree with him, and I still
don’t. But I do share his skepticism when it comes to fractional cointegration. I seriously
doubt whether the economic time series we have at our disposal contain enough information to
discriminate among the various models, including those that use fractional cointegration, that
have been proposed to take account of long memory. In the keynote paper I gave at Rimini, I
discuss unit root testing without actually advocating its use. My excuse is that the paper is not
really about unit roots at all. They simply provide a convenient tractable example to illustrate
some issues that pertain to the bootstrap.

Question:

Since Pierre Perron’s pioneering work, the unit root business has been bound up with the
thorny problem of structural change. How does a Bayesian approach this thorny problem?

Frequentists have a lot of trouble in formulating models that may or may not incorporate
structural change, either at known dates or unknown dates. I recently heard Perron give a talk
in which he makes assumptions about the distribution of structural breaks, and succeeds in
fitting certain very long time series quite well. The work presented evolved into Perron and
Qu (2007). Something like this would seem to correspond well with the Bayesian notion of
a prior distribution. Is this something worth pursuing? (If so, good, since frequentists have
got themselves into a big muddle over this business.) Incidentally, I see from Pierre Perron’s
website that he has recently been using Bayesian methods to further his studies of structural
breaks.

8.4 Partial Specification

In my work with heavy-tailed distributions (commonly encountered with income data), it has
sometimes proved profitable to adopt a basically nonparametric attitude, but with parametric
modelling of the tail, or tails, of the distribution. This gives rise to a reasonably good bootstrap
procedure – see Davidson and Flachaire (2007).

As is usual with nonparametric modelling, there are various tuning parameters that must be
chosen, and, with luck, chosen in not too suboptimal a manner. Where does the nonparametric
part stop and the parametric tail begin? How much of the sample should be used in order to
estimate the parameters of the tail?

Question:

Is there any way to cope with a partial specification of a distribution of this sort in the
Bayesian approach?

Roughly speaking, we want a parametric prior for the tail, and an uninformative prior for
the main body of the distribution. I can think of a couple of ways I might set about trying to
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formulate a prior of this sort, but a real Bayesian would surely do better.
If this were to work satisfactorily, it might be possible to set up a frequentist bootstrap based

on Bayesian estimation of a data set. In fact, there might be abundant opportunities to do
something like that in different contexts. Recall my second Golden Rule of bootstrapping: we
want as good an estimate as possible of the DGP. In cases in which one might be persuaded that
a Bayesian posterior distribution is as good an estimate as any other, maybe it would work well
with the bootstrap.

8.5 Biostatistics

In my naive frequentist manner, I might have thought that biostatistics and epidemiology would
provide an almost ideal area for the application of Bayesian methods, since I have always tended
to think that a Bayesian approach is good for statistical decision making, while a frequentist
approach is better suited for analysis of data. (I know that Bayesians contest this notion hotly,
but that’s why we’re having this debate!)

Although I see evidence from Google that Bayesian methods are occasionally used in bio-
statistics, they don’t seem to be the most popular choice. I would guess that there is abundant
scope for technical improvements, from both sides of our divide, in this field, which is of con-
siderable importance to the human race, and seems to attract a lot of research money.

Question:

What are the potentially most profitable areas in which frequentist and Bayesian statisticians
could contribute to better technical skills in biostatistics?

9 Concluding Remarks

All statisticians, whether Bayesian or not, share at least one goal, namely the efficient extraction
of information from data sets. We may well differ, and will probably continue to differ, on how
we wish to present and interpret the information so extracted, but, as an agnostic, I see no reason
to adopt any attitude other than that people’s preferences differ, as do the questions they ask, and
so it is likely that some questions are best answered by imposing randomness on a parameter
space, while others benefit from supposing a random sample space.

If one takes seriously the idea that an elementary zero function constitutes the fundamental
unit of statistical information, then there could well be scope for a joint effort from Bayesians
and frequentists in order to clarify statistical theory by starting from the concept of a set of
elementary zero functions, and to develop improved methods of inference – on both sides of the
fence.

Lastly, looking at things from both a frequentist and Bayesian perspective simultaneously –
or almost so – leads to a notion that tidies up the oft-cited duality between hypothesis testing
and the construction of confidence sets. A confidence set can be defined as the set of parameter
values for which a hypothesis that those are the true parameters is not rejected at a significance
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level that is the complement of the desired confidence level. The set thus corresponds to a
whole family of hypothesis tests. Conversely, a hypothesis test corresponds to a whole family
of confidence sets, with the P value as the complement of the confidence level for which the
hypothesised parameter vector lies on the frontier of the confidence set. If one were to plot a
confidence profile, which for a scalar parameter would be a graph of the marginal confidence
level as a function of the parameter value, then this would be a frequentist construction that
would have an interpretation not too different from that of a posterior density. It would not be
the same thing as a posterior density at all, of course, but its uses would be very similar. It may
be interesting to speculate whether there exists a duality relation between a confidence profile
and a posterior density.
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