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Abstract: 

This paper analyzes the effects of progressive taxes on labour supply and income 

distribution in the context of the rank-order tournament model originally developed 

by Lazear and Rosen (1981). We show conditions under which a more progressive tax 

schedule will cause so large general equilibrium effects that the inequality in 

disposable income will actually increase. We also show that a non-zero redistributive 

tax is always optimal if society’s welfare function displays inequality aversion; this 

result always holds, regardless of behavioral responses and general equilibrium 

effects. 
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Taxation and Tournaments 
 

1. Introduction 

It is a common observation in many countries that the salaries of top executives have 

increased, relative to those of other employees, in recent decades. In some countries, 

particularly the United States, this tendency is quite dramatic, while in others it is less 

clear.1 One could think of a number of alternative explanations for such a 

development. However, it has become usual among economists to rely on the 

tournament model of Lazear and Rosen (1981) for explaining “excessively large” 

wage differences (i.e., differences that are hard to imagine as being the result of 

differences in marginal productivities among employees).2 In fact, a number of 

empirical studies indicate that the tournament model cannot be rejected as an 

explanation to observed wage-setting.3 Widening wage differences could then indicate 

that the tournament model has become even more relevant then earlier.  

 

While the heated popular debate about increased wage inequality implicitly seems to 

call for policy intervention, there is not much policy analysis in the scholarly 

literature. In particular, there is, to the best of our knowledge, no study of how the tax 

system affects labor supply, wages and income distribution in a tournament setting. 

The aim of present paper is to fill that gap by applying a simple progressive tax 

schedule to the simplest possible version of the tournament model. Even within that 

setup, the model is rich enough to provide a number of interesting results that are 

significantly different from the competitive model.  

 

The paper is organized as follows. In Section 2, we present the basic model and derive 

the individual response to an increase in the marginal tax rate. In Sections 3 and 4, 

taking account of the effects of taxes on wage formation, we analyze the effects of 

                                                 
1 For data on the U.S. and France, see Piketty and Saez (2001). 
2 See also Lazear (1995) and, for broader surveys of the literature on wage incentives, Prendergast 
(1999) and Gibbons and Waldman (1999). 
3 See Bognanno (2001) and the works cited therein. 
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increased progressivity in the tax schedule when the labor market is monopsonistic 

and competitive, respectively. In particular, we study whether increased progressivity 

leads to a lower dispersion of disposable incomes. Section 5 contains a normative 

analysis of the optimal linear income tax, and Section 7 concludes the paper. 

 

2. The Model 

In order to focus on the essential features of our theoretical framework, we adopt the 

simplest version of the tournament model. There are two workers with identical 

productivity and preferences. The firm promises a reward 1W  to the worker who wins 

the tournament, and 12 WW <  to the looser. With a linear tax schedule, the net-of-tax 

income to worker i is thus 2,1,)1( =+−= iktWY ii . Worker preferences depend on 

net income iY  and effort iµ  and are quasi-linear: 

 

 [ ] [ ] 2,1),(),( =−= iCYEYuE iiii µµ . 

 

The function (.)C  represents the disutility of effort and is a convex function: 

0)('',0)(' >> µµ CC .  The assumption of quasi-linearity rules out income effects on 

labor supply, which is obviously restrictive, and the assumption must basically be 

defended in terms of analytical simplicity. In addition, our interest here lies in the 

study of tax distortions, and the efficiency implications of these are in any case 

determined by the compensated effects, i.e. by the tax responses net of income effects.  

 

The worker produces output iq  according to a linear technology: iiiq εµ += . Here, 

iε  is a random disturbance with zero mean and variance 2σ , and the disturbance 

terms are uncorrelated between workers. The firm gives the prize to the worker with 

the highest output q, which means that winning the tournament is the joint result of 

effort and luck. 

 

A worker’s expected utility is now 

 

 [ ] [ ] )()1()1()1( 21 iii CktWPktWP µ−+−−++− ,   (1) 
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where iP  is the probability of winning the tournament as a function of the worker’s 

own effort. More elaborately, the probability of winning can be written as 

 

 )()()( jiijjijii GprobqqprobP µµεεµµ −≡−>−≡>≡ ,  (2) 

 

where each worker takes the other’s level of effort as given. Each worker chooses iµ  

to maximize expected utility. This yields the first order condition4 

 

)(')1)(( 21 i
i

i CPtWW µ
µ

=
∂
∂−−       (3) 

 

We have 

 

 )(
)(

ji
i

jii

i

i g
GP µµ

µ
µµ

µ
−≡

∂
−∂

≡
∂
∂ .     (4) 

 

 

We concentrate, like Lazear and Rosen (1981) on the symmetric case with identical 

individuals. Thus ji µµ = , and )0()( gg jii ≡− µµ . Condition (3) can then be written 

as 

 

  )(')0()1)(( 21 µCgtWW =−− .     (5) 

 

Equation (5) gives us the worker’s optimal effort level as a function of the after-tax 

wage spread, given that we are in a symmetric equilibrium where µµµ == ji . The 

function g(.) is the density of the difference ij εε −  , and g(0) is a measure of the 

uncertainty attached to the effect of increased effort on the probability of winning the 

tournament, given that we are in a symmetric equilibrium. Intuitively, if the random 

                                                 
4 The second order condition is satisfied under the additional assumption that .02

2

<
∂
∂

i

iP
µ
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element is important (i.e., )var(ε is large), then g(0) is relatively small. It is then 

uncertain whether an extra effort will result in winning the tournament, and thus the 

wage dispersion does not stimulate effort so much. If on the other hand var(ε) is 

small, then g(0) is relatively large, and the wage dispersion will stimulate a relatively 

higher effort. To put it differently, the more important is the random element in the 

tournament, the larger must the wage spread be in order to induce a given level of 

effort. 

 

From (5) it follows immediately that for a given wage dispersion an increase in the 

tax rate will lead to less effort on the part of the worker; this is the distortionary effect 

of the income tax in this model. However, when there is a change in the tax rate, there 

is no reason to expect that the wage dispersion will remain the same. But the analysis 

of this requires a general equilibrium perspective, and to this we now turn. 

 

The firm chooses 1W  and 2W  to maximize profits )(2 21 WW +−µ . The constraint on 

profit maximization depends on the nature of competition. We have set the product 

price equal to unity, i.e., we have implicitly assumed perfect competition in the 

product market. Lazear and Rosen (1981) and Lazear (1995) assume that the firm is a 

monopsonist in the labour market. This would be the case of, for instance, a large 

company in a small country, selling its product in the competitive world market and 

having a considerable influence on the local labor market. In such a case, the firm can 

drive down wages to the point where the worker’s participation constraint is exactly 

satisfied. Thus, the expected utility of the worker must be equal to some constant, e.g. 

zero, representing the expected utility of some outside option:5 

 

[ ] [ ] .0)()1(
2
1)1(

2
1

21 =−+−++− µCktWktW    (6) 

 

An alternative approach is to assume that competition in the labor market drives long-

run equilibrium profits to zero, so that the relevant constraint becomes 

 

0)(2 21 =+− WWµ .       (7) 

                                                 
5 For simplicity we assume that the value of the outside option is independent of the tax rate. 
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If the information structure of the economy is such that a tournament is an efficient 

employment contract (which will be the case if it is difficult to observe effort, but 

easy to observe output), the tournament model is quite compatible with a 

monopsonistic competition model of the labor market. For brevity, we shall refer to 

this case simply as the competitive case. It is competitive in the sense that profits are 

driven down to zero, although employers are wage-setters. There is thus a clear 

similarity with the Chamberlinian model of monopolistic competition. 

 

We now consider the implications of these two alternative approaches.  

 

3. General Equilibrium: The Monopsonistic Case 

With a monopsonist firm, and a participation constraint, the firm solves the 

optimization problem 

 

 
[ ] [ ]

1 2
1 2,

1 2

max 2 ( )

1 1. . (1 ) (1 ) ( ) 0.
2 2

W W
W W

s t W t k W t k C

µ

µ

− +

− + + − + − =
   (8) 

 

This gives us the first-order conditions for the firm: 

 

1 1

2 2

12 1 (1 ) '( ) 0
2

12 1 (1 ) '( ) 0.
2

t C
W W

t C
W W

µ µλ µ

µ µλ µ

 ∂ ∂− + − − = ∂ ∂ 
 ∂ ∂− + − − = ∂ ∂ 

 

 

Eliminating λ  and using the symmetry condition that, by (5), 1 2/ /W Wµ µ∂ ∂ = −∂ ∂ , 

we can simplify the firm’s first-order conditions to 

 

)(')1( µCt =− .       (9) 
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This condition shows clearly the general equilibrium tax wedge. In the absence of 

taxes, the marginal cost of effort would be equal to marginal productivity, which is 

unity. A positive tax rate distorts this connection and leads to a lowering of effort 

from its first best efficiency level. 

 

The firm chooses the wage dispersion )( 21 WW −  such that the workers, by (5), choose 

an effort µ such that (9) is satisfied.6 The level of wages is determined by the 

participation constraint (6). The full solution of the model then consists of three 

equations:  

a) the worker’s first-order condition (5), 

b) the participation constraint (6), and  

c) the firm’s first-order condition (9). 

Rearranging, these three equations can be written 

 

1
( ) 1
1 2 (0)

C kW
t g

µ −= +
−

      (10) 

2
( ) 1
1 2 (0)

C kW
t g

µ −= −
−

      (11) 

'( ) 1C tµ = − .        (12) 

 

The system is recursive; from (12) we can solve for 1' (1 )C tµ −= −  and substitute into 

(10) and (11) to obtain closed-form solutions for 1W  and 2W . 

 

For the special case of a balanced government budget, we have 

 

 1 2( )
2

t W Wk ⋅ += . 

 

Substituting (10) and (11) into this condition and solving for k, we obtain  

 

 ( )k t C µ= ⋅ . 

                                                 
6 Note that since we have assumed ( )C µ  to be strictly increasing for all 0µ >  and defined only for 
non-negative values of µ , (9) makes sense only if 1t ≤ . 
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Substituting this into (10) and (11) yields a considerably simpler solution of the 

model: 

 

 1
1( )

2 (0)
W C

g
µ= +        (10’) 

 2
1( )

2 (0)
W C

g
µ= −        (11’) 

 '( ) 1C tµ = − .        (12’) 

 

The case of a balanced budget can be used to study a tax reform; we may e.g. keep the 

level of government spending constant, and change the degree of progressivity in the 

tax system. However, the case of an unbalanced budget is not as uninteresting as it 

may seem at first sight. The tournament model is probably most relevant to a small 

group of wage earners at the top of the income scale. While the budget must be 

balanced over all income earners, there may be no reason to impose a balance 

constraint for a small subgroup of income earners. But the case of a balanced budget 

for this subgroup may be interesting because it represents a change in the degree of 

progression facing this particular subgroup, while holding their total net tax payments 

constant. In the following, we will therefore consider both cases. 

 

The general equilibrium solution can now be used for comparative statics analysis. 

For example, we see immediately from (12) or (12’) that the level of effort µ is 

decreasing in t. And this holds regardless of whether the government budget is 

balanced or not.  

 

Denoting the average wage rate by W , we have for the general case, where the 

government budget is not necessarily balanced, that 

 

 1 2

( ) '( )
1 ''( )

1

C k C
W W W t C
t t t t

µ µ
µ

− −
∂ ∂ ∂ −= = =
∂ ∂ ∂ −

,    (13) 
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the sign of which is undetermined. It is however related to the Laffer curve. Taking 

the derivative of tax revenue with respect to t, we have 

 

 1 2
1 2

( ) ( ) 2t W W WW W t
t t

∂ + ∂= + +
∂ ∂

.     (14) 

 

If we are on the peak of the Laffer curve, or to the right of the peak, the expression in 

(14) must be zero or negative. Since the first term in (14) is positive, this can be the 

case only if the second term is negative.7 Thus, for relatively large values of t (by 

which we mean such values that we are close to, or to the right of, the peak of the 

Laffer curve), / 0iW t∂ ∂ < . 

 

For the special case of a balanced budget, we obtain an unambiguous result; from 

(10’) – (12’) it follows that ( )W C µ=  and thus that 

 

 0W
t

∂ <
∂

.        (15) 

 

Thus, a tax reform which increases the degree of progressivity in the income tax 

schedule, while leaving total government spending constant, will lead to a reduction 

in the average wage rate. 

 

The income distribution will be studied by means of two measures. The simplest is 

the absolute wage dispersion  

 

 1 2A W W≡ −  

 

and its corresponding measure for disposable income, 

 

                                                 
7 This illustrates an interesting difference between the standard (marginal productivity wages) model 
and the tournament model. In the former, Laffer curve effects are driven by the elasticity of labor 
supply at constant wages. In the tournament model, Laffer curve effects are driven by the tax rate 
affecting effort; this effect, via the relation tCtWi ∂∂=∂∂ /)('/ µµ , is translated into effects on 
wage rates which in turn affect tax revenue. 
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 ( ) ( )1 2(1 ) (1 ) (1 )dispA W t k W t k A t≡ − + − − + = − . 

 

From (10)-(11) it follows that 

 

 0, 0dispAA
t t

∂∂ = <
∂ ∂

.       (16) 

 

An increase of the marginal tax rate leaves the dispersion of gross wages unaffected, 

while the spread of disposable incomes is reduced. These results are independent of 

whether the government budget is balanced or not, since the measures A  and dispA  do 

not depend on k. 

 

A richer measure is probably the relative dispersion 

 

 1

2

WR
W

≡  

 

and its corresponding measure for disposable income, 

 

 1

2

(1 )
(1 )disp

W t kR
W t k

− +≡
− +

. 

 

In the following, we will mainly study the relative dispersion. Since the absolute 

wage dispersion A is independent of the tax rate, the effects of changes in t on the 

relative wage dispersion R will depend on what happens to the average wage rate: 

 

 sgn sgnR W
t t

∂ ∂= −
∂ ∂

.       (17) 

 

The effect on the average wage rate is in general undetermined by (13), and therefore 

we might very well have a case where a tax increase leads to an increased (pre-tax) 

inequality in society. In particular, this will happen for relatively large values of t, i.e., 



 10

for values of t such that we are close to, or to the right of, the peak of the Laffer curve. 

For the special case of a balanced government budget, however, (15) implies that 

 

 0R
t

∂ >
∂

. 

 

Thus a tax reform, leading to a higher progressivity in the tax schedule, 

unambiguously increases the relative dispersion in gross income. 

 

For the relative dispersion of disposable income, some calculation yields 

 

2 ( ) (0) 1
2 ( ) (0) 1disp
C g tR
C g t

µ
µ

+ −=
− +

. 

 

We see that the parameter k does not enter into this expression; thus the relative 

dispersion of disposable income does not depend on whether the government’s budget 

is balanced or not. Taking the derivative of dispR  with respect to t and rearranging, we 

obtain 

 

( )2sgn sgn '( ) ( ) ''( )dispR
C C C

t
µ µ µ

∂  = − ∂
.    (18) 

 

For the special case of an exponential cost-of-effort function )1/()( 1 αµµ α += +C , 

where 0>α , we have ( ) 0)1/()('')()(' 22 >+=− αµµµµ αCCC . Thus a tax increase 

will lead to an increased dispersion in disposable income whenever the cost function 

is exponential. We will here have a simple example of a case where an increased 

progressivity in the tax schedule leads to higher inequality, as measured by the 

relative dispersion of disposable income. 
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4. General Equilibrium: The Competitive Case 

If the firm operates in a competitive (i.e., monopsonistically competitive) labor 

market, bidding for the workers implies that the market functions as if the following 

optimization problem is solved: 

 

 
[ ] [ ]

0)(2..

)()1(
2
1)1(

2
1max

21

21, 21

=+−

−+−++−

WWts

CktWktW
WW

µ

µ
   (19) 

 

Problem (19) is obviously the dual of problem (8) and has the same first-order 

condition. The full solution to the competitive model thus consists of three equations:  

a) the worker’s first-order condition (5), 

b) the zero-profit constraint (7), and 

c) the firm’s first-order condition (9). 

 

Substituting and rearranging, these three equations can be written 

 

 1
1

2 (0)
W

g
µ= + ,       (20) 

 2
1

2 (0)
W

g
µ= − ,       (21) 

 '( ) 1C tµ = − .        (22) 

 

Note first that there is no parameter k in (20)-(22); thus the general equilibrium 

solution for the competitive case is independent of whether we consider a balanced 

government budget or not. If we compare this solution to the corresponding solutions 

(10)-(12) in the monopsony case, we see that the absolute wage dispersions A and the 

effort levels µ  are the same. This is so because of the quasi-linear utility function, 

which rules out any income effect on part of the workers; consequently it does not 

matter whether the surplus ends up with the firms (as in the optimization problem (8)) 

or with the workers (as in the optimization problem (19)). Further, the average wage 

level is lower in (10)-(12) than in (20)-(22), because the surplus ends up with the 

workers in the latter case. This implies that ( )Cµ µ> , a relation which can also be 
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proved from the participation constraint and the assumption of positive profit in the 

monopsonistic case. 

 

The comparative statics of the competitive case are simple. Since t only appears in the 

third equation, all effects from the tax system go via the effect on µ . We have that 

the effort level falls, the absolute pre-tax income dispersion is unaffected, and the 

average income falls, as t is increased. Further, the absolute disposable income 

dispersion falls. As for the relative dispersion, we have 

 

 2 (0) 1
2 (0) 1

gR
g

µ
µ

+=
−

 

 

and thus 

 

 0R
t

∂ >
∂

. 

 

This means that a higher t will unambiguously increase the relative pre-tax wage 

dispersion. The relative dispersion in disposable income is somewhat more 

complicated; some algebra shows that it can be written 

 

 ( )
( ) )1()0()1(2

)1()0()1(2
tgkt
tgktRdisp −−+−

−++−=
µ
µ ,     (23) 

 

and thus 

 

 (1 ) '( )sgn sgn
''( )

dispR t C k
t C

µ
µ

∂  −= − ∂  
.     (24) 

 

The two terms in brackets are of opposite signs, and no firm conclusion can be drawn 

concerning the tax effects on relative disposable income. On the one hand a tax 

increase leads to less effort (and more so, the less concave is the function )(µC ). The 

effect of this is to leave absolute wage differences the same, but at a lower level; 

consequently, relative inequality increases. On the other hand, a lower tax bare 
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increases the importance of the transfer k for relative income inequality, and this pulls 

the inequality index (23) down. 

 

For the special case of a balanced budget, we have k tµ=  and thus (24) can be 

written 

 

 
2(1 )sgn sgn sgn

''( ) 1
dispR t tt
t C t

µ η
µ

∂  −  = − = −   ∂ −  
,   (24’) 

 

where 

 

 1
(1 )

t
t

µη
µ

∂ −≡ ⋅
∂ −

. 

 

Here we get the intriguing result that if t is close to zero, the first term within the 

square brackets will dominate, and thus / 0dispR t∂ ∂ > 8. This means that if the 

government introduces a balanced-budget progressive income tax in an economy 

where there has been no tax before, the relative dispersion in disposable income will 

unambiguously increase.9 

 

5. Social Welfare and Optimum Progressivity. 

So far, our approach has been positive. We now turn to the normative aspects of the 

model and study the design of an optimal linear income tax. Even in a framework 

where all individuals are identical ex ante, there might be a case for progressive 

taxation, to provide insurance to risk-averse individuals (cf. Varian, 1980). In the 

present version of the model, however, utilities are quasi-linear, and the individuals 

thus do not display any risk aversion. This means that the insurance argument does 

not apply. From the point of view of efficiency, a tax only causes distortion, and 

                                                 
8 This holds under the assumption that η does not also approach zero as t is lowered.  
9 For the case of an exponential cost-of-effort function and a balanced budget, it is easily shown that 

/ 0dispR t∂ ∂ >  for t < 1/(1+α) and / 0dispR t∂ ∂ <  for t > 1/(1+α). This means that if C(µ) is almost 

linear, i.e., α is close to zero, the relative dispersion of disposable income will increase for allmost all 
values of t < 1. 
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expected utility ( )iE u  is maximized for t = 0. It would be interesting to work out the 

tax rate maximizing expected utility assuming strictly concave utility functions, but 

this is beyond the scope of the present paper. 

 

With ex ante identical and risk-neutral individuals, could there still be a case for 

progressive taxation? The result that expected utility is maximized for t = 0 gives us 

the answer to the problem of optimal tax design if society cares only about equality of 

opportunity. But if there is a social concern about the ex post distribution of utilities, 

i.e. about the equality of outcomes, we can postulate a social welfare function 

1 2( , )u uϕ , where (1 ) ( ), 1, 2,i iu W t k C iµ≡ − + − =  is the realized utility of individual 

i. If (.)ϕ  is strictly increasing, symmetric and strictly concave, it exhibits inequality 

aversion: 

 

 1 2 1 2
1 2

1 2

( , ) ( , )u u u uu u
u u

ϕ ϕ∂ ∂> ⇒ <
∂ ∂

.    (25) 

 

Society now wants to find a tax rate t that maximizes social welfare, subject to the 

government’s budget being balanced, and the wage rates 1 2( , )W W  being determined 

in general equilibrium. In standard microeconomic models (i.e., non-tournament 

models), some redistributive tax is always optimal if incomes are exogenous to the tax 

system. But since the tax rate distorts incentives, a non-zero tax is not always called 

for in a full equilibrium; if the distortions are too large, the optimal tax rate is zero. 

 

By contrast, we will show that for the tournament model, a non-zero redistributive tax 

is always optimal – even when equilibrium behavioral responses are taken into 

account. We will first show this for the competitive case of Section 4. By (20)-(21) 

and the government budget constraint, we have 

 

 
1 1

2 2

1(1 ) ( ) ( )
2 (0)

1(1 ) ( ) ( ) ,
2 (0)

tu W t k C C
g

tu W t k C C
g

µ µ µ

µ µ µ

−= − + − = − +

−= − + − = − −
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and some algebra shows that 

 

 

1

2

1
2 (0)

1 .
2 (0)

u t
t t g
u t
t t g

µ

µ

∂ ∂= −
∂ ∂
∂ ∂= +
∂ ∂

 

 

These expressions can be utilized to obtain 

 

 1 2
1 2 1 2

( , ) 1( ) ( )
2 (0)

u u t
t t g

ϕ µϕ ϕ ϕ ϕ∂ ∂= + − −
∂ ∂

. 

 

Recalling that 1 2ϕ ϕ< , we have that / tϕ∂ ∂  is positive at t = 0. Thus, starting out 

without any tax at all, it is always optimal to introduce some redistributive taxation. 

Setting the derivative equal to zero gives us the optimal tax rate 

 

 1 2

1 2

1 1
2 (0)

t
g

t

ϕ ϕ
µϕ ϕ

∗ −= ⋅ ⋅ ∂+
∂

,      (26) 

 

which is obviously positive. The optimal tax rate can also be written as an inverse 

elasticity formula. Let 

 

 1
(1 )

t
t

µη
µ

∂ −≡ ⋅
∂ −

. 

 

Substituting, we obtain 

 

 1 2

1 2

1 1
1 2 (0) ( )

t
t g

ϕ ϕ
ϕ ϕ µ η

∗

∗

−= − ⋅ ⋅
− +

.     (26’) 

 

As we would expect, the tax rate is inversely related to the elasticity of effort supply, 

which measures the distortionary effect of the tax. Moreover, the tax rate is higher, 

the higher is the degree of inequality aversion. This is in line with standard insights 
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into the shape of optimal linear tax schedules; see e.g. Dixit and Sandmo (1977). But 

a novel and interesting aspect of the solution is the role played by the term g(0). From 

(20)-(21) we observe that g(0) measures the extent of wage dispersion. If there is no 

random element in the tournament (which corresponds to (0)g → ∞ ), there is no 

inequality and the optimal tax rate is obviously zero. As the random element becomes 

of increasing importance (which corresponds to g(0) diminishing), wage inequality 

increases and so does the optimal tax rate.10 Inequality, which in this model is the 

result of the random element in the tournament outcome, should be diminished 

according to our egalitarian social welfare function. However, it should not be 

eliminated, since this would have an adverse effect on the supply of effort. 

 

Let us also note that there is no contradiction between the result in the present section, 

which says that with inequality aversion, it is always optimal to impose a non-zero 

redistributive tax ∗t , and the results in Section 4, which say that imposing a 

redistributive tax may increase (relative) inequality in disposable income. The reason 

is twofold. First, expression (24’) implies that raising the tax rate from zero by a small 

amount will increase inequality. It does not follow that raising the tax rate somewhat 

more, for example to ∗t , will increase inequality. Second, although imposing a tax 

may increase inequality in income, the arguments in the social welfare function ϕ  are 

not incomes, but utilities (i.e., disposable income minus the cost of effort C(µ)). 

 

So far, we have only dealt with optimal taxation in the context of a competitive labor 

market (i.e., the model of Section 4). Working out the corresponding optimization for 

the case of a monopsonistic labor market (the model of Section 3), we have from 

(10’)-(12’) and the government’s budget constraint that 

                                                 
10 It can be shown that for the special case of a quadratic cost-of-effort function 2

2
1)( µµ =C , and an 

exponential social welfare function ααϕ 2121 ),( uuuu = , with 0 < α < 1, the optimal tax rate turns out 
to be 
 

 
2
1

)0(2
)0(2 2

−
+

=∗

g
g

t . 

 
Thus, in this case, t∗  is independent of α and monotonically increasing in g(0). It takes the values zero 
for g(0) = 0, and approaches unity as g(0) approaches ½. 
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(Note that no significance should be attached to the possibility of a negative utility, 

since utility is only unique up to a linear transformation) We then have 
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which yields 

 

 1 2
1 2

( , ) 1 ( ) 0.
2 (0)

u u
t g

ϕ ϕ ϕ∂ = − − >
∂

 

 

Thus no interior optimum ∗t  exists for the monopsonistic case, and it is therefore 

optimal to set t at its upper limit, 1t∗ = . The economic interpretation of this is 

straightforward. In the monopsonistic case, the participation constraint (6) says that 

1 2 0u u+ = . Since utilities then are given by (27), a society with inequality aversion 

obviously maximizes welfare by choosing 1t∗ = , thereby obtaining 1 2 0u u= = . 

 

This could be interpreted in two ways. Either we should not take the optimal tax 

problem seriously; it is not a suitable representation of society’s policy choice. Or we 

should take it seriously; in that case, a monopsonistic labor market will lead to policy 

decisions implying higher and higher marginal tax rates, and more and more 

redistribution, while the endogenous wage rates respond with higher and higher 

inequality. Whether the tournament model is a good representation of reality – and, if 

so, whether the competititive case or the monopsonistic case is the most realistic one 

– is of course an empirical question. But if there is at least some realism in the 

monopsonistic case, it can help us understand some tendencies in the general 
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development of tax systems in the Western world during the post-World War II 

period. 

 

6. Concluding Comments 

The tournament model could of course be extended in many directions. For instance, 

assuming a concave (rather than a quasi-linear) utility function would introduce 

income effects on individual behavior, and assuming that individuals are different 

with respect to preferences and/or productivity would add new dimensions to the 

analysis. Nevertheless, even the simplest version of the model seems to yield a 

number of interesting results that are potentially important for our understanding of 

public policy. For example, the model implies that a redistributive tax can cause more 

inequality in society, once general equilibrium effects are taken into account. Still, 

with a social welfare function displaying inequality aversion, a non-zero redistributive 

tax is always optimal. If there are monopsonistic tendencies in the labor market, this 

optimal tax rate may even be very high. 

 

Working out some of the more obvious extensions of the simple version of the model 

seems to be a fruitful avenue for future research. Among other potentially interesting 

issues, one can mention the intriguing property of the Mirrlees (1971) model that the 

optimal marginal tax rate is zero at the top; under what circumstances this also holds 

for the tournament model is an unresolved issue. Also, questions regarding signaling 

and incentive compatibility seem particularly relevant in a rank-order environment. 

There is a large literature on special problems arising if the policy maker has 

imperfect information about preferences and ability on part of the agents. In a 

tournament context, where there are two policy makers (the firm, deciding about the 

prize, and the government, deciding about the tax rate) the signaling game becomes 

even more involved. 

 

It has long been realized in the labor economics literature that the labor market 

occupies a special position among markets. Not only is it, for most people, the most 

important market in terms of the determinants of their personal welfare. It is also a 

market which deviates in a number of important respects from the standard 

competitive model. The latter insight has so far had little effects on the theory of 
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taxation, which still relies heavily, both for positive and normative studies, on 

competitive assumptions. The present study encourages us to believe that there may 

be further gains to be made from studies of taxes and incentives in a non-competitive 

setting.  
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