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pictorial representations of distance, dissimilarity or proximity data. Sensitivity
and robustness assessment of multivariate methods is essential if inferences are
to be drawn from the analysis. To our knowledge, the literature related to MDS
for mixed-type data, including variables measured at continuous level besides
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economic crisis impact on Spanish people who were in situations of high risk of
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MDS configurations for mixed-type data are: (i) to propose a joint metric based
on distance matrices computed for continuous, multi-scale categorical and/or
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1 Introduction

The techniques collectively known as multidimensional scaling (MDS) have the pur-
pose of constructing a set of points in a Euclidean space whose interdistances are
either equal (metric or classical MDS) or approximately equal (nonmetric MDS) to
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those in a given matrix of dissimilarities, in such a way that the interpoint dis-
tances approximate the interobject dissimilarities as closely as possible. MDS orig-
inal purpose was as a descriptive tool, to visualize such distance data with low-
dimensional pictorial representation. Firstly, these techniques are an essential and
powerful tool for the representation of stimulus-attribute relationships everywhere
in the behavioural sciences (see Piccarella and Lior 2007 for a recent application to
sequence analysis to describe life course trajectories); Secondly, they pose a number
of challenges to current statistical theory (for an interesting survey on this issue we
refer the reader to Ramsay 1982). Various possible measures of approximation be-
tween interpoint distances and interobject dissimilarities can be used, each resulting
in a different MDS configuration. General context references are Borg and Groenen
(2005), Cox and Cox (2000) and Krzanowski and Marriott (1994) as well as Gower
and Hand (1996).

In the MDS framework it is quite natural to handle proximity measures treating
both qualitative and quantitative variables. This feature is of primary interest in
data collected through questionnaires, since data are often of mixed type obtained as
measures of variables at different levels, e.g. continuous, nominal, ordinal or ratio-
scale. The joint treatment of quantitative and qualitative variables can be achieved
if dissimilarities are suitable defined (see Ramsay 1980). The well-known Gower’s
general similarity coeflicient (see Gower 1971) considers mixtures of numerical con-
tinuous, categorical and binary variables, but does not consider ordinal variables.
For several recent versions of Gower’s coefficient covering ordinal variables we refer
the reader to Cox and Cox (2000) and references therein. Nevertheless, the additive
treatment of the variables of Gower’s based similarity coefficients results in a lack of
consideration of the association between variables. In this paper we contribute in this
line proposing a joint metric constructed via related metric scaling from three dif-
ferent distance matrices computed on continuous, multi-scale categorical and binary
variables, respectively.

As Krzanowski (2006) pointed out the results of any data analysis require additional
information about the stability of the solution and the prime interest in MDS is in
assessment of stability of the points in the MDS configuration. When a distributional
model is not available, as occurs in most cases, then either bootstrapping or crossval-
idation are methods commonly employed to search for stability. Bootstrap technique
views the observed data as a sample from some unknown underlying distribution, and
provides a sampling framework for analyzing the stability of the sample statistics by
using repeated sampling with replacement from the observed data. Crossvalidation
technique computes the variability of the calculated statistics by leaving out of the
computations different portions of the observed data. The most common case is the
leave-one-out crossvalidation, i.e. when each individual is omitted in turn from the
data. Thus, in MSD we need to compare configurations obtained either from differ-
ent bootstrap samples or from different omissions of the crossvalidation procedure.
A problem arise when any individuals are omitted from the dissimilarity matrix, thus
the corresponding points will be missing in the MDS configuration and to compare
the ensemble of configurations to quantify the variability of points can be a difficult
task. DeLeeuw and Meulman (1986) have implemented a viable solution based on
leave-one-out crossvalidation for tackling sensitivity issues in MDS, and there is not
much literature on this matter to date. Solaro (2010) presents an interesting appli-



cation to customer satisfaction which is based on the latter approach for variables
measured at different levels, e.g. nominal, ordinal or ratio-scale.

Despite a sensitivity study can also reveal possible influences of “abnormal” obser-
vations in a multivariate data analysis, there is a body of specific tools developed
to search for multivariate outliers in data analysis. Outliers are observations that
appear to break the pattern or grouping shown by the majority of the observations.
Most conventional multivariate methods are sensitive to outliers due to the fact that
they are based on least squares or similar criteria where even one outlier can deteri-
orate the model. Therefore, it is important to, firstly, identify outliers and, secondly,
decide whether the outliers should be accomodated or rejected in the modeling pro-
cess. On the other hand, the aim of robust methods is to reduce or remove the effect
of outlying data points and let the remainder to built the desired results. Robust
methods provide a powerful methodology extending a conventional “manual” anal-
ysis and elimination of outliers by using “conventional” outliers diagnosis. Most of
the robust methods are developed for continuous variables and they make extensively
use of robust estimates of location and covariance, i.e., M-estimators, Stahel-Donoho
estimator, multivariate trimming, minimum volume-estimator or S-estimators. For
an overview of multivariate outliers detection and robustness we refer the interested
reader to Hubert, Rousseeuw, and Vanden Branden (2005) and references therein.
For outliers detection in high-dimensional multivariate data see also Pefia and Prieto
(2007). The latter approach has been successfully applied for outliers detection in
a regression context (Gonzélez, Penia, and Romera 2009). Nevertheless, there is a
lack of suitable robust techniques dealing with mixed-type data that can be applied
in the context of MDS, and this is in fact the primary interest of this paper. We
propose a procedure to search for robustness of the different MDS configurations con-
sidered for mixed-type data. In addition, we propose a test to identify multivariate
outliers in the context of mixed-type data, depending on a distance-based quantity,
closely related to the concept of geometric variability. The main contributions of the
paper on the treatment of MDS configurations for mixed-type data are: (i) to pro-
pose a joint metric based on distance matrices computed for continuous, multi-scale
categorical and/or binary variables, (ii) to introduce a systematic analysis on the sen-
sitivity of MDS configurations and (iii) to present a systematic search for robustness
and identification of outliers through a new procedure based on geometric variability
notions.

A primary motivation for this study was to find common characteristics of the par-
ticipants of several social programs carried out throughout Spain attending to some
continuous and categorical variables, that contain information of the incidence of the
2008 economic crisis on people that are under risk of being socially excluded. Since
the information is of different type, we are interested in computing distance matri-
ces for mixed-type data (using, Gower’s similarity coefficient) or either combining
different distance matrices, avoiding redundant information (related metric scaling).
Through leave-one-out crossvalidation procedures we analyze their stability and ro-
bustness in four contaminations of the original data set. We conclude that, in case of
having mixed-type data with more than one continuous variable, MDS configurations
obtained via related metric scaling are preferable to those computed from Gower’s
metric. The four contaminated data sets are also used to study the effectiveness of
the proposed test to identify multivariate outliers in the context of mixed-type data.



The paper is organized as follows: In Section 2 we review the principal characteristics
of the employed methods. In Section 3 we describe leave-one-out crossvalidation
procedures to study the sensitivity and robustness of these configurations and in
Section 4 we apply these methodologies to a real data set. In Section 5 we study
the test to identify multivariate outliers in the context of mixed-type data and we
conclude in Section 6.

2 Multidimensional scaling for mixed-type data

In this section we review the main properties of the employed methods. Given n
p-dimensional vectors {z;,1 < i < n} containing the information of n individuals,
we compute a distance matrix D, with entries d(z;,2;), for 1 <4, j < n. Since this
information can be either of qualitative or quantitative nature, or both, it is crucial
the adequacy of the dissimilarity function used in the computation of D. In this work
we will discuss two alternative ways of obtaining D when the data is of mixed-type.
Suppose that we are interested in obtaining a principal coordinate representation for
the set of n individuals, provided that D satisfies the Euclidean property. Let D(2)
be the matrix of squared distances and consider the double-centered inner product
matrix

1
G:—?HU%H

where H = I — %1 1’ is the n x n centering matrix, I is the identity matrix of
order n and 1 is the n x 1 vector of ones. The Euclidean requirement is equivalent
to the positive semi-definiteness of G, hence to the existence of an X such that
G = XX/, called in this context a centered Euclidean configuration of D, meaning
that 1’ X = 0 and that the squared Euclidean interdistances [|x; — x;||* between the
TOWS X1, ...,X, of X coincide with the corresponding entries in D. The verification
of this equivalence involves some simple algebra for which we refer to any standard
textbook on Multidimensional Scaling, such as Borg and Groenen (2005).

The principal coordinate representation (or classical metric scaling) is obtained when
matrix X is computed through the spectral decomposition of G, that is:

X =TAY?,

where A is a diagonal matrix containing the eigenvalues G, ordered in decreasing
order, and T is the matrix whose columns are the corresponding eigenvectors. The
number of nonzero eigenvalues will be at most n—1, and in most practical cases these
eigenvalues will be positive (Krzanowski 2006). If some of them are negative, then
D is non-Euclidean and some of the axes in the representation are imaginary. In this
case, a possible solution is to consider the transformation D@ =D®@ 4 ¢ (11 -1),
where ¢ > 2|A| and A is the negative eigenvalue of maximum module, which assures
an Buclidean configuration for D).

In the following we describe two techniques for computing either D or G when data
is of mixed-type.



2.1 Gower’s general similarity coefficient

A very popular metric for mixtures of numerical continuous, multi-state categorical
and binary variables is the one based on Gower’s general similarity coefficient (Gower
1971), which for two p-dimensional vectors z; and z; is equal to

het (1= [2in — 2jn| /BRn) +a+
pr+(p2—d)+ps

where p = p1 + p2 + p3, p1 is the number of continuous variables, a and d are the

number of positive and negative matches, respectively, for the ps binary variables, «

is the number of matches for the ps multi-state categorical variables, and Ry, is the

range of the h-th continuous variable. The entries of matrix D) are computed as

dQ(ZZ',Zj) =1- Sij- (2)

(1)

Sij =

Gower (1971) proved that (2) satisfies the Euclidean requirement.

2.2 Related metric scaling

Like all distance functions satisfying additivity with respect to variables, the distance
based on Gower’s general similarity coefficient implicitly ignores any association (e.g.
correlation) between variables (Gower 1992, Krzanowski 1994). On the other hand,
related metric scaling (Cuadras and Fortiana 1998) is a multivariate technique that
allows to obtain a unique representation of a set of individuals from several distance
matrices computed on the same set of individuals. The method is based on the
construction of a joint metric that satisfies several axioms related to the property of
identifying and discarding redundant or repeated information.

Given a set of m > 2 matrices of squared distances measured on the same group of
n individuals, {D&2)}a:17,_,7m, the first requirement in the construction of the joint
metric is that all matrices D, have the same geometric variability. This concept was
introduced by Cuadras and Fortiana (1995) as a variant of Rao’s diversity coefficient
(Rao 1982a, Rao 1982b) and, given a distance matrix D,,, its sample version is:

Vp, = T;zzczg(zi,zj). (3)

i=1 j=1

They proved that if X, is an Euclidean configuration of D, i.e., a principal co-
ordinate representation, then the total variability of X, that is the trace of the
covariance matrix of X, coincides with the geometric variability of D,. Note that
the condition of equal geometric variability can always be assumed to hold, since
multiplying a distance matrix by an appropriate constant amounts to a change of
measurement unit.

For each distance matrix {Dg)}azlw,m, we consider its doubly-centered inner prod-
uct matrix

G, = —%HD&Z)H, fora=1,...,m,

and obtain the joint metric as that whose doubly-centered inner product matrix is:

S 1 1/2 /2
G=) Ga——> GJ/’GJ" (4)
a=1 a#pB



Note that the principal coordinates are computed directly from matrix (4). In case
it is necessary, we can recover matrix D® with the following formula:

D? =g1' +1g —2G, (5)

where g = diag(G).

Based on these ideas, in Section 4, we construct the joint metric from m = 3 different
distance matrices: the first one for continuous variables, the second one for multi-
state categorical variables and the last one for binary variables.

3 Sensitivity and robustness of MDS configurations

Krzanowski (2006) proposed a leave-one-out crossvalidation procedure, based on the
method by DeLeeuw and Meulman (1986), in order to study the sensitivity of MDS
configurations, and illustrated it with some biometric examples. In this Section we
review this methodology with the aim to compare the stability and robustness of the
MDS configurations proposed in Sections 2.1 and 2.2. A real data set application can
be found in Section 4.

3.1 Sensitivity analysis

We start by reviewing the method proposed by Krzanowski (2006). Let D® be a
matrix of squared distances computed on n individuals, G the corresponding doubly-
centered inner product matrix, X = T A'/2 the principal coordinates, where A is a
diagonal matrix containing the eigenvalues of G, ordered in decreasing order and T
is the matrix of the corresponding eigenvectors. Let us call initial configuration to
the n-point Euclidean configuration given by X.
Suppose that we are interested in evaluating the influence of the i-th individual on
the other n — 1 individuals, in the sense that how the exclusion of the i-th individual
from the original data set can affect the Euclidean coordinates of the n—1 points. For
this purpose, we start by deleting the i-th individual from the original data set, then
we compute anew the matrix of squared distances between the other n—1 individuals
and finally obtain the principal coordinates. We denote with the subindex (i) the
previous matrices without the -th individual. Once the principal coordinates X ;)
are computed, we project the i-th point on the (n — 1)-Euclidean configuration using
Gower’s interpolation formula (Gower 1968):
1 -1~/ !

X= ) A(i) X(i) (g(i) —d),
where g(;) = diag G(;) and d is the (n—1) x 1 vector containing the squared distances
between the ¢-th individual and the other n — 1 individuals. Finally, in order to
compare this “augmented” configuration, X?i)’ with the initial one, it is necessary to
assure that both configurations are correctly aligned.
The crossvalidation assessment of configuration stability follows directly by repeating
the above process and leaving out each individual (each row of X) in turn, so that
we can have n “augmented” configurations, {Xfi),i =1,...,n}, that are compared
with X by superimposing them, provided that they are correctly aligned.



When n is moderately large, the n(n + 1) points may overload the diagram. Hence,
in this case Krzanowski (2006) proposes to surround each point with the smallest hy-
persphere that contains a given percentage (for example, 90% or 95%) of the cross-
validatory replicate points. The radii of these hyperspehers are computed as the
appropriate quantiles of the Euclidean distances between the original coordinates of
the points and the coordinates of their replicates. Hence, small hyperpheres indicate
a very stable point, whereas large ones a very unstable one.

3.2 Robustness analysis

A usual way to proceed in studying the robustness of a method is to compare the
results of its application in two different scenarios: the first one involves the original
(raw or simulated) data set, whereas in the second one, a percentage of outliers is
artificially introduced in the original data set. In this work we are interested in
comparing the robustness of the MDS configurations obtained from mixed-type data
using the metrics proposed in Sections 2.1 and 2.2. For this purpose, we consider
different contaminations of the original data set (see Section 4 below) and, for each
contamination and each MDS configuration, we analyze the 95%-stability regions
through leave-one-out crossvalidation procedures.

Most of the recent robust techniques are developed for high-dimensional multivariate
data, which is not the case for example, for data collected through questionnaires.
We focus primary on this type of data and we proceed as follows.

In the application of Section 4, the joint metric is computed from three different
distance matrices: For multi-state categorical variables we consider Sokal-Michener’s
similarity coefficient and for binary variables Jaccard’s similarity coefficient. For the
continuous variables we construct a robust estimation of Mahalanobis’ distance that
consists of estimating the entries in the covariance matrix in the following way: the
variance of the j-th continuous variable is estimated from a 5%-trimmed sample,
as suggested by Tuckey (1960). Gnanadesikan (1997) proposes a simple idea for
estimating the covariance between two variables, Z; and Zj,, based on the identity

1
COV(Zj, Zk) = 1 (V&I‘(Zj + Zk) + V&I'(Zj — Zk)) .

Then, one robust estimator for the covariance between Z; and Z; may be obtained
from .

= 407 =07,
where &f and 6*2 are robust estimators of the variances of Zj+ Zy, and Z; — Zy,
respectively, and may be obtained by the method mentioned above.
Nevertheless, our method can be extended by replacing the robust distance used in
the application, i.e. the Mahalanobis’ robust distance, by any other robust distance
applied to the continuous variables.

4 An application to real data

In this Section we apply the techniques described in Section 2 and Section 3 to a real
data set obtained from a collaborative project with a NGO. A social questionnaire



is administered to the people attended by this institution, who are in situations of
greater fragility. It measures their situation in regards to 5 fields: personal, familial,
economic, social, and environmental /housing. Depending on the results, the partic-
ipants interviewed are situated in ranges of moderate, high, very high or extreme
risk. The average of these results is a comprehensive indicator of vulnerability. In
November 2008, this institution decided to set up a panel-type study in order to
observe the rate of the economic crisis on people in situations of high risk, who par-
ticipated in social programs throughout the country. The first wave of interviews
was finished in May 2009 and the second one in October 2009. The findings of the
second wave of interviews shed light on its incidence among the most vulnerable
segments, which possess the least number of resources to develop capacities to con-
front the crisis. A comparative analysis of the results of the first wave, which was
conducted during the month of May 2009, makes it possible for us to establish com-
parisons and to determine the direction of the evolution of this process. The main
findings of this study are in a Technical Report (in Spanish and English), available
at http://www.sobrevulnerables.es/sobrevulnerables/boletines.do?method=inicio .

4.1 Description of the data set

In this work we focuss only on some of the responses of n = 438 individuals that
participated all along the panel-type study. The participants are distributed in several
social programs:

Social programs under study:

1. Drug Dependency Assistance 4. Immigrants and Refugees
2. Fight Against Poverty and Social Exclusion 5. Aged People

3. Assistance for Disabled People 6. Inmates and Former Inmates

For the sake of simplicity and without loss of generality, we consider the information
related to the following eight mixed-type variables:

type description values/categories (% frequency distribution)
continuous  monthly income (in euros) from 0 to 3000 euros

continuous  age (in years) from 20 to 94

binary housing problems no (22.1), yes (77.9)

binary sex male (23.1), female (76.9)

categorical employment status employed (27.4), autonomous (1.4),

unemployed (29.5), retired (27.9),
has never worked (13.8)

categorical how often they receive never (24.9), rarely (18.7), sometimes (21.7),
substantial economic aid often (25.6), always (9.1)

categorical expectations for their life better (25.1), worse (16.7),
in general for the next 12 months same (37.0), do not know (21.2)

categorical economic expectations for better (21.5), worse (17.6),
the next 12 months same (39.7), do not know (21.2)

Let Z be the 438 x 8 data matrix (hereafter, original data set), containing the re-
sponses to the variables described above. The information concerning to social pro-
grams is not used to derive the distances between individuals, but to label them.
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Figure 1: MDS configuration
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4.2 MDS configurations for mixed-type data: Gower’s vs. related

metric scaling

We start by analyzing the results of the application of the two techniques described
in Section 2 to matrix Z. Hereafter, we call Gower’s metric to the distance matrix
derived using formula (2) and joint metric to the distance matrix obtained from for-
mula (5). Once MDS configurations are obtained, we use the additional information
about the social program to label the individuals.

In this application, the joint metric has been computed from three different distance

(2), DgQ) and D:(f) be the three matrices of squared distances measured

1

on the same set of n individuals. In the case of continuous variables, we compute Dg2)
matrix using the robust version of Mahalanobis’ distance described in Section 3.2. For
multi-state categorical variables we consider Sokal-Michener’s similarity coefficient

and for binary variables Jaccard’s similarity coefficient, then for ¢ = 2,3 we compute

matrices. Let D

DZ(.Z) =2(11 - &;), where S; are the corresponding similarity matrices containing
Sokal-Michener’s and Jaccard’s pairwise similarities.

Panels (a) and (b) of Figure 1 contain the representations of the individuals in the
first two principal coordinates computed using Gower’s and joint metrics, respectively.
We can observe an increase of the percentage of explained variability when using the
joint metric (from 26.61% with Gower’s metric to 43.69% with the joint metric).
Table 1 contains the correlation coefficients between the original variables and the
first three principal axes. We consider Pearson’s correlation coefficient for continu-
ous variables, whereas Spearman’s correlation coefficient is computed for categorical
variables. From Table 1 we see that, when using Gower’s metric, the variables with
greater influence on the first axis are (in decreasing order) age and employment sta-
tus, whereas employment status, economic expectations, expectations for their life in
general and age are those who have greater influence on the second axis. In the third
axis, only monthly income and housing problems have greater influence. In the case
of the joint metric, the variables with greater influence on the first two axes, although



Table 1: Correlation between the original variables and the first three principal axes.

Gower’s metric Joint metric
original variable 1st C. 2nd C. 3rd C. 1st C. 2nd C. 3rd C.
monthly income 0.3582 0.0111 0.4553 0.9197 0.3859 -0.0616
age 0.6132 0.4179 0.2892 -0.0930 0.9913 -0.0408
housing problems  -0.3839 -0.1435 -0.4054 -0.2495 -0.3082 -0.5315
sex  -0.0549 -0.1463 0.0308 0.1568 -0.0548 0.6971
employment status 0.4830 0.4918 0.0525 -0.2185 0.6287 0.0002
subs. economic aid  -0.0260 0.1604 0.1310 0.0205 -0.0005 0.0548
exp. for their life 0.3827 0.4852 -0.3490 -0.0798 0.1782 0.1254
economic exp. 0.3981 0.4904 -0.2874  -0.0888 0.1938 0.1484

with different order, are monthly income, employment status, age and housing prob-
lems, whereas sex and housing problems are those with greater influence on the third
axis.

In Figure 2 we depict the same MDS configuration as in Figure 1, but now using
those variables more correlated with the principal axes (age, employment status,
economic expectations and expectations for their life in general for Gower’s metric,
and monthly income, age, employment status and housing problems for the joint
metric) to label the individuals. We can observe that the joint metric makes better
use of the information contained in the continuous variables than Gower’s metric
(compare, for example, panels (al) and (bl) of Figure 2). Hence, in the following
we interpret only the results concerning to the MDS representation using the joint
metric. From panels (b1)—(b4) we can distinguish four different profiles:

P1 People under 50 years, unemployed, with no monthly income,

P2 People under 50 years, either employed or unemployed and mainly under 1000
euro monthly income,

P3 People over 50 years, mainly retired or that had never worked, with no monthly
income and housing problems,

PJ People over 50 years, mainly retired or that had never worked, under 1000 euro
monthly income and with housing problems.

From panel (b) of Figure 1 we can conclude that individuals from Immigrants and
Refugees program will probably have P1 or P2 profiles, while individuals from Aged
People program are more likely to have P& or P4 profiles. On the other hand,
participants from Drug Dependency Assistance and Inmates and Former Inmates
programs present P2 profile, while participants from Assistance for Disabled People
program have P4 profile. It is very interesting to notice that individuals from Fight
Against Poverty and Social Exclusion program spread almost all over profiles.

4.3 Sensitivity and robustness analysis

In order to compare the sensitivity of both MDS configurations, we perform the leave-
one-out crosvalidation procedure described in Section 3.1. In Figure 3 we depict
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Figure 2: MDS representations using Gower’s metric (26.61% of explained variability)
and joint metric (43.69% of explained variability). Identification of individuals.
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Figure 3: Sensitivity of the MDS configurations. Original data set.
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the 95%-stability regions for the MDS configurations using Gower’s metric (panel
(a)), and the joint metric (panels (b)—(d)). The circles drawn are the result of the
projection onto the plane of the smallest hyperspheres containing the 95% of the
replicated points. The radius of each hypersphere is given by the squared root of
the 95-th quantile of the Euclidean distances between the original coordinates of the
point and the coordinates of its replicates. Notice that the axes scale is different in
panels (a) and (b). Therefore, we include panels (c) and (d) for better comparison
with panel (a). In panels (c) and (d) we can see few overlapping regions, indicating
that individuals are better separated using the joint metric. On the other hand, the
stability of the points is slightly greater with Gower’s metric (see also Table 2, where
we report some descriptive statistics for the circle radii).

Regarding to robustness, we implemented an experimental design to generate differ-
ent scenarios of contamination according to the following factors: the percentage of
contamination, the P1-Pj profiles to be contaminated and the contamination type
for mixed-type data. Here we only report some of the most representative outputs of
the simulation study.
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Table 2: 90-th and 95-th quantiles for the circle radii. Original data set.

Gower  joint (robust)
90th-quantile  0.0078 0.0126
95th-quantile  0.0100 0.0183

We contaminate the original data set with a 5% of outliers in order to study the
robustness of both MDS configurations. We consider 22 individuals either from P2 or
P/ profiles and modify some of their characteristics in a contradictory way, simulating
individuals that would rarely be participants of the social programs described in
Section 4.1. In this way, the four contaminated data sets are constructed according
to multivariate contamination patterns. The contaminations reported are:

Contamination 1. Participants from the Aged People social program, 70 year-
old (in mean) women, that had never worked, but with 2000 euros monthly
income (in mean).

Contamination 2. Participants from the Immigrants and Refugees social pro-
gram, 25 year-old (in mean) women, that had never worked, but with 2000
euros monthly income (in mean).

Contamination 3. Participants from the Immigrants and Refugees social pro-
gram, over 95 year-old, unemployed, with 400 monthly income (in mean).

Contamination 4. Participants from the Aged People social program, under
16 year-old, that had never worked, with a monthly income greater than 1000
euros.

We start by computing the MDS configurations for the four contaminated data sets,
both using Gower’s and the joint metric. They are depicted in Figure 4, where we
can see that these groups of rare observations are quite well located in the MDS con-
figuration using the join metric. As before, the percentage of variability explained
with the joint metric is greater than with Gower’s. For each contaminated data set
and each MDS configuration we carry out a leave-one-out crossvalidation procedure
in order to compute the 95%-stability regions, analogously as we have done for the
original data set at the beginning of this section. Table 3 contains some descriptive
statistics for the radii of these regions. Although these radii show similar values for
both configurations, it is important to note that joint metric is more powerful allo-
cating outliers and explaining the variability of the data than the classical alternative
that uses Gower’s metric. In general, from Figure 4 and Table 3 we may conclude
that, in case of having mixed-type data with more than one continuous variable, MDS
configurations using the joint metric are preferable to those that use Gower’s metric.

5 OQOutliers identification

Quite often, in the context of multivariate analysis, an outlier is an observation
that is located far (in one or more directions) from the rest of the individuals. Our
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Figure 4: MDS configurations for the contaminated data sets. Outlier location.
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Table 3: 90-th and 95-th quantiles for the circle radii. Contaminated data sets.

90th-quantile
95th-quantile

Contamination 1

Contamination 2

Gower joint(robust) Gower joint(robust)
0.0103 0.0093 0.0080 0.0122
0.0142 0.0130 0.0101 0.0167

Contamination 3

Contamination 4

Gower joint(robust) Gower joint(robust)
90th-quantile  0.0080 0.0140 0.0081 0.0102
95th-quantile  0.0102 0.0264 0.0103 0.0161

contribution in this section is to propose a new test statistic related to a distance-
based proximity function for detecting multivariate outliers in the context of mixed-
type data. To our knowledge, this offers an original contribution in this framework.
We start by defining the test statistic and, due to the difficulties to find its exact
distribution (which depends on the metric selection), we obtain the approximate
distribution by nonparametric procedures. To study the effectiveness of the test we
apply it to the artificially contaminated data sets described in Section 4.3.

5.1 Definition of the test statistic

Let D = (d(2i,2;))1<i,j<n be a n x n distance (or dissimilarity) matrix computed on
a set of n p-dimensional vectors {z;,1 <i < n}.

Given a new individual zg € RP, Cuadras, Fortiana, and Oliva (1997) define the
distance-based proximity function of zg to the previous set of n individuals as:

$(a) = " (a0,2) Vb, ()
=1

where Vp is the geometric variability of D defined in (3). These authors studied the
properties of (6) and used it to allocate a new individual to one of a given set of
populations. Moreover, they proved that, the distance-based proximity function is a
Matusita (1956) rule, whenever an Euclidean configuration exists. This concept was
also used in Boj, Claramunt, Grané, and Fortiana (2009) in the context of distance-
based prediction.

The new proposal is to use the proximity function defined by (6) to identify multi-
variate outliers in the context of mixed-type data. For this purpose it would be very
useful the availability of the probability distribution of (6) under the null hypothesis
that there are no outliers. However, in the context of mixed-type data, we think that
an analytical derivation of such a distribution is an exceedingly complex task for any
realistic situation. Note that the distribution of (6) may depend on more than one
distance function (in fact, this is the case when using the joint metric). Therefore,
we propose to estimate the probability distribution of the proximity function (6)
through an iid-bootstrap procedure with B resamples of the original data set. For
each resample, we get n values of the proximity function. One possibility for setting
the cut-off value is to select the 95-th percentile, that can be computed on Bn values.
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Figure 5: Histogram and descriptive statistics for the proximity function computed
on B = 2500 resamples of the original data set.

x10°
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mean 2.1971
std. deviation 0.9883
median 2.0386
MAD 0.5600
90-th percentile 2.9992

95-th percentile 3.6430
97.5-th percentile 4.2954
99-th percentile 5.6458

We also propose the 90-th percentile or even robust alternatives based on the median
to be used as threshold values, which may result in less conservative tests.
Although in the application that follows the distance matrix D is obtained using the
joint metric (5), the procedure is general enough to be extended in several directions.
For example, one can use robust distances in the construction the joint metric, or
eventually, to use weighted approaches for the construction of the joint metric, which
are beyond the scope of in this paper.

5.2 Application

Since we are interested in detecting outlier observations, in the construction of the
joint metric (5) we start by considering the usual Mahalanobis’ distance for contin-
uous variables. Nevertheless, one can also use a robust version as that described in
Section 3.2. Although we know that there are multivariate outliers in the original
data set presented in Section 4, we consider more challenging to work with the four
contaminated data sets introduced in Section 4.3 in order to check the effectiveness
of our proposal in front of different types of outliers.

To this end, we take B = 2500 resamples of the original data set (of size n = 438)
and estimate the probability distribution of (6) through an iid-bootstrap. Figure 5
contains the histogram and some descriptive statistics of this proximity function
computed on Bn values. Hereafter, we use the value 3.6430, the 95-th percentile (in
bold in Figure 5) as the threshold value for the outlier identification test.

To evaluate the performance of the test, we compute the proximity function for
the four contaminated data sets described in Section 3.2. The results are reported in
Figure 6, where jointly with the proximity function values, we depict the the proposed
threshold (red dashed line) and the median (red solid line) reproduced in Figure 5. In
all panels there are several observations with high proximity function values, half of
them located at the end of the sample, which correspond to the 22 artificially added
observations. These findings are reinforced by the results contained in Table 4. The
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Figure 6: Proximity function values for Contamination 1-4 data sets.
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first column of Table 4 lists the number of outliers detected on the four contaminated
sets. Since we know that 22 of them are artificially added points, we may now identify
the outlying points in the original data set. Moreover, analyzing the characteristics
of each type of contamination we can discover the features of each identified outlier
in the original data set.

Additionally, there are many other thresholds that can be used. For instance, a widely
used method in univariate distributions is the one that considers an observation to be
an outlier if it departs from the median (in absolute value) more than 4.5 times the
MAD (Median of Absolute Deviations to the median). We compare the effectiveness
of both thresholds in the third and fourth columns of Table 4, where we can see that
our proposal (the 95-th percentile of the proximity function distribution computed
on B resamples of the original data set) overperforms the Me + 4.5M AD threshold.
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Table 4: Number of outlier detections in Contamination 1-4 data sets.

number of detections number of detections in the set
in the whole data set of 22 artificially added points
threshold Me+4.5MAD  threshold Me+4.5MAD
Contamination 1 33 9 15 (68.2%) 5 (22.7%)
Contamination 2 32 17 21 (95.5%) 12 (54.5%)
Contamination 8 25 10 10 (45.5%) 1 (4.5%)
Contamination 4 31 12 16 (72.2%) 7 (31.8%)

Me and M AD are estimated on each contaminated data set.

6 Conclusions

Assessing sensitivity of MDS configurations we found that our proposal overperforms
the classical one that uses Gower’s metric.

The presence of outliers in survey data is a relevant problem when one is interested
in data visualization through MDS techniques. Mainly, this problem comes out from
the mixed-type nature of the data. To our knowledge there are only few attempts
to tackle this problem. This paper contributes on this direction by presenting a
systematic approach to sensitivity and robustness of MDS configurations computed
on mixed-type data, in particular when variables measured at continuous level as well
as categorical variables are considered.

A primary motivation of this work was to extend a previous study on a real data set
coming from a panel-type analysis designed to assess the economic crisis impact on
Spanish people who were in situations of greater social fragility. Due to the mixed-
type structure of the data we were unable to identify possible outliers from the MDS
configurations with the help of the available techniques.

Through leave-one-out crossvalidation procedures we compare the performance, in
terms of sensitivity and robustness, of two MDS configurations obtained using Gower’s
similarity coefficient versus a joint metric computed via related metric scaling, a tech-
nique that combines different distance matrices avoiding redundant information. We
illustrate these methodologies on a real data set and on four contaminations of it
(with 5% of outliers). In the case of having mixed-type data with more than one con-
tinuous variable, we can conclude that with MDS configurations obtained via related
metric scaling (joint metric), firstly, individuals are better separated and, secondly,
contaminated groups of observations (outliers) are easier to locate. This last finding
is reinforced with the distance-based proximity function, that we propose as a test
statistic for detecting multivariate outliers in the context of mixed-type data.

The application of several robust alternatives to the construction of the joint metric
as well as a possible robustification of the proximity function (6) are lines left for
further research.
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