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Abstract

A system of vector semiparametric nonlinear time series models is studied
with possible dependence structures and nonstationarities in the parametric
and nonparametric components. The parametric regressors may be endoge-
nous while the nonparametric regressors are strictly exogenous. The para-
metric regressors may be stationary or nonstationary and the nonparametric
regressors are nonstationary time series. Semiparametric least squares (SLS)
estimation is considered and its asymptotic properties are derived. Due to
endogeneity in the parametric regressors, SLS is not consistent for the para-
metric component and a semiparametric instrumental variable least squares
(SIVLS) method is proposed instead. Under certain regularity conditions,
the SIVLS estimator of the parametric component is shown to be consistent
with a limiting normal distribution. Interestingly, the rate of convergence in
the parametric component depends on the properties of the regressors. It
has been shown that the conventional rate–

√
n is still achievable even when

nonstationarity is involved in both the regressors.
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1 Introduction

Existing studies show that both nonstationarity and nonlinearity are common fea-
tures of much economic data. Modeling such data in a way that allows for possible
nonstationarity helps to avoid dependence on stationarity assumptions and mixing
conditions for all of the variables in the system. At present there is a large literature
on parametric linear modeling of nonstationary time series and interest has primarily
focused on time series with a unit root or near unit root structure (for an overview,
see, for example, Phillips and Xiao, 1998, and the references therein). In practical
work, much attention is given to multivariate systems and cointegration models.
Inferential methods for these linear systems include both parametric (e.g., Johansen
1991; 1995, 2000) and semiparametric (see, for example, Phillips and Hansen 1990,
Phillips 1991; 1995, Watson 1994) approaches.

In comparison with work on linear parametric models, there have been only a few
studies of parametric nonlinear models with integrated variables. Park and Phillips
(1988, 1989, 1999, 2001) introduced techniques for developing asymptotics for cer-
tain classes of nonlinear nonstationary parametric systems and aspects of this work
have been extended by Pötscher (2004), de Jong (2004), Jeganathan (2004, 2008),
and Berkes and Horváth (2006). Interest has also developed in nonparametric mod-
eling methods to deal with nonlinearity of unknown form involving nonstationary
variables. Existing studies in the field of nonparametric autoregression and cointe-
gration estimation include Phillips and Park (1998), Karlsen and Tjøstheim (1998,
2001), Wang and Phillips (2009a, 2009b), Karlsen et al (2007), Kasparis and Phillips
(2009), Cai, Li and Park (2009), Schienle (2009), and Phillips (2009). The last pa-
per examines in a nonparametric setting spurious time series models of the type
considered by Granger and Newbold (1974, 1977) in a linear parametric setting, for
which the asymptotic theory was given in Phillips (1986, 1998).

Among the nonparametric studies of nonstationarity, two different mathemati-
cal approaches have been developed. In one approach, a so-called “Markov splitting
technique” has been used in Karlsen and Tjøstheim (1998, 2001), and Karlsen et al
(2007) to model univariate time series with some kind of null–recurrent structure;
and Chen et al (2008) consider univariate semiparametric regression modeling of
null–recurrent time series, in which there is neither endogeneity nor heteroskedas-
ticity. In the other approach, Phillips and Park (1998), Phillips (2009), and Wang
and Phillips (2009a, 2009b) have developed ‘local–time’ methods to derive an asymp-
totic theory for nonparametric estimation of univariate models involving integrated
time series.

In the case of independent and stationary time series data, semiparametric re-
gression models have been intensively studied for more than two decades and there
is a wide literature (Robinson 1988; Linton 1995; Pagan and Ullah 1999; Härdle et
al 2000; Yatchew 2003; Gao 2007; Li and Racine, 2007, among many others). In
applied work, semiparametric methods have been shown to be particularly useful in
modeling economic data in a way that retains generality where it is most needed
while reducing dimensionality problems.

The present paper seeks to pursue these advantages in a wider context that allows
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for nonstationarities and endogeneities within a vector semiparametric regression
model. The null recurrent structure of integrated time series typically reduces the
amount of time that such time series spend in the vicinity of any one point, thereby
exacerbating the sparse data problem or “curse of dimensionality” in nonparametric
and semiparametric modeling of multivariate integrated time series. On the other
hand, recurrence means that nonlinear shape characteristics of unknown form may
be captured over unbounded domains and endogeneity may be often accommodated
without specialized methods (Wang and Phillips 2009b).

A common motivation for the use of semiparametric formulations such as (1.1)
below is that they reduce nonparametric dimensionality through the presence of a
linear parametric component. In our setting, the time series {(Yt, Xt, Vt) : 1 ≤ t ≤ n}
are assumed to be modeled in a system of simultaneous equations of the form

Yt = A Xt + g(Vt) + εt,

Xt = H(Vt) + Ut, t = 1, 2, · · · , n,
E[εt|Vt] = E[εt] = 0 and E[Ut|Vt] = 0, (1.1)

where n is the sample size, A is a p × d–matrix of unknown parameters, Yt =
(yt1, · · · , ytp)′, Xt = (xt1, · · · , xtd)′, and Vt is a sequence of univariate integrated
time series regressors, g(·) = (g1(·), · · · , gp(·))′ and H(·) = (h1(·), · · · , hd(·))′1 are all
unknown functions, and both εt and Ut are vectors of stationary time series. An
extended version of model (1.1) is given in (2.21) in Section 2.3 below to deal with
a more general case.

Model (1.1) corresponds to similar structures that have been used in the inde-
pendent case (see Linton 1995; Newey et al 1999; Su and Ullah 2008). The condition
E[εt|Vt] = E[εt] is generally needed to ensure that the model is identified. For, if
there were an unknown function λ(·) such that εt = λ(Vt)+εt with E[εt|Vt] = 0, then
only g(·) +λ(·) would normally be estimable. However, recent research has revealed
that some cases where εt is correlated with Vt may be included. In particular, in
studying nonparametric regressions of the form Yt = g(Vt) + εt, Wang and Phillips
(2009b) consider a nonstationary endogenous regressor case where Vt is correlated
with εt and show that conventional nonparametric regression is applicable in spite
of the endogeneity. Phillips and Su (2010) show that the same phenomena holds in
cross section cases where there are continuous location shifts in the regressor, which
play the role of an instrumental variable in tracing out the nonparametric regression
function.

The identification condition E[εt|Vt] = E[εt] = 0 eliminates endogeneity between
εt and Vt while retaining endogeneity between εt and Xt and potential nonstationar-
ity in both Xt and Vt. The condition E[εt|Vt] = E[εt] = 0 in our setting corresponds
to the condition E[εt|Vt, Ut] = E[εt|Ut] that is assumed in Newey et al (1999) and
Su and Ullah (2008), the former being implied by E[εt|Vt] = E (E [εt|Ut, Vt] |Vt) =
E (E [εt|Ut] |Vt) = E (E [εt|Ut]) = E [εt] when Ut is independent of Vt and E[εt] = 0.
The identification conditions in (1.1) allow for both conditional heteroskedasticity

1F ′(·) denotes transpose of the vector function F (·), and F (i)(·) denotes the i–th derivative of
F (·).
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and endogeneity in εt, permitting εt to depend on Ut
2. These conditions are also less

restrictive than the exogeneity condition between εt and (Xt, Vt) that is common in
the literature for the stationary case (see, for example, Gao 2007).

The present paper treats model (1.1) as a vector semiparametric structural model
and considers the case where Xt and Vt may be vectors of endogenous, nonstationary
regressors. In the case where endogeneity is involved in semiparametric regression
modeling of independent data, some related developments include Robinson (1988),
Newey et al (1999), Ai and Chen (2003), Newey and Powell (2003), Blundell et al
(2007), Florens et al (2007), and Su and Ullah (2008). While estimation of partially
linear models with endogeneity is discussed in each of these papers, neither the
proposed structures nor the estimation methods may be used to deal with our case.

The contributions of the paper are as follows. We first consider a semiparamet-
ric least squares (SLS) estimator of A. When there is endogeneity in Xt, the SLS
estimator of A is inconsistent. Accordingly, the paper proposes a semiparametric
instrumental variable least squares (SIVLS) estimate of A to deal with endogeneity
in Xt and a nonparametric estimator for the function g(·). The SIVLS estimator
of A is shown to be consistent with a conventional

√
n–rate of convergence in some

cases even when Xt is stochastically nonstationary. This rate arises because nonsta-
tionarity in the regression can be eliminated by means of stochastic detrending.

The semiparametric procedure given here may be used on a system of non-
linear simultaneous equations with the following features: (i) nonstationarity and
endogeneity in the parametric regressors; (ii) nonlinearity and nonstationarity in
the nonparametric regressors; and (iii) stationary residuals. As such, the paper

complements existing results on parametric dynamic simultaneous equations mod-
els (Zellner and Palm 1974; Hsiao 1997), parametric modeling with endogeneity
(such as Phillips 1983; Sargan 1988), parameter estimation in simultaneous equa-
tions models (such as Greene 2005), nonparametric and semiparametric estimation
of nonlinear time series (such as Tong 1990; Fan and Yao 2003; Gao 2007), param-
eter estimation in vector autoregression and cointegration (such as Watson 1994),
instrumental variable estimation of nonparametric models (such as Robinson 1988;
Newey et al 1999; Ai and Chen 2003; Newey and Powell 2003; Blundell et al 2007;
Florens et al 2007; Su and Ullah 2008), and nonparametric and semiparametric es-
timation of nonstationary time series (such as Phillips and Park 1998; Karlsen and
Tjøstheim 2001; Karlsen et al 2007; Wang and Phillips 2009a, 2009b).

In comparison with a related paper by Chen et al (2008), who consider the case
where {Vt} is a null recurrent Markov chain and assume the existence of an unknown
functional H(v) = E[Xt|Vt = v] that is independent of t in a scalar semiparametric
regression Yt = X ′tα + g(Vt) + εt with E[εt|Xt, Vt] = 0. By contrast, this paper
imposes a set of general conditions in Assumption 3.3 below on the integrated process
Vt. Note that a general integrated process is not a Markov chain unless it is of
the form Vt = Vt−1 + vt with vt being independent and identically distributed.

2The additive case where εt = λ(Ut) + µt with E[µt|Vt] = 0 is covered in the first part of
(1.1) because E [εt|Vt] = E [λ(Ut)|Vt] + E[µt|Vt] = E [λ(Ut)] = E [εt] when Ut is independent of
Vt. The multiplicative case where εt = σ(Ut)νt is also covered in the first part of (1.1) because
E [εt|Vt] = E [σ(Ut)νt|Vt] = E [εt] when (Ut, νt) is assumed to be independent of Vt.
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Other related studies include Cai, Li and Park (2009) for a nonstationary varying
coefficient time series model, Gao et al (2009a, 2009b) for model specification testing
involving nonstationarity, and Phillips (2009) for nonparametric kernel estimation of
the relationship between two integrated time series in a spurious regression model.

The paper is organized as follows. Section 2 proposes estimators of the parameter
matrix A and the nonlinear functions g(·). Asymptotic results of the proposed semi-
parametric estimators are established in Section 3. A bandwidth selection method
is developed in Section 4.1. Section 4.2 gives two examples to illustrate implemen-
tation. Conclusions are given and some limitations of the framework are discussed
in Section 5. Proofs of the main results are given in Appendix A and subsidiary
lemmas in Appendix B.

2 Semiparametric Estimation

Before addressing estimation, we provide more detailed discussion of the model and
its implications. Write (1.1) in full as:

Yt = A Xt + g(Vt) + εt (2.1)

Xt = H(Vt) + Ut, (2.2)

E[εt|Vt] = E[εt] = 0, (2.3)

E[Ut|Vt] = 0. (2.4)

When the variables {(Xt, Vt, εt)} are jointly stationary with finite second moments,
the conditional expectation H(Vt) = E[Xt|Vt] is well–defined. It is common to
assume weak exogeneity, so that E[εt|(Ut, Vt)] = 0, and letting Ut = Xt − E[Xt|Vt],
the decomposition of Xt = H(Vt) + Ut is immediate. In consequence, the model
(2.1)–(2.4) reduces to a standard semiparametric form

Yt = A Xt + g(Vt) + εt, with E[εt|(Ut, Vt)] = 0 (2.5)

as discussed, for example, in Robinson (1988), Härdle et al (2000) and Gao (2007).
In the case where both Xt and Vt are nonstationary, the notion of a constant

conditional expectation functional E[Xt|Vt] may not be well defined. In (2.2), the
dependence of Xt on Vt takes the general form of a nonlinear cointegrating system
relating nonstationary variables. It follows from (2.1)–(2.4) that

E[Yt|Vt = v] = A H(v) + A E[Ut|Vt = v] + g(v) + E[εt|Vt = v]

= A H(v) + g(v), (2.6)

which implies that Ψ(v) = E[Yt|Vt = v] is well defined. In addition, (2.6) implies

g(v) = Ψ(v)− AH(v). (2.7)

Thus, in view of equation (2.7), we can rewrite (2.1) as

Yt −Ψ(Vt) = A (Xt −H(Vt)) + εt = A Ut + et,
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where et = εt and Ut = Xt −H(Vt), as assumed in (1.1). Introducing the “stochas-
tically detrended” variable

Wt = Yt −Ψ(Vt), (2.8)

we can write (2.1) and (2.2) in semiparametrically contracted form as

Wt = A Ut + et. (2.9)

Regarding (2.6)–(2.9), we make the following observations:

• The contracted form model (2.9) is semiparametric because both Wt and Ut
are not observable and need to be estimated nonparametrically.

• Since E [λtU
′
t ] = E {λtE [U ′t|Vt]} = 0, we have

E [Utε
′
t] = E [Utλt

′] + E [Ute
′
t] = E [Ute

′
t] = E [UtE (e′t|Ut)] . (2.10)

It follows that the unknown matrix A can be consistently estimated based on
(2.9) when E [Ute

′
t] = 0. The following two cases show that this condition can still

be satisfied even when et may depend on Ut.

Case 2.1. Consider a multiplicative relationship of the form et = σ(Ut)πt,
where πt is a sequence of independent random errors with E[πt|Ut] = 0 and σ(Ut) is
a positive definite matrix. In this case, we have E[et|Ut] = σ(Ut)E[πt|Ut] = 0.

Case 2.2. Let p(·) be the marginal density of Ut and γ(u) = E [e′t|Ut = u]. Then,
E [Ute

′
t] = E [UtE (e′t|Ut)] = E [Utγ(Ut)] =

∫∞
−∞ uγ(u)p(u)du = 0 when γ(u)p(u) =

γ(−u)p(−u) for all u.

In such cases as these, there is no need to introduce instrumental variables (IVs)
in the estimation of (2.9). Otherwise, endogeneity must be addressed and an IV
procedure may be used to achieve consistent estimation of A. Section 2.1 proposes a
semiparametric least squares (SLS) estimation method for the case where E (e′t|Ut) =
0. Section 2.2 develops a semiparametric instrumental variable procedure (SIVLS)
that is applicable in the case of nonstationary Ut.

2.1 SLS estimation

When E (e′t|Ut) = 0, consistent estimation is possible based on (2.9). But since both
Wt and Ut are unobservable, the unknown functions Ψ(·) and H(·) must be estimated
nonparametrically. Substituting nonparametric kernel estimates into (2.9) gives an
approximate semiparametric nonlinear time series model of the form

Ỹt = A X̃t + et, (2.11)

where Ỹt =
(
Yt − Ψ̂(Vt)

)
Ft and X̃t =

(
Xt − Ĥ(Vt)

)
Ft. In these formulae, Ft is

the indicator Ft = I (p̂n(Vt) > bn) where bn is a sequence of positive numbers that

tend to zero as n → ∞, p̂n(v) = 1√
nh

∑n
s=1K

(
Vs−v
h

)
, Ψ̂(v) =

∑n
s=1wns(v)Ys and
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Ĥ(v) =
∑n
s=1wns(v)Xs with wns(·) being a sequence of probability weight functions

of the form

wnt(v) =
Kv,h(Vt)
n∑
k=1

Kv,h(Vk)
with Kv,h(Vt) =

1

h
K
(
Vt − v
h

)
, (2.12)

in which K(·) is a probability kernel function and h is a bandwidth parameter. Note
that since Vt is scalar, we need only use a single bandwidth parameter h.

The semiparametric least squares (SLS) estimator of A is defined by the equation

Â = Ỹ ′X̃(X̃ ′X̃)−1, (2.13)

where X̃ ′ = (X̃1, · · · , X̃n), Ỹ ′ = (Ỹ1, · · · , Ỹn), and throughout the paper D−1 is
the inverse of D or a generalized inverse if D−1 does not exist. This type of trun-
cated least squares estimation method has been widely used in the literature for the
independent sample case (see, for example, Robinson 1988).

The vector of unknown functions g(·) is then estimated by

ĝ(v) = gn(v; Â) ≡
n∑
s=1

wns(v)Ys − Â
n∑
s=1

wns(v)Xs. (2.14)

By elementary calculation

(Â− A) X̃ ′X̃ = ẽ′X̃ + G̃′X̃, (2.15)

with G̃′ = (G̃1, · · · , G̃n) = (g̃(V1), · · · , g̃(Vn)), g̃(Vt) = g(Vt) −
n∑
s=1

wns(Vt)g(Vs), ẽ
′ =

(ẽ1, · · · , ẽn) and ẽt = et −
n∑
s=1

wns(Vt)es. This estimator in (2.13) is implemented in

Example 4.1 below.
Assuming that g(·) and H(·) are both differentiable and their first derivatives

are all continuous, as shown in Appendix A, an approximate version of (2.15) has
the form

(Â− A) U ′U (1 + oP (1)) = e′U (1 + oP (1)), (2.16)

where e′ = (e1, · · · , en) and U = (U1, · · · , Un)′. This reduction shows that
√
n

convergence is achievable when E[e|U ] = 0 and some smoothness conditions are
imposed on g(·) and H(·).

Equation (2.16) also shows that Â will be inconsistent when U is a matrix of
endogenous regressors for which E[e|U ] 6= 0. This case is now considered and
a semiparametric instrumental variable least squares (SIVLS) estimation method
for A is developed that is consistent and has desirable asymptotic distributional
properties.

2.2 SIVLS estimation

In the case where U is a matrix of integrated regressors, a semiparametric version
of the fully modified (FM) estimation procedure of Phillips and Hansen (1990) and
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Phillips (1995) may be used to consistently estimate A. That approach may be
considered for the case where both Xt and Vt are univariate integrated regressors
and are independent of each other. But when U is a matrix of stationary regressors,
the FM method fails. We therefore propose here a semiparametric instrumental
variable (SIV) approach.

To develop the SIV method, in the semiparametric model

Wt = AUt + et with E[et|Vt] = 0 and E[et|Ut] 6= 0, (2.17)

we assume the existence of a vector of stationary variables ηt for which

E [Utη
′
t] 6= 0 and E[et|ηt] = 0. (2.18)

Equations (2.17) and (2.18) imply

Wtη
′
t = AUtη

′
t + etη

′
t with E [Utη

′
t] 6= 0 and E [etη

′
t] = 0. (2.19)

We focus on the case where the number of instruments equals the number of regres-
sors and

rank of E [η′η] ≡ r = d ≡ rank of E [η′U ], (2.20)

where η′ = (η1, · · · , ηn). The case where the number of instrumental variables is
greater than the number of regressors may be analyzed in a similar way.

If Wt, Ut and ηt were all observed time series, models (2.17) and (2.19) would
consist of a system of vector semiparametric stationary IV time series models. Each
ηt may be regarded as the stationary component of a suitable IV. In this setting, it
is straightforward to construct a consistent estimator for A.

Since ηt may not be directly observable, we assume that there is a vector of
observed instruments, Qt, that satisfy an expanded version of the system (1.1) of
the form

Yt = A Xt + g(Vt) + εt with E[εt|Vt] = E[εt],

Xt = H(Vt) + Ut with E[Ut|Vt] = 0,

Qt = J(Vt) + ηt with E[ηt|Vt] = 0, (2.21)

where ηt is assumed to satisfy (2.18), Qt = (qt1, · · · , qtd)′ is a vector of possible
instrumental variables for Xt generated by a reduced form equation involving Vt,
and J(·) = (J1(·), · · · , Jd(·))′ is a vector of unknown functions.

The residual ηt may be interpreted as a sequence of stochastically detrended
versions of Qt and we therefore assume that ηt is strictly stationary even though Qt

itself may be a vector of nonstationary instruments. In effect, the nonstationarity
in Qt arises from the component J(Vt) which depends on the nonstationary process
Vt. It is particularly natural to choose a stationary IV like ηt as a residual when Ut
itself is assumed to be a stationary residual given by the stochastically detrended
quantity Xt −H(Vt). The augmented system (2.21) simply adds in this instrument
generating equation to the original system (1.1). The new system obviously reduces
to (1.1) when there is no endogeneity in Xt.
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As discussed in the literature (see, for example, Li and Stengos 1996; Baltagi
and Li 2002; Li and Racine 2007) for the stationary case, the existence and choice
of Qt is often a difficult and important practical matter. In the nonstationary case,
similar considerations apply. To clarify the issues involved, we look at the following
special case.

Remark 2.1. Consider a pair (et, ηt) of the form

et = Σ Ut + ∆ Πt and ηt = ∆ Ut − Σ Πt, (2.22)

where both Σ and ∆ = I − Σ are deterministic, symmetric and positive definite
matrices, and Πt is a vector of stationary errors satisfying E[Πt] = 0, cov(Ut,Πt) =
cov(Vt,Πt) = 0 and cov(Πt,Πt) = cov(Ut, Ut) = I. In this case, we have

E [etU
′
t ] = ΣE [UtU

′
t ] , E [ηtU

′
t ] = ∆E [UtU

′
t ] ,

E [etη
′
t] = ΣE [UtU

′
t ] ∆′ −∆E [ΠtΠ

′
t] Σ′ = 0. (2.23)

We discuss how to estimate Σ. Using the linear reduced form (2.17) and substi-
tuting (2.22) into (2.17), we have

Wt = A Ut + et = (A+ Σ) Ut + (I − Σ)Πt = B Ut + ∆ Πt, (2.24)

where B = A + Σ and ∆ = I − Σ. Since cov(Ut,Πt) = 0, we can estimate B using
the same method as in (2.13) by B̂ and the matrix Γ = ∆∆′ by

Γ̂ =
1

n

n∑
t=1

(
Ỹt − B̂X̃t

) (
Ỹt − B̂X̃t

)′
. (2.25)

As shown in Corollary 3.3 below, we have Γ̂→P Γ as n→∞. The matrix Σ is then
consistently estimated by Σ̂ = I − ∆̂.

Let J(v) = H(v). Then, Qt = J(Vt) + ηt is a vector of valid instrumental
variables. This case, along with the estimation method proposed in (2.25), is imple-
mented in Example 4.2.

We now construct a consistent estimator for A. In view of equations (2.17)–
(2.21), and similar to (2.13), we define the semiparametric instrumental variable
least squares (SIVLS) estimator

Â∗ = Â∗(h) = Ỹ ′Q̃
(
X̃ ′Q̃

)−1
, (2.26)

where Q̃′ = (Q̃1, · · · , Q̃n), in which Q̃t = Qt−
∑n
s=1wns(Vt)Qs. Correspondingly, the

vector of unknown functions g(·) is estimated by

ĝ∗(v) = gn(v; Â∗) ≡
n∑
s=1

wns(v)Ys − Â∗
n∑
s=1

wns(v)Xs. (2.27)

It follows from (2.26) that

(Â∗ − A) X̃ ′Q̃ = ẽ′Q̃+ G̃′Q̃.
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As shown in Appendix A, we have the following decomposition

(Â∗ − A) U ′η (1 + oP (1)) = e′η (1 + oP (1)), (2.28)

where η = (η1, · · · , ηn)′.
To establish the validity of the approximations given in (2.16) and (2.28), we

impose certain regularity conditions which enable us to establish consistency and a
limit distribution theory.

3 Asymptotic Theory

As pointed out in the Introduction, the limit theory in this kind of nonstationary
semiparametric model depends on the probabilistic structure of the regressors and
errors et, Ut, ηt and Vt as well as the functional forms of g(·), H(·) and J(·). It
is convenient for the development that follows to make general conditions on the
nonstationary process Vt rather than specify a particular generating mechanism.
These conditions are discussed in Appendix A and include the usual integrated and
near integrated process mechanisms that commonly appear in applications. It is
also convenient to use mixing conditions to establish some of the main results in the
paper and we recall that a matrix stationary process {Zt, t = 0,±1, · · ·} is α–mixing
if the mixing numbers α(n)→ 0 as n→∞, where

α(n) = sup
A∈F0

−∞,B∈F∞n
|P (AB)− P (A)P (B)|, (3.1)

in which F jk is the σ–field generated by {Zt, k ≤ t ≤ j}. For the original definition,
see Rosenblatt (1956).

The following assumptions are used to develop the asymptotic theory. A detailed
discussion of these conditions is provided in Appendix A.

Assumption 3.1. (i) ξt = (U ′t , η
′
t)
′ is a vector of (strictly) stationary time

series with E[ξ1] = 0 and E [‖ξ1‖4+γ1 ] < ∞ for some γ1 > 0, where ‖ · ‖ denotes
the Euclidean norm. The process ξt is α–mixing with mixing numbers αξ(j) that
satisfy

∞∑
j=1

α
γ1

4+γ1
ξ (j) <∞. (3.2)

(ii) ζt = et or et η
′
t is a matrix of stationary time series with E [‖ζ1‖4+γ2 ] < ∞

for some γ2 > 0. The process ζt is α–mixing with mixing numbers αζ(j) that satisfy

∞∑
j=1

α
γ2

4+γ2
ζ (j) <∞. (3.3)

Assumption 3.2. (i) Let model (1.1) hold and Qt be a vector of instrumental
variables such that conditions (2.18), (2.20) and (2.21) are all satisfied.

(ii) E[es+t ⊗ ηt] = 0 for all s ≥ 0 and E[es ⊗ et ⊗ ηu ⊗ ηv] = 0 when at least
three of the date indices are different.
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(iii) Γ1 = E [U1η
′
1] be nonsingular.

(iv) Σ∗1 =
(
I ⊗ Γ−11

)
Ω∗1

(
I ⊗

(
Γ−11

)′)
and Ω∗1 =

∑∞
j=0E

[(
e1e
′
1+j

)
⊗
(
η1η
′
1+j

)]
are positive definite.

Assumption 3.3. (i) {Vt : t ≥ 0} is independent of {(et, Ut, ηt) : t ≥ 1}.
(ii) If fi,k(·) is the density function of Vi,k = ϕi−k (Vi − Vk) for i > k with

ϕm = Ls(m)√
m

for m ≥ 1, where Ls(·) is a slowly varying function, then

inf
δ>0

lim sup
m→∞

sup
i≥1

sup
|v|≤δ

fi+m,i(v) <∞. (3.4)

There exists a filtration {Ft, t ≥ 0} such that Vt is adapted to Ft and for which,
with probability one,

inf
δ>0

lim sup
m→∞

sup
i≥1

sup
|v|≤δ

fi+m,i(v|Fi) <∞, (3.5)

where fi,k(v|Fk) is the conditional density function of Vi,k given Fk.
Assumption 3.4. (i) The vector function g(v) is continuously differentiable for

v ∈ R and the derivative g(1)(v) satisfies, for large enough n,

n∑
t=1

∫ ∥∥∥g(1)(ϕ−1t v)
∥∥∥2 ft,0(v)dv = O(nh−1), (3.6)

where {ft,0(v)} is as defined in Assumption 3.3 above.

(ii) The vector function H(v) is continuously differentiable for v ∈ R and the
derivative H(1)(v) satisfies for large enough n

n∑
t=1

∫
||H(1)(ϕ−1t v)||2 ft,0(v)dv = O(nh−1) and (3.7)

n∑
t=1

∫ ∥∥∥∥(g(1)(ϕ−1t v)
)′
H(1)(ϕ−1t v)

∥∥∥∥ ft,0(v)dv = O
(
n

1
2
−ε1b2nh

−2
)
, (3.8)

where 0 < ε1 <
1
2

is some constant.

(iii) The vector function J(v) is continuously differentiable for v ∈ R with deriva-
tive J (1)(v) that satisfies for large enough n

n∑
t=1

∫
||J (1)(ϕ−1t v)||2 ft,0(v)dv = O(nh−1) and (3.9)

n∑
t=1

∫ ∥∥∥∥(g(1)(ϕ−1t v)
)′
J (1)(ϕ−1t v)

∥∥∥∥ ft,0(v)dv = O
(
n

1
2
−ε2b2nh

−2
)
, (3.10)

where 0 < ε2 <
1
2

is some constant.

Assumption 3.5. (i) K(·) is a symmetric and bounded probability density func-
tion with compact support CK and K(u) is continuous for all u ∈ CK .
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(ii) The sequences {hn} and {bn} both satisfy, as n → ∞, the following rate
conditions

hn → 0, nh2n →∞, nh6n → 0, (3.11)

bn → 0,
Ls(n)√
nb2n
→ 0,

L2
s(n)
√
h

b2n
→ 0,

L6
s(n)

nh2b8n
→ 0, (3.12)

where Ls(n) is as defined in Assumption 3.3(ii).

(iii) bn is chosen such that
n∑
t=1

P (p̂n(Vt) ≤ bn) = o(n).

(iv) There exists a real function λ(x, y) such that ||g(x+ yh)− g(x)|| ≤ hλ(y, x)
for small enough h, all y ∈ R = (−∞,∞) and

∫∞
−∞ λ(x, y)K(x)dx < ∞ for any

given y.

Some discussion and technical justifications for Assumptions 3.1–3.5 are provided
in Appendix A. Under these conditions, we have the following results, whose proofs
are also given in Appendix A.

Theorem 3.1 Under Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5(i)(ii)(iii), as n→∞,
we have √

n(Â∗ − A)→D N (0,Σ∗1) , (3.13)

where Σ∗1 =
(
I ⊗ Γ−11

)
Ω∗1

(
I ⊗

(
Γ−11

)′)
with Ω∗1 =

∑∞
j=0E

[(
e1e
′
1+j

)
⊗
(
η1η
′
1+j

)]
and Γ1 = E [U1η

′
1].

Theorem 3.1 shows that the semiparametric IV estimator Â∗ can be asymptot-
ically normal in the limit even when the parametric and nonparametric regressors
are both nonstationary. In addition, Â∗ is consistent when there is endogeneity in
the parametric regressors. The explanation for the

√
n convergence rate and the

limiting normality is that A is estimated based on (2.17) and (2.18), which consist
of a system of vector semiparametric stationary IV time seres models in which ηt is
a vector of stochastically detrended versions of the instruments Qt. Stationarity of
(Ut, et, ηt) then ensures that standard asymptotic normality with a conventional

√
n

convergence rate is achievable.
When Xt is strictly exogenous and Ut is independent of et, Theorem 3.1 has the

following corollary.

Corollary 3.1 (i) Let Assumptions 3.1, 3.2, 3.3, 3.4(i)(ii) and 3.5(i)(ii)(iii) hold.
Then as n→∞ √

n(Â− A)→D N (0,Σ∗1) , (3.14)

where Σ∗1 =
(
I ⊗ Γ−11

)
Ω∗1
(
I ⊗ Γ−11

)
with Ω∗1 =

∑∞
j=0E

[
e1e
′
1+j

]
⊗ E

[
U1U

′
1+j

]
and

Γ1 = E [U1U
′
1].

(ii) If, in addition, both Ut and et are independent and identically distributed,
then as n→∞ √

n(Â− A)→D N
(
0,Σ11 ⊗ Σ−122

)
, (3.15)

where Σ11 = E [e1e
′
1] and Σ22 = E [U1U

′
1].
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Corollary 3.1 extends existing results for the univariate case where both the
parametric and nonparametric regressors are independent random variables (see,
for example, Robinson 1988; Härdle et al 2000) to the vector case where both the
parametric and nonparametric regressors may be nonstationary. Chen et al (2008)
obtain the univariate version of Corollary 3.1 under the assumption that Vt is a null
recurrent Markov chain.

Note that when there is heteroskedasticity in et, either Â or Â∗ may be replaced
by a weighted semiparametric least squares estimator (see, for example Chapter 2 of
Härdle et al 2000). In this case, it is necessary to estimate the covariance matrix Ω∗1
by suitable application of some existing methods (see, for example, Andrews 1991;
Phillips 1995). Such extensions are straightforward and are not considered here.

Recall that the nonparametric component is estimated by ĝ∗(v) as defined in
(2.27). The asymptotic distribution of ĝ∗(v) is obtained along lines similar to those
in Wang and Phillips (2009a) and Karlsen et al (2007) and is given in Theorem 3.2
below.

Theorem 3.2 Let the conditions of Theorem 3.1 hold. If, in addition, Assumption
3.5(iv) holds, then as n→∞√√√√ n∑

t=1

K
(
v − Vt
h

)
(ĝ∗(v)− g(v))→D N (0,Ωg) , (3.16)

where Ωg =
∫
K2(u)du · E [e1e

′
1] and λs(ε) = E[εs].

Remark 3.2. The random normalization in (3.16) implies that the convergence

rate depends on the order of the sample average
∑n
t=1K

(
v−Vt
h

)
. In the stationary

case, this quantity typically has order nh, whereas when Vt is a unit root or near
integrated process it has order

√
nh (see Wang and Phillips, 2009a). It follows that

in the nonstationary case, the rate of convergence of ĝ∗(v) is (
√
nh)

1
2 .

Finally, we establish the following convergence results for the residual moment
matrix.

Theorem 3.3 Let Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5(i)(ii)(iii) hold. If, in
addition, Σ11 = E [e1e

′
1] is positive definite, then as n→∞

Σ̂11 =
1

n

n∑
t=1

(
Yt − Â∗Xt − ĝ∗n(Vt)

) (
Yt − Â∗Xt − ĝ∗n(Vt)

)′
→P Σ11. (3.17)

Since Πt involved in (2.22) satisfies the same conditions as {(et, Ut)}, Theorem 3.3
can be used to deduce the following corollary when cov(Ut,Πt) = 0. The Corollary
below shows that the covariance matrix Σ involved in (2.22) representing the level
of endogeneity in that model can be consistently estimated.

Corollary 3.2 Let Assumptions 3.1, 3.2, 3.3, 3.4(i)(ii) and 3.5(i)(ii)(iii) hold. If,
in addition, Σ is positive definite, then as n→∞

Γ̂ =
1

n

n∑
t=1

(
Ỹt − B̂X̃t

) (
Ỹt − B̂X̃t

)′
→P Γ (3.18)
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when cov(Πt,Πt) = cov(Ut, Ut) = I, where B̂ is as defined in (2.25) and Γ = ∆∆′.

Remark 3.3. As in other nonparametric and semiparametric estimation prob-
lems, bandwidth parameter choice is critical in the practical implementation of the
proposed estimation procedure. In the case where Vt is stationary, existing studies
(see, for example, §2.1.3 of Härdle et al 2000) may be used to provide solutions. Sec-
tion 4.1 proposes a semiparametric cross–validation selection method and provides
some examples of its implementation.

4 Examples of Implementation

4.1 Bandwidth parameter choice

As in other nonparametric and semiparametric contexts, bandwidth choice is im-
portant in practical implementation. In the case where Vi is stationary, many ex-
isting studies (see, for example, §2.1.3 of Härdle et al 2000) offer solutions. But in
nonstationary regressor cases, the literature on bandwidth selection is limited (see,
however, the discussion in Wang and Phillips, 2009a) and many issues are still to
be investigated. The present section provides some discussion of the issue in the
semiparametric setting considered here.

We start by introducing the leave–one–out estimators of H(v), Ψ(v) and g(v) as
follows:

H̃t(Vt) =
n∑

s=1, 6=t
W (−t)
ns (Vt)Xs and Ψ̃t(Vt) =

n∑
s=1,6=t

W (−t)
ns (Vt)Ys, (4.1)

gtn(Vt;A) =
n∑

s=1, 6=t
W (−t)
ns (Vt)(Ys − AXs) = Ψ̃t(Vt)− A H̃t(Vt), (4.2)

whereW (−t)
ns (Vt) =

K(Vs−Vth )
n∑

k=1,6=t
K

(
Vk−Vt
h

) . We then define the leave–one–out semiparametric

instrumental variable least squares (SIVLS) estimator of A by

Ã = Ã(h) = Y
′
Q(X

′
Q)−1, (4.3)

where X
′
= (X1, · · · , Xn), X t =

(
Xt − H̃t(Vt)

)
F t =

(
Xt −

n∑
s=1,6=t

W (−t)
ns (Vt)Xs

)
F t,

Q
′

= (Q1, · · · , Qn), Qt =
(
Qt − J̃t(Vt)

)
F t =

(
Qt −

n∑
s=1,6=t

W (−t)
ns (Vt)Qs

)
F t, Y

′
=

(Y 1, · · · , Y n) and Y t =
(
Yt − Ψ̃t(Vt)

)
F t =

(
Yt −

n∑
s=1,6=t

W (−t)
ns (Vt)Ys

)
F t, in which

F t = I
(
pn,t(Vt) > bn

)
with pn,t(Vt) = 1√

nh

∑n
s=1, 6=tK

(
Vs−Vt
h

)
.

The corresponding leave–one–out estimator of g(·) is obtained as

g̃(·;h) = gn(·; Ã(h)). (4.4)
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The leave–one–out cross–validation (CV) function is defined

CV(h) =
1

n

n∑
t=1

(
Yt − ÃXt − g̃t(Vt)

)′ (
Yt − ÃXt − g̃t(Vt)

)
, (4.5)

where g̃t(Vt) = gtn(Vt; Ã). The optimal smoothing parameter h̃ is then chosen so
that

CV(h̃) = min
h∈Hn

CV(h), (4.6)

whereHn is a set of smoothing parameter values. The corresponding data-determined
estimators of A and g(·) are then given by

Ã∗ = Ã(h̃), and g̃∗(v) = gn(v; Ã(h̃)), (4.7)

where gn(v;A) is defined in (2.14).
The following examples show how to implement the proposed procedure. Through-

out these examples, use K(x) = 1
2
I[−1,1](x), and the optimal bandwidth h̃ is chosen

as shown above.

4.2 Simulated examples

Example 4.1 below demonstrates how the functional forms of g(·) and H(·) may
affect the rate of convergence of Â in the exogenous case. In this case, ηt = Ut and
J(·) = H(·). The following discussion looks at two pairs of (G(·), H(·)) such that
the conditions in Assumption 3.4(i)(ii) are satisfied.

Example 4.2 examines an endogenous case where the parametric variables are
linearly correlated with the detrended residuals. The estimation method proposed
in Section 2.2 is implemented.

Example 4.1. Consider the semiparametric simultaneous equation model

Yt = A Xt +G(Vt) + εt, (4.8)

where A is a matrix of 2× 2 of unknown parameters of the form

A =

 a11 a12

a21 a22

 =

 −0.5 0.6

0.6 −0.5

 ,
Xt = (Xt1, Xt2)

′ is a vector of time series regressors, Vt is a sequence of integrated
time series regressors of the form Vt = Vt−1 + vt with V0 = 0 and vt is a sequence
of stationary disturbances generated by vt = γ vt−1 + νt, for t = 1, 2, · · ·, where
γ = 0, 0.5, 0.9, v0 = 0 and νt is a sequence of independent errors generated from
N(0, 1), G(·) = (g1(·), g2(·))′ is a vector of unknown functions, and εt is a vector of
stationary time series errors generated from

εt ∼ N

 0

0

 ,
 1 −0.6

−0.6 1

 . (4.9)
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Independently from εt, generate Ut as

Ut =

 0.3 0

0 −0.3

Ut−1 + µt, t = 1, 2, · · · , (4.10)

where U0 = (0, 0)′ and µt is a vector of i.i.d. normal errors of the form

µt ∼ N

 0

0

 ,
 1 0.5

0.5 1

 . (4.11)

We use the following functions in the model specification:

g1(v) = sin(v), g2(v) = cos(v) and H1(v) = H2(v) = v. (4.12)

The process Xt is generated by Xt = H(Vt) + Ut and Yt is generated by (4.8). The
proposed estimation method in Section 2.1 is then applied to estimate A, and G(·)
and H(·). We assess finite sample performance using the measures

ASE1 = |â11 − a11|, ASE2 = |â12 − a12|,
ASE3 = |â21 − a21|, ASE4 = |â22 − a22|,

where âij is the (i, j)–th element of Â.

Table 4.1. Simulation results based on model (4.8)

absolute error standard deviation

γ = 0

n 202 502 802 202 502 802

ASE1 0.1279 0.1196 0.1186 0.0830 0.0606 0.0465

ASE2 0.1302 0.1181 0.1182 0.0816 0.0581 0.0476

ASE3 0.0812 0.0482 0.0374 0.0604 0.0362 0.0288

ASE4 0.0755 0.0467 0.0368 0.0568 0.0356 0.0277

γ = 0.5

ASE1 0.1060 0.0948 0.0894 0.0749 0.0547 0.0445

ASE2 0.1065 0.0901 0.0902 0.0756 0.0535 0.0444

ASE3 0.0744 0.0476 0.0379 0.0580 0.0359 0.0285

ASE4 0.0718 0.0459 0.0376 0.0560 0.0349 0.0276

γ = 0.9

ASE1 0.0693 0.0427 0.0333 0.0508 0.0333 0.0262

ASE2 0.0698 0.0419 0.0335 0.0511 0.0330 0.0254

ASE3 0.0699 0.0421 0.0329 0.0520 0.0316 0.0247

ASE4 0.0700 0.0422 0.0331 0.0521 0.0321 0.0249
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Figure 4.1(a) Nonparametric estimate and 95% confidence interval

for H1(v) = v in the case of γ = 0.
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Figure 4.1(b) Nonparametric estimate and 95% confidence interval

for H1(v) = v in the case of γ = 0.5.

The simulation results for both the absolute errors and standard deviations given
in Table 4.1 were performed 1000 times and the means are tabulated in Table 4.1.
In the case of (4.12), the conditions of Theorem 3.1 all hold. Table 4.1 provides
the finite sample evidence relating to the limit theory of Theorem 3.1 for both
stationary nonparametric regressors and integrated nonparametric regressors. In
addition, Table 4.1 shows that the dependence structure of vt has some effect on
the rate of convergence, particularly in the integrated case and when γ is as large
as 0.9.

For i = 1, 2 and 1 ≤ j ≤ 1000, let Ĥi,j(·) be the estimate of Hi(·) at the j–th
replication, V(1)(j) ≤ V(2)(j) ≤ · · · ≤ V(n)(j) be the order statistics of Vt at the j–th

replication, Ĥi(·) = 1
1000

∑1000
j=1 Ĥi,j(·) and V(t) = 1

1000

∑1000
j=1 V(t)(j). Figures 4.1(a)

shows a plot for Ĥ1 and its 95% confidence interval (CI) against (V(1), · · · , V(n)) for

γ = 0 and n = 502, and Figure 4.1(b) shows a plot for Ĥ2 and its 95% confidence
interval against (V(1), · · · , V(n)) for γ = 0.5 and n = 502.

Example 4.2. We consider a vector simultaneous equations model of the form

Yt = A Xt +G(Vt) + εt, (4.13)

where A is a matrix of 2× 2 of unknown parameters of the form

A =

 a11 a12

a21 a22

 =

 1.0 0.6

0.6 1.0

 ,
18



Xt = (Xt1, Xt2)
′ is a vector of time series regressors, Vt is a sequence of integrated

time series regressors of the form Vt = Vt−1 + vt with V0 = 0 and vt a sequence
of stationary disturbances generated by vt = γ vt−1 + νt, for t = 1, 2, · · ·, where
γ = 0.1, 0.5, 0.9, v0 = 0 and νt is a sequence of independent errors generated from
N(0, 1), G(·) = (g1(·), g2(·))′ is a vector of unknown functions, and εt is generated by
εt = ρ Ut + µt with values of ρ taken from {0, 0.5, 0.9} and where µt and Ut are two
vectors of stationary time series errors independently generated as µt ∼ N (0, I2)
and Ut ∼ N (0, I2).

Choose J(v) = H(v) and the following functions:

g1(v) = cos(v), g2(v) = sin(v), H1(v) = v cos(v), H2(v) = v sin(v). (4.14)

The process Xt follows Xt = H(Vt) +Ut and Yt is generated by (4.13). We estimate
A by Â∗ of (2.26) with the choice of Qt = J(Vt) + ηt and ηt = Ut − ρ µt, in which ρ
is estimated by (2.25) in computing Â∗ and (4.15) below.

The simulation results for both the absolute errors and standard deviations are
based on 1000 replications and the means of the following quantities are tabulated
in Tables 4.2–4.4:

ASE∗1 = |â∗11 − a11|, ASE∗2 = |â∗12 − a12|,
ASE∗3 = |â∗21 − a21|, ASE∗4 = |â∗22 − a22|, (4.15)

where â∗ij is the (i, j)–th element of Â∗.

Table 4.2. Simulation results based on model (4.13) with ρ = 0

absolute error standard deviation

γ = 0.1

n 202 502 802 202 502 802

ASE∗1 0.0719 0.0472 0.0371 0.0345 0.0227 0.0183

ASE∗2 0.0112 0.0044 0.0029 0.0112 0.0046 0.0032

ASE∗3 0.0118 0.0046 0.0029 0.0117 0.0050 0.0030

ASE∗4 0.0714 0.0471 0.0371 0.0349 0.0223 0.0178

γ = 0.5

ASE∗1 0.0423 0.0262 0.0213 0.0213 0.0121 0.0102

ASE∗2 0.0068 0.0025 0.0016 0.0072 0.0025 0.0017

ASE∗3 0.0064 0.0025 0.0016 0.0068 0.0023 0.0017

ASE∗4 0.0428 0.0263 0.0213 0.0221 0.0121 0.0103

γ = 0.9

ASE∗1 0.0106 0.0154 0.0045 0.0067 0.0356 0.0023

ASE∗2 0.0030 0.0094 0.0003 0.0037 0.0293 0.0003

ASE∗3 0.0029 0.0105 0.0003 0.0040 0.0352 0.0003

ASE∗4 0.0105 0.0167 0.0045 0.0068 0.0484 0.0022
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Table 4.3. Simulation results based on model (4.13) with ρ = 0.5

absolute error standard deviation

γ = 0.1

n 202 502 802 202 502 802

ASE∗1 0.0741 0.0464 0.0378 0.0358 0.0222 0.0182

ASE∗2 0.0129 0.0051 0.0033 0.0130 0.0051 0.0035

ASE∗3 0.0128 0.0048 0.0032 0.0132 0.0045 0.0033

ASE∗4 0.0733 0.0466 0.0378 0.0358 0.0225 0.0182

γ = 0.5

ASE∗1 0.0420 0.0276 0.0211 0.0219 0.0138 0.0106

ASE∗2 0.0069 0.0029 0.0018 0.0071 0.0029 0.0018

ASE∗3 0.0072 0.0030 0.0018 0.0077 0.0030 0.0018

ASE∗4 0.0417 0.0278 0.0210 0.0220 0.0136 0.0103

γ = 0.9

ASE∗1 0.0103 0.0058 0.0044 0.0059 0.0033 0.0022

ASE∗2 0.0016 0.0017 0.0004 0.0017 0.0021 0.0004

ASE∗3 0.0016 0.0016 0.0004 0.0017 0.0022 0.0004

ASE∗4 0.0102 0.0059 0.0044 0.0059 0.0034 0.0022

Table 4.4. Simulation results based on model (4.13) with ρ = 0.9

absolute error standard deviation

γ = 0.1

n 202 502 802 202 502 802

ASE∗1 0.0739 0.0479 0.0371 0.0373 0.0227 0.0175

ASE∗2 0.0148 0.0062 0.0040 0.0150 0.0061 0.0044

ASE∗3 0.0149 0.0059 0.0037 0.0152 0.0064 0.0036

ASE∗4 0.0742 0.0478 0.0371 0.0365 0.0223 0.0174

γ = 0.5

ASE∗1 0.0423 0.0269 0.0212 0.0223 0.0134 0.0105

ASE∗2 0.0084 0.0034 0.0020 0.0088 0.0035 0.0020

ASE∗3 0.0083 0.0033 0.0021 0.0085 0.0033 0.0021

ASE∗4 0.0425 0.0268 0.0214 0.0232 0.0135 0.0105

γ = 0.9

ASE∗1 0.0101 0.0060 0.0045 0.0058 0.0034 0.0024

ASE∗2 0.0019 0.0018 0.0004 0.0021 0.0023 0.0004

ASE∗3 0.0019 0.0018 0.0004 0.0020 0.0022 0.0004

ASE∗4 0.0103 0.0058 0.0045 0.0058 0.0035 0.0024
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Figure 4.2(a) Nonparametric estimate and 95% confidence interval
for g1(v) = cos(v) in the case of ρ = γ = 0.
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Figure 4.2(b) Nonparametric estimate and 95% confidence interval
for g2(v) = sin(v) in the case of ρ = γ = 0.

The absolute errors and the standard deviations in Tables 4.2–4.4 together show
that the proposed estimation method performs well for the linear endogenous case
where

Yt = AXt +G(Vt) + εt and εt = ρUt + µt, (4.16)

where Ut and µt are vectors of mutually independent time series errors. In addition,
the results show that the proposed estimation method is quite robust with respect
to the values of γ and ρ.

For i = 1, 2 and 1 ≤ j ≤ 1000, let ĝi,j(·) be the estimate of gi(·) at the j–
th replication, V(1)(j) ≤ V(2)(j) ≤ · · · ≤ V(n)(j) be the order statistics of Vt at
the j–th replication, ĝi(·) = 1

1000

∑1000
j=1 ĝi,j(·) and V(t) = 1

1000

∑1000
j=1 V(t)(j). Figures

4.2(a) shows a plot for ĝ1 and its 95% confidence interval against (V(1), · · · , V(n)) for
ρ = γ = 0 and n = 502, and Figure 4.2(b) shows a plot for ĝ2 and its 95% confidence
interval against (V(1), · · · , V(n)) for ρ = γ = 0.5 and n = 502.

5 Conclusions and Discussions

This paper explores the semiparametric estimation of a finite dimensional parameter
matrix and nonparametric function estimation in the context of a multiple equa-
tion nonlinear simultaneous equations model of the form (1.1) in which stochastic
trends of unknown form may be present. The proposed semiparametric instrumen-
tal variable (SIV) least squares procedure addresses endogeneity in the parametric
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regressors and enables asymptotically consistent estimation of the nonparametric
functions.

The framework here extends univariate semiparametric regression with both in-
dependent and stationary regressors and errors to a general multivariate case where
both the parametric and nonparametric regressors may be nonstationary. A non-
parametric kernel estimation method has been used to eliminate the nonlinear com-
ponents and construct an approximating parametric model which leads to the SIV
estimator. The SIV estimator resolves endogeneity in the parametric regressors in
a semiparametric setting that allows for possible stochastic trends in the generating
mechanism for both the endogenous and exogenous regressors, thereby making the
model and method relevant for many potential applications in which the regressors
may be endogenous, stochastic trends may be present in the data, and nonlineari-
ties may occur in the generating mechanism. Simulations reveal that the proposed
estimation method is easily implemented in practice and performs well in relation
to the asymptotic theory for moderately sized samples.

While the nonparametric stochastic detrending approach explored here has the
advantage of imposing only weak conditions on the trend functions, the

√
n conver-

gence rate is below the usual n rate for cointegrated system estimation and may be
improved in some cases. Consider, for example, the system

Yt = a Xt + b g (Vt) + εt with g (Vt) =
1

1 + V 4
t

, (5.1)

Xt = H (Vt) + Ut and H (Vt) = c Vt, (5.2)

with Vt =
∑t
s=1 vs, where all variables are scalar and satisfy the conditions of The-

orem 3.1. In this case, the simple IV estimator aIV = (
∑n
t=1XtVt)

−1 (
∑n
t=1 VtYt)

converges at the usual rate n for cointegrated systems and has a mixed normal limit
distribution that is amenable to inference. To see this, we use the following three
results (the first two are standard and the third follows from the limit theory for a
zero energy functional of a partial sum process – see Jeganathan, 2008):

1

n2

n∑
t=1

XtVt ⇒ c
∫ 1

0
B2
v ,

1

n

n∑
t=1

Vtεt ⇒
∫ 1

0
BvdBε,

1√√
n

n∑
t=1

Vt
1 + V 2

t

⇒
√
β L1

0 Z,

where 1√
n

∑[n·]
t=1 (εt, vt) ⇒ (Bε, Bv), bivariate Brownian motion, L1

0 = L1
Bv (1, 0) is

the local time of Bv at the origin over the unit time interval [0, 1], Z is a standard
normal variate, and the constant β depends on the distribution of the {vt}. From
these results, we have the limit theory

n (aIV − a) =
(
c
∫ 1

0
B2
v

)−1 (∫ 1

0
BvdBε

)
,
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which has a mixed normal distribution under the exogeneity condition on Vt. In this
case, direct IV estimation is (asymptotically infinitely) superior to semiparametric
estimation involving nonparametric stochastic detrending. Models (5.1) and (5.2)
are of some practical interest. In particular, the function g (Vt) is integrable and
provides a ‘small’ nonlinear correction to the linear component of the cointegrating
relation (5.1). This nonlinear component becomes most relevant when the process
Vt takes values near the origin but the function could easily be reformulated so
that the most relevant values occured elsewhere in the sample space. The remain-
ing components of the system are analogous to those in conventional cointegrated
systems. Thus, (5.1) - (5.2) is a cointegrated system with small deviations from
linearity that affect the relationship but do not disturb the properties of a simple
IV estimator. In effect, estimation of the linear component aXt may be conducted
without concern for the nonlinear component. So nonlinear stochastic detrending
is unnecessary here. Of course, when the functional form of the stochastic trending
component is unknown then a parametric procedure like linear IV estimation may
be unreliable and will normally result in inconsistency.

A further limitation is the assumption of exogeneity for the nonstationary regres-
sor Vt. It will be useful to relax this condition in applications to allow the trending
mechanism to be endogenous. A final limitation of the model is that each compo-
nent of g(·) is a scalar function of Vt. For practial work, it will often be useful for
g(·) to be a function of several regressors involving both stationary and integrated
components. These issues require different treatment of the asymptotic theory and
some extension of the methods discussed here, so they are left for future research.
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7 Appendix A

7.1 Discussion of Assumptions 3.1–3.5

Assumption 3.1 is quite general allowing for a stationary dependence structure for ξt and

ζt. Under some additional technical conditions, these time series might be stationary linear

processes that are also α–mixing (see Corollary 4 of Withers 1981 for example).

Assumption 3.2(i) is needed to ensure that Qt is a vector of valid instrumental variables

when E [et ⊗ ηt] 6= 0. Assumption 3.2(ii) is needed to deal with quadratic forms involving

es and ηt. As pointed out in the beginning of Section 2.2, ηt is a vector of stationary

detrended errors. Thus, it is not unreasonable to require ηt to be stationary, although Qt
can be nonstationary. Assumptions 3.2(ii)–(iv) are needed for the main theorems.

Assumption 3.3(i) imposes independence between Vt and (es, Us, ηs). Since (es, Us, ηs)

is a vector of stochastically detrended stationary errors on the one hand and Vt is a

sequence of nonstationary errors on the other hand, it is not unreasonable to impose the

independence condition between the nonstationary Vt and the stationary {(es, Us, ηs)}.
Assumption 3.3(i) enables us to present a relatively clear and concise proof for each of the

theorems.
Assumption 3.3(ii) allows for a general nonstationary structure by imposing conditions

on both the marginal and conditional density functions of a normalized increment of Vt.
To justify Assumption 3.3(ii), consider the case where Vt is generated by a random walk
model of the form

Vt = Vt−1 + vt, t ≥ 1, (A.1)

where V0 = 0 and {vt} is a stationary linear process with E[v1] = 0 and 0 < E[v21] < ∞.
Similarly to arguments used in the proofs of Corollaries 2.1 and 2.2 of Wang and Phillips
(2009a), Assumption 3.3(ii) can be verified under (A.1). The rest of this verification
considers the case where vt is a sequence of i.i.d. errors. In this case, Assumption 3.3(ii)
implies the following useful results: For k > i, let φ̂i,k(x) be the probability density

function of 1√
k−i σv

∑k
t=i+1 vt and φ̂i,k(x|Fi) be the conditional probability density function

of 1√
k−i σv

∑k
t=i+1 vt given {Fi}, which is a sequence of σ–fields generated by {vj : 1 ≤ j ≤

i} such that Vi is adapted to Fi, and σ2v = var(v1). Then as k − i→∞,

sup
x∈R1

∣∣∣φ̂i,k(x)− φ(x)
∣∣∣→ and (A.2)

max
i≥1

sup
x∈R1

∣∣∣φ̂i,k(x|Fi)− φ(x)
∣∣∣→a.s. 0, (A.3)

where φ(·) is the probability density function of the standard normal N(0, 1). The deriva-

tion of (A.2) and (A.3) follows from standard central limit theory (see, for example, the

first part of the proof of Corollary 2.2 in Wang and Phillips 2009a).
Assumption 3.4 imposes certain conditions on the smoothness of g(·), H(·) and J(·) as

well as on the density function ft,0(v). Such conditions are needed in the nonstationary case
to make sure that each of the bias terms involved is negligible. When Vt is a random walk
model of the form (A.1), Assumption 3.4(i) is easily verifiable. Let g(v) = θ0+θ1v+θ2v

1+λ0

for 0 < λ0 < 1/2, nλ0h = O(1) and ft,0(v) = O(v−(1+2λ0+ε0)) for some ε0 > 0 as t → ∞
and v →∞. It then follows that

n∑
t=1

∫ ∥∥∥g(1)(ϕ−1t v)
∥∥∥2 ft,0(v)dv = O

(
n∑
t=1

ϕ−2δ0t

)
= O(n1+λ0), (A.4)
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which implies Assumption 3.4(i).

Assumption 3.4(ii) is similarly verifiable. Consider the case where g(v) = θ0 + θ1v and

H(v) = φ0 + φ1v + φ2v
1+λ1 for 1 < λ1 <

1
2 . Let n

1
2
+λ1−ε1h2 = O(1) (ε1 <

1
2 − λ1) and

ft,0(v) = O(v−(1+2λ1+ε1)) for some ε1 > 0 as t→∞ and v →∞. It can now be seen that

Assumption 3.4(ii) holds. The verification of Assumption 3.4(iii) follows in a similar way.

Assumption 3.5(i) is a natural condition on the kernel function and has been used

by many authors for the stationary time series case. Assumption 3.5(ii) requires that

the rate b−2n → ∞ is slower than
√
h → 0 and the rate b4n → 0 is slower than that of√

nh→∞. Such conditions are satisfied in various cases. For instance, if bn = cb log−1(n)

and hn = chn
−ζ0 for some cb > 0, ch > 0 and ε0 < ζ0 < β − ε0, then Assumption 3.5(ii)

holds automatically.
We now verify Assumption 3.5(iii). Note that P (p̂n(v) > bn) ≥ P (p̂n(v) > λ0) for any

positive constant λ0 > 0 such that λ0 > bn. In view of this, in order to verify Assumption
3.5(iii), it suffices to show that

P (p̂n(Vt) > λ0)→ 1, (A.5)

uniformly in all t ≥ 1 as n→∞.
Consider (A.1) in the case where vt is a sequence of i.i.d. errors. Note that p̂n(Vt) =

1√
nh

n∑
k=1

K
(
Vk−Vt
h

)
. Define V k(t) =

t∑
i=k+1

vi for t > k and Ṽk(t) =
k∑

j=t+1
vj for k > t.

Since the kernel function K(·) is symmetric and Vk has independent increments, we have
uniformly in 1 ≤ t ≤

[
n
2

]
,

p̂n(Vt) =
1√
nh

t−1∑
k=1

K

(
V k(t)

h

)
+

1√
nh

n∑
k=t+1

K

(
Ṽk(t)

h

)
+

1√
nh
K(0)

≥ 1√
nh

n∑
k=t+1

K

(
Ṽk(t)

h

)
+ oP (1) =

√
n− t√
n

1√
n− th

n−t∑
i=1

K

(
Ṽt+i(t)

h

)
+ oP (1)

≡
√
n− t√
n

p̃(n−t)(0) + oP (1) =

√
n− t√
n

ps(0) + oP (1), (A.6)

where p̃(n−t)(0) = 1√
n−th

n−t∑
i=1

K

(
Ṽt+i(t)
h

)
, ps(0) is a positive local-time random variable,

and we have used the point–wise convergence of p̃m(0) → ps(0) as m → ∞ by virtue
of theorem 2.1 of Wang and Phillips (2009a). Equation (A.6) implies that uniformly in
1 ≤ t ≤ [n2 ],

P (p̂n(Vt) > λ0)→ 1, (A.7)

for some λ0 > 0 as n→∞.
Similarly, we have uniformly in

[
n
2

]
+ 1 ≤ t ≤ n,

p̂n(Vt) =
1√
nh

t−1∑
k=1

K

(
V k(t)

h

)
+

1√
nh

n∑
k=t+1

K

(
Ṽk(t)

h

)
+

1√
nh
K(0)

≥ 1√
nh

t−1∑
k=1

K

(
V k(t)

h

)
+ oP (1) =

√
t− 1√
n

1√
t− 1h

t−1∑
i=1

K

(
V i(t)

h

)
+ oP (1)

≡
√
t− 1√
n

p(t−1)(0) + oP (1) =

√
t− 1√
n

ps(0) + oP (1), (A.8)
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where p(t−1)(0) = 1√
t−1h

t−1∑
i=1

K

(
V i(t)
h

)
, and we again use the pointwise convergence of

pm(0) → ps(0) as m → ∞ as in (A.6). This implies that equation (A.7) also holds

uniformly in [n2 ] + 1 ≤ t ≤ n. Therefore, Assumption 3.5(iii) is verified.

7.2 Technical lemmas

To prove the main theorems, we use the following lemmas.

Lemma A.1. (i) Under the conditions of Theorem 3.1, as n→∞

1

n
X̃ ′Q̃ =

1

n
U ′η + oP (1)→P E

[
U1η

′
1

]
. (A.9)

(ii) Under the conditions of Theorem 3.1, as n→∞,

1√
n

n∑
t=1

et ⊗ ηt →D N (0,Ω∗1) , (A.10)

where Ω∗1 is as defined in Assumption 3.2(iv).

Lemma A.2 Suppose that E|X|p <∞ and E|Y |q <∞, where p, q > 1, p−1 +q−1 < 1.
Then

|E(XY )− (EX)(EY )| ≤ 8(E|X|p)1/p(E|Y |q)1/qα1−p−1−q−1
,

where α = sup
A∈σ(X),B∈σ(Y )

|P (AB)− P (A)P (B)|.

Since Corollaries 3.1–3.3 in Section 3 are special cases of Theorems 3.1–3.3 respectively,

we only prove Theorems 3.1 and 3.2 in this appendix.

7.3 Proof of Theorem 3.1

(
Â∗ −A

)
X̃τ Q̃ = ẽ′Q̃+ G̃′Q̃ =

n∑
t=1

etQ̃
′
tFt +

n∑
t=1

G̃tQ̃
′
t −

n∑
t=1

etQ̃
′
tFt,

in order to prove Theorem 3.1, we need only to show that for large enough n

n∑
t=1

G̃tQ̃
′
tFt = oP (

√
n), (A.11)

n∑
t=1

etQ̃
′
tFt = oP (

√
n), (A.12)

1√
n

n∑
t=1

etQ̃
′
tFt →D N (0,Ω∗1) , (A.13)

where Ω∗1 is as defined in Assumption 3.2(iv), G̃t = G(Vt) −
n∑
k=1

wnk(Vt)G(Vk), Q̃t =

Qt −
∑n
s=1wns(Vt)Qs and et =

n∑
s=1

wns(Vt)es.
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In order to prove (A.11)–(A.13), it suffices to show that for large enough n

n∑
t=1

G̃tη
′
tFt = oP (

√
n), (A.14)

n∑
t=1

G̃tη
′
tFt = oP (

√
n), (A.15)

n∑
t=1

G̃tJ̃
′
tFt = oP (

√
n), (A.16)

n∑
t=1

etη
′
tFt = oP (

√
n), (A.17)

n∑
t=1

etη
′
tFt = oP (

√
n), (A.18)

n∑
t=1

etJ̃
′
tFt = oP (

√
n), (A.19)

n∑
t=1

etη
′
tFt = oP (

√
n), (A.20)

n∑
t=1

etJ̃
′
tFt = oP (

√
n), (A.21)

1√
n

n∑
t=1

etη
′
tFt →D N (0,Ω∗1) , (A.22)

where ηt =
n∑
s=1

wns(Vt)ηs. Since the finite dimensionality of p and d does not affect the

validity of (A.14)–(A.22), we assume without loss of generality that p = d = 1 in the rest

of the proof of Theorem 3.1 below. As a result, all the vectors involved reduce to scalars.

By Assumption 3.5(i) and the continuity of g(·) and g(1)(·), we have

1√
nh

n∑
j=1

K

(
Vj − v
h

)
(g(Vj)− g(v)) (A.23)

=
g(1)(v)√
nh

n∑
j=1

K

(
Vj − v
h

)
(Vj − v)(1 + oP (1)).

In view of (A.23), in order to prove (A.14), it suffices to show that for n large enough

n∑
t=1

∆n(Vt)ηtFt = oP (
√
n), (A.24)

where ∆n(Vt) = g(1)(Vt)√
nhp̂n(Vt)

∑n
j=1 (Vj − Vt)K

(
Vj−Vt
h

)
. By Assumption 3.1(i) and Lemma

A.2, we have
∞∑
t=1

|E[η1ηt]| <∞, (A.25)
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which, along with the stationarity of {ηt}, implies that

E

(
n∑
t=1

ηt∆n(Vt)Ft

)2

=
n∑
t=1

E
[
η2t ∆n(Vt)Ft

]2
+

n∑
t1=1

∑
t2 6=t1

E [ηt1ηt2 ·∆n(Vt1)Ft1∆n(Vt2)Ft2 ]

≤ Cb−2n
n∑
t=1

E
[
η2t
]
E [Γn(Vt)Ft]

2

+ Cb−2n
1
2

n∑
t1=1

∑
t2 6=t1

|E [ηt1ηt2 ]|E
[
Γ2
n(Vt1)Ft1 + Γ2

n(Vt2)Ft2
]

≤ Cb−2n
n∑
t=1

E [Γn(Vt)Ft]
2 ,

(A.26)

where Γn(Vt) = g(1)(Vt)√
nh

∑n
j=1 (Vj − Vt)K

(
Vj−Vt
h

)
.

By Assumption 3.3(i), (A.23)–(A.26) and the definition of ∆n(Vt), we have

E

(
n∑
t=1

ηt∆n(Vt)Ft

)2

≤ ∆n,1 + ∆n,2, (A.27)

where

∆n,1 = Cb−2n n−1h−2
n∑
t=1

E

([
g(1)(Vt)

]2 n∑
k=1

(Vk − Vt)2K2
(
Vk − Vt

h

))

and

∆n,2 = Cb−2n n−1h−2
n∑
t=1

× E

[g(1)(Vt)]2 ∑
k1 6=k2

(Vk1 − Vt)(Vk2 − Vt)K
(
Vk1 − Vt

h

)
K

(
Vk2 − Vt

h

) .
First consider ∆n,1. Note that

∆n,1 = Cb−2n n−1h−2
n∑
t=1

E

([
g(1)(Vt)

]2 n∑
k=1

(Vk − Vt)2K2
(
Vk − Vt

h

))

= Cb−2n n−1h−2
n∑
t=1

E

[g(1)(Vt)]2 n∑
k=t+1

(Vk − Vt)2K2
(
Vk − Vt

h

)
+ Cb−2n n−1h−2

n∑
t=1

E

([
g(1)(Vt)

]2 t∑
k=1

(Vk − Vt)2K2
(
Vk − Vt

h

))
=: ∆n,1,1 + ∆n,1,2.

For ∆n,1,1, by Assumptions 3.3(ii), 3.4(i) and 3.5(i)(ii), we have

∆n,1,1 = Cb−2n n−1h−2
n∑
t=1

E

[g(1)(Vt)]2 n∑
k=t+1

(Vk − Vt)2K2
(
Vk − Vt

h

)
= Cb−2n n−1h−2

n∑
t=1

E

[g(1)(Vt)]2 n∑
k=t+1

E

[
(Vk − Vt)2K2

(
Vk − Vt

h

)
|Ft
]
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= Cb−2n n−1
n∑
t=1

E

[g(1)(Vt)]2 n∑
k=t+1

∫ (
v

ϕk−th

)2

K2
(

v

ϕk−th

)
fk,t(v|Ft)dv


= Cb−2n n−1h

n∑
t=1

E

[g(1)(Vt)]2 n∑
k=t+1

ϕk−t

∫
u2K2 (u) fk,t(uϕk−th|Ft)du


≤ Cb−2n n−1h

n∑
t=1

E
[
g(1)(Vt)

]2 n∑
k=t+1

ϕk−t

≤ Cb−2n n−
1
2Ls(n)h

n∑
t=1

E
[
g(1)(Vt)

]2
= o(n).

Similarly,

∆n,1,2 = Cb−2n n−1h−2
n∑
t=1

E

([
g(1)(Vt)

]2 t∑
k=1

(Vk − Vt)2K2
(
Vk − Vt

h

))

= Cb−2n n−1h−2
n∑
t=1

E

(
t∑

k=1

[
g(1)(Vk + Vt − Vk)

]2
(Vk − Vt)2K2

(
Vk − Vt

h

))

≤ Cb−2n n−1h−2
n∑
k=1

E

([
g(1)(Vk)

]2 n∑
t=k

(Vt − Vk)2K2
(
Vt − Vk

h

))

≤ Cb−2n n−
1
2Ls(n)h

n∑
k=1

E
[
g(1)(Vk)

]2
= o(n).

We have therefore shown that
∆n,1 = o(n). (A.28)

Next consider ∆n,2. Analogously to the calculation of ∆n,1, we need only to deal with
the case of k2 > k1 > t and the other cases can be dealt with similarly. By Assumptions
3.3(ii), 3.4(i) and 3.5(i)(ii), we have

b−2n n−1h−2
n−2∑
t=1

E

[g(1)(Vt)]2 n∑
k1=t+1

n∑
k2=k1+1

(A.29)

× E

[
(Vk2 − Vt) (Vk1 − Vt)K

(
Vk2 − Vt

h

)
K

(
Vk1 − Vt

h

)
|Ft
])

≤ Cb−2n n−1h2
n−2∑
t=1

E
[
g(1)(Vt)

]2 n∑
k1=t+1

n∑
k2=k1+1

ϕk2−k1ϕk1−t

≤ Cb−2n L2
s(n)h2

n∑
t=1

E
[
g(1)(Vt)

]2
≤ O

(
b−2n nL2

s(n)h
)

= o(n).

The detailed calculation of (A.29) is similar to the derivations for ∆n,1,1 and ∆n,1,2. Hence,

we have shown that ∆n,2 = o(n) holds, which, together with (A.28), implies that (A.14)

holds.
We next show that (A.15) holds. In view of (A.23), it suffices to show that

n∑
t=1

η̂t∆n(Vt)Ft = oP (
√
n), (A.30)
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where η̂t = 1√
nh p̂n(Vt)

(
n∑
k=1

K
(
Vk−Vt
h

)
ηk

)
. Similar to the arguments used in (A.26), we

have

E

(
n∑
t=1

η̂t∆n(Vt)Ft

)2

≤ Cb−4n h−4n−2

× E

 n∑
k=1


n∑
t=1

n∑
j=1

(Vj − Vt)K
(
Vk − Vt

h

)
K

(
Vj − Vt
h

) g(1)(Vk)ηk
2

= Cb−4n h−2n−2E

(
n∑
k=1

M(Vk)ηk

)2

, (A.31)

where M(Vk) = g(1)(Vk)
n∑
t=1

n∑
j=1

(
Vj−Vt
h

)
K
(
Vk−Vt
h

)
K
(
Vj−Vt
h

)
. Let FV = σ(Vt, 1 ≤ t ≤ n).

By (A.26), we have

E

(
n∑
k=1

M(Vk)ηk

)2

= E

E
( n∑

k=1

M(Vk)ηk

)2

|FV

 ≤ C n∑
k=1

E (M(Vk))
2 , (A.32)

which implies that E

(
n∑
t=1

η̂t∆n(Vt)Ft

)2

is smaller than

Cb−4n h−2n−2
n∑
k=1

E

g(1)(Vk) n∑
t=1

n∑
j=1

(
Vj − Vt
h

)
K

(
Vk − Vt

h

)
K

(
Vj − Vt
h

)2 .
Note that

n∑
k=1

E

g(1)(Vk) n∑
t=1

n∑
j=1

(
Vj − Vt
h

)
K

(
Vk − Vt

h

)
K

(
Vj − Vt
h

)2

=
n∑
k=1

n∑
t1,t2=1

n∑
j1,j2=1

E

([
g(1)(Vk)

]2 (Vj1 − Vt1
h

)(
Vj2 − Vt2

h

)

K

(
Vk − Vt1

h

)
K

(
Vk − Vt2

h

)
K

(
Vj1 − Vt1

h

)
K

(
Vj2 − Vt2

h

))
.

We consider the case where t1 > t2 > j1 > j2 > k and the other cases can be dealt with
analogously. By Assumptions 3.3(ii), 3.4(i) and 3.5, we have

n−4∑
k=1

n−3∑
j2=k+1

n−2∑
j1=j2+1

n−1∑
t2=j1+1

n∑
t1=t2+1

E

([
g(1)(Vk)

]2 (Vj1 − Vt1
h

)(
Vj2 − Vt2

h

)

K

(
Vk − Vt1

h

)
K

(
Vk − Vt2

h

)
K

(
Vj1 − Vt1

h

)
K

(
Vj2 − Vt2

h

))
≤ Ch4

n∑
k=1

E
[
g(1)(Vk)

]2 n−3∑
j2=k+1

n−2∑
j1=j2+1

n−1∑
t2=t1+1

n∑
t1=t2+1

ϕt1−t2ϕt2−j1ϕj1−j2ϕj2−k

= O
(
n3L4

s(n)h3
)
.
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Equations (A.31) and (A.32) thus imply (A.30). Therefore, equation (A.15) is proved.
By Assumption 3.3(ii) and (A.25), we have

E

(
n∑
t=1

{
n∑
k=1

KVt,h(Vk)ek

}
ηt

)2

=
n∑
t=1

E

{ n∑
k=1

KVt,h(Vk)ek

}2

η2t

 (A.33)

+
n∑
t=1

n∑
s=1, 6=t

n∑
k=1

n∑
l=1

E [KVt,h(Vk)ekηtKVs,h(Vl)elηs]

= : Ξn,1 + Ξn,2.

By Assumption 3.1(ii) and Lemma A.2, we can show that

∞∑
t=1

|E[e1et]| <∞ and
∞∑
t=1

|E[e1η1etηt]| <∞. (A.34)

By A4, (A.34) and using the same arguments as in the derivations for ∆n,1,1 and ∆n,1,2,
we have

Ξn,2 =
∑n
t=1

∑n
s=1, 6=t

∑n
k=1

∑n
l=1E [KVt,h(Vk)KVs,h(Vl)]E [ekηtelηs]

= 1
h2
∑n
t=1

∑n
s=1, 6=t

∑n
k=1

∑n
l=1E

[
K
(
Vk−Vt
h

)
K
(
Vl−Vs
h

)]
E [ekηtelηs]

= O
(
nh−2 + n

3
2Ls(n)

)
= O

(
n

3
2Ls(n)h−1

)
.

(A.35)

Similarly, by Assumptions 3.1(ii), 3.2(ii), 3.3(i) and 3.5(i)(ii), we have

Ξn,1 = 1
h2
∑n
t=1

∑n
k=1E

[
K2

(
Vk−Vt
h

)]
E
[
e2kη

2
t

]
+ 1

h2
∑n
t=1

∑n
k=1

∑n
l=1, 6=k E

[
K
(
Vk−Vt
h

)
K
(
Vl−Vt
h

)]
E
[
ekelη

2
t

]
= O

(
n

3
2Ls(n)h−1

)
.

(A.36)

Thus, by (A.33), (A.35) and (A.36), we have

E

(
n∑
t=1

{
n∑
k=1

KVt,h(Vk)ek

}
ηt

)2

= O(n
3
2Ls(n)h−1). (A.37)

Recall that p̂n(v) = 1√
nh

∑n
t=1K

(
Vt−v
h

)
and

wnk(v) =
K
(
Vk−v
h

)
∑n
t=1K

(
Vt−v
h

) =

1√
nh
K
(
Vk−v
h

)
1√
nh

∑n
t=1K

(
Vt−v
h

) =

1√
nh
K
(
Vk−v
h

)
p̂n(v)

.

Similar to (A.24), equation (A.37) implies

n∑
t=1


n∑
k=1

1√
nh
K
(
Vk−Vt
h

)
p̂n(Vt)

ek

 ηtFt (A.38)

= OP

(
1√
n bn

)
·
n∑
t=1

{
n∑
k=1

KVt,h(Vk)ek

}
ηt

= OP
(
n

1
4L1/2

s (n)h−1/2b−1n

)
= oP (

√
n)

by Assumption 3.5(i)(ii). Hence, (A.17) is proved.
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We now show that

n∑
t=1

[
n∑
k=1

wnk(Vt)ηk

] n∑
q=1

wnq(Vt)eq

Ft = oP (
√
n). (A.39)

Note that

E

 n∑
t=1

[
n∑
k=1

KVt,h(Vk)ηk

] n∑
q=1

KVt,h(Vq)eq

2

(A.40)

=
n∑
t=1

E

( n∑
k=1

KVt,h(Vk)ηk

)2
 n∑
q=1

KVt,h(Vq)eq

2


+
n∑

t1=1

∑
t2 6=t1

E

 n∑
k1=1

KVt1 ,h
(Vk1)ηk1

 n∑
q1=1

KVt1 ,h
(Vq1)eq1


×

 n∑
k2=1

KVt2 ,h
(Vk2)ηk2

 n∑
q2=1

KVt2 ,h
(Vq2)eq2

 =: In,1 + In,2.

By Assumption 3.3(i), we have

In,1 =
n∑
t=1

n∑
k=1

n∑
q=1

E
[
K2
Vt,h(Vk)K

2
Vt,h(Vq)

]
E
[
η2ke

2
q

]
(A.41)

+
n∑
t=1

n∑
k1=1

∑
k2 6=k1

n∑
q=1

E
[
KVt,h(Vk1)KVt,h(Vk2)K2

Vt,h(Vq)
]
E
[
ηk1ηk2e

2
q

]

+
n∑
t=1

n∑
q1=1

∑
q2 6=q1

n∑
k=1

E
[
KVt,h(Vq1)KVt,h(Vq2)K2

Vt,h(Vk)
]
E
[
η2keq1eq2

]

+
n∑
t=1

n∑
k1=1

∑
k2 6=k1

n∑
q1=1

n∑
q2=1, 6=q1

E [KVt,h(Vk1)KVt,h(Vk2)KVt,h(Vq1)KVt,h(Vq1)]

× E [ηk1ηk2eq1eq2 ] =: I
(1)
n,1 + I

(2)
n,1 + I

(3)
n,1 + I

(4)
n,1.

By Assumptions 3.3(i) and applying the proof of (A.35), we can show that

I
(1)
n,1 =

n∑
t=1

n∑
k=1

E
[
K4
Vt,h(Vk)

]
E
[
η2ke

2
k

]
(A.42)

+
n∑
t=1

n∑
k=1

∑
q 6=k

E
[
K2
Vt,h(Vk)K

2
Vt,h(Vq)

]
× E

[
η2ke

2
q

]
= O

(
n

3
2Ls(n)h−3 + n2L2

s(n)h−2
)

= O
(
n2L2

s(n)h−2
)
.

Similarly, by (A.25) and (A.34), we have

I
(j)
n,1 = O(n2L2

s(n)h−2), j = 2, 3, 4. (A.43)

It follows from (A.41)–(A.43) that

In,1 = O(n2L2
s(n)h−2). (A.44)
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Observe that

In,2 =
n∑

t1=1

∑
t1 6=t2

n∑
k=1

n∑
q=1

E
[
KVt1 ,h

(Vk)KVt2 ,h
(Vk)KVt1 ,h

(Vq)KVt2 ,h
(Vq)

]
(A.45)

× E
[
η2ke

2
q

]
+

n∑
t1=1

∑
t1 6=t2

n∑
k1=1

∑
k2 6=k1

n∑
q=1

E
[
KVt1 ,h

(Vk1)KVt2 ,h
(Vk2)KVt1 ,h

(Vq)KVt2 ,h
(Vq)

]
× E

[
ηk1ηk2e

2
q

]
+

n∑
t1=1

∑
t1 6=t2

n∑
q1=1

∑
q2 6=q1

n∑
k=1

E
[
KVt1 ,h

(Vk)KVt2 ,h
(Vk)KVt1 ,h

(Vq1)KVt2 ,h
(Vq2)

]
× E

[
η2keq1eq2

]
+

n∑
t1=1

∑
t1 6=t2

n∑
k1=1

∑
k2 6=k1

n∑
q1=1

∑
q2 6=q1

E
[
KVt1 ,h

(Vk1)KVt2 ,h
(Vk2)KVt1 ,h

(Vq1)KVt2 ,h
(Vq2)

]
× E [ηk1ηk2eq1eq2 ] =: I

(1)
n,2 + I

(2)
n,2 + I

(3)
n,2 + I

(4)
n,2.

By (A.25) and (A.34) as well as following the calculation of the order of I
(j)
n,1 above,

we have
I
(j)
n,2 = O

(
n

5
2L3

s(n)h−1
)
, j = 1, · · · , 4. (A.46)

By (A.45)–(A.46), we have

In,2 = O
(
n

5
2L3

s(n)h−1
)
.

This, combined with (A.40) and (A.44), leads to

E

 n∑
t=1

[
n∑
k=1

KVt,h(Vk)ηk

] n∑
q=1

KVt,h(Vq)eq

2

= O
(
n

5
2L3

s(n)h−1
)
.

As a result, by Assumption 3.5(ii) we have

n∑
t=1

[
n∑
k=1

wnk(Vt)ηk

] n∑
q=1

wnq(Vt)eq

Ft
= OP

(
n

1
4L

3
2
s (n)h−1/2b−2n

)
= oP (

√
n),

which implies that (A.18) holds.
Finally, we prove (A.20) and (A.22). The proof of (A.20) is similar to (A.38). By the

central limit theorem for stationary α–mixing random variables (see Corollary 5.1 of Hall
and Heyde 1980) and Assumption 3.1, we have

P

{
1√
n

n∑
t=1

ηtet < z

}
→ Φ

(
z

σ1

)
, (A.47)

where σ21 = Σe,η > 0 when the dimension of {ηt} is assumed to be d = 1.
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Meanwhile, by Assumptions 3.1(ii) and 3.5(iii) as well as Lemma A.2, we have

E

(
n∑
t=1

ηtet(1− Ft)
)2

=
n∑
t=1

E (ηtet(1− Ft))2

+ 2
n∑
t=2

t−1∑
s=1

E (ηtηsetes(1− Ft)(1− Fs)) ≤ C
n∑
t=1

E(1− Ft)

+ 2
n∑
t=2

t−1∑
s=1

E (ηtetηses)E [(1− Ft)(1− Fs)] ≤ C
n∑
t=1

E(1− Ft)

+
n∑
t=2

t−1∑
s=1

(αζ(|t− s|))γ1/(2+γ2)E [(1− Ft)(1− Fs)]

≤ C
n∑
t=1

E(1− Ft) + C
n∑
t=2

t−1∑
s=1

(αU (|t− s|))γ1/(2+γ1) (αε(|t− s|))γ2/(2+γ2)E [(1− Ft)]

≤ C
n∑
t=1

E [(1− Ft)] = C
n∑
t=1

P (p̂n(Vt) ≤ bn) = o(n)

(A.48)
using the fact that

E [(1− Ft)(1− Fs)] ≤
1

2

(
E
[
(1− Ft)2

]
+ E

[
(1− Fs)2

])
=

1

2
(E [(1− Ft)] + E [(1− Fs)]) .

By (A.47) and (A.48), equation (A.22) is proved.

We finish the proof of Theorem 3.1 by completing the proofs of (A.16), (A.19) and
(A.21). Let Λn(Vt) be defined as ∆n(Vt) with g(1)(·) replaced by H(1)(·). Similarly to the
derivations in (A.27)–(A.29), we can show that

E

(
n∑
t=1

|Λn(Vt)∆n(Vt)Ft|
)

= O

(
L2
s(n)b−2n h2

n∑
t=1

E
∣∣∣H(1)(Vt)g

(1)(Vt)
∣∣∣)

= O
(
n

1
2
−ε1L2

s(n)
)

= o(
√
n),

for some 0 < ε1 <
1
2 , which implies that (A.16) holds. The proofs of (A.19) and (A.21)

are similar to that of (A.14) and so the details are omitted here.

7.4 Proof of Theorem 3.2

Observe that

ĝ∗(v)− g(v) =
n∑
t=1

wnt(v)
(
Yt − Â∗Xt

)
− g(v)

=
n∑
t=1

wnt(v)εt + (A− Â∗)
n∑
t=1

wnt(v)Xt +
n∑
t=1

wnt(v)g(Vt)− g(v)

=
n∑
t=1

wnt(v)εt + (A− Â∗)
n∑
t=1

wnt(v)Ut

+ (A− Â∗)
n∑
t=1

wnt(v)H(Vt) +
n∑
t=1

wnt(v) [g(Vt)− g(v)] .

Note from Theorem 3.1 that Â∗ −A = OP
(
n−

1
2

)
,

n∑
t=1

K

(
v − Vt
h

)
= OP (

√
nh) and

n∑
t=1

K2
(
v − Vt
h

)
= OP (

√
nh), (A.49)
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√√√√ n∑
t=1

K

(
v − Vt
h

) n∑
t=1

wnt(v) Ut =
1√∑n

t=1K
(
v−Vt
h

) n∑
t=1

K

(
v − Vt
h

)
Ut

→D N (0,Ωu) , (A.50)√√√√ n∑
t=1

K

(
v − Vt
h

) n∑
t=1

wnt(v) H(Vt) =
n∑
t=1

K
(
v−Vt
h

)
H(Vt)√∑n

t=1K
(
v−Vt
h

) , (A.51)

√√√√ n∑
t=1

K

(
v − Vt
h

) n∑
t=1

wnt(v) [g(Vt)− g(v)] = o(1), (A.52)

√√√√ n∑
t=1

K

(
v − Vt
h

) n∑
t=1

wnt(v) et =
1√∑n

t=1K
(
v−Vt
h

) n∑
t=1

K

(
v − Vt
h

)
et

→D N (0,Ωe) , (A.53)

where Ωu =
∫
K2(u)du · E [U1U

′
1] and Ωe =

∫
K2(u)du · E [e1e

′
1].

The proof of (A.49) follows from existing results (see, for example, Theorem 5.1 of
Karlsen and Tjøstheim 2001, Theorem 2.1 of Wang and Phillips 2009a). Similar to the
proof of (5.16) and (5.18) of Wang and Phillips (2009a), the proof of (A.52) follows from
Assumption 3.5(i)(ii)(iv). The proof of (A.50) is the same as that of (A.53), whose proof
is given below. Using Taylor expansions and Assumption 3.4(ii), it can be shown that for
n large enough

n∑
t=1

wnt(v) H(Vt) = H(v)
n∑
t=1

wnt(v)(1 + oP (1)) = OP (1). (A.54)

In view of (A.49)–(A.54), in order to complete the proof of Theorem 3.2, it suffices to

prove (A.53). Let us define ant(v) = K
(
v−Vt
h

)
and Ln ≡

∑n
t=1 ant(v)et. Note that the

conditional variance matrix of Ln given V = (V1, · · · , Vn) is Ω11 ·
∑n
t=1K

2
(
v−Vt
h

)
.

Note also that et is assumed to be stationary and α–mixing. Thus, applying existing

results (for example, Corollary 5.1 of Hall and Heyde 1980) completes the proof. Alterna-

tively, by the standard small–block and large–block arguments as in the proof of Theorem

2.22 of Fan and Yao (2003), in order to prove (A.53), it suffices to verify the Feller and

Lindberg conditions.

7.5 Proof of Theorem 3.3

In view of the definition Z̃t = (Zt −
∑n
s=1wns(Vt)Zs)Ft, we have

Ỹt = AX̃t + g̃(Vt) + ε̃t = AX̃t + g̃(Vt) + ẽt,

Yt − Â∗Xt − ĝ∗(Vt) = Ỹt − Â∗X̂t

=
(
A− Â∗

)
X̃t + g̃(Vt) + ẽt. (A.55)

Observe that
n∑
t=1

(
Yt − Â∗Xt − ĝ∗n(Vt)

) (
Yt − Â∗Xt − ĝ∗n(Vt)

)′
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=
n∑
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)
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)
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)′
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+
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+ 2
n∑
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t + 2
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(
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′ + 2
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≡
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j=1

Sn(j). (A.56)

We show that as n→∞
1

n
Sn(1)→P E [e1e

′
1] and

1

n
Sn(j)→P 0 (A.57)

for all 2 ≤ j ≤ 6. Note that

n∑
t=1

ẽtẽ
′
t =

n∑
t=1

ete
′
tFt +

n∑
t=1

ete
′
tFt + 2

n∑
t=1

ete
′
tFt, (A.58)

where et =
∑n
s=1wns(Vt)es. In view of (A.58), in order to prove the first part of

(A.57), it suffices to show that as n→∞

1

n

n∑
t=1

ete
′
tFt →P E [e1e

′
1] ,

1

n

n∑
t=1

ete
′
tFt →P 0 and

1

n

n∑
t=1

ete
′
tFt →P 0. (A.59)

Since the remainder of the proof of (A.59) and the second part of (A.57) is a special
case of the proof of Lemma A.1(i) below, we do not repeat it here. In fact, equations
(B.2)–(B.10) imply (A.59) and the second part of (A.57) when Us, ηt, J̃(Vt) and
H̃(Vt) are replaced by es, et and g̃(Vt), respectively.

8 Appendix B

8.1 Proof of Lemma A.1(i)

As in previous proofs, we continue to consider the case d = 1 for convenience since
the basic ideas hold for d ≥ 2. Hence, all the vectors, including Ut and ηt, in the
rest of the proof reduce to scalars.

Observe that

n∑
t=1

X̃tQ̃tFt =
n∑
t=1

(
Xt −

n∑
k=1

wnk(Vt)Xk

)Qt −
n∑
q=1

wnq(Vt)Qq

Ft (B.1)

=
n∑
t=1

(
Ut + H̃(Vt)−

n∑
k=1

wnk(Vt)Uk

)ηt + J̃(Vt)−
n∑
q=1

wnq(Vt)ηq

Ft
=

n∑
t=1

UtηtFt −
n∑
t=1

(
n∑
k=1

wnk(Vt)Uk

)
ηtFt −

n∑
t=1

(
n∑
k=1

wnk(Vt)ηk

)
UtFt

36



+
n∑
t=1

UtJ̃(Vt)Ft +
n∑
t=1

ηtH̃(Vt)Ft

−
n∑
t=1

(
n∑
k=1

wnk(Vt)Uk

)
J̃(Vt)Ft −

n∑
t=1

(
n∑
k=1

wnk(Vt)ηk

)
H̃(Vt)Ft

+
n∑
t=1

(
n∑
k=1

wnk(Vt)Uk

) n∑
q=1

wnq(Vt)ηq

Ft +
n∑
t=1

H̃(Vt)J̃(Vt)Ft.

Similar to (A.14)–(A.22), in order to prove Lemma A.1(i), it suffices to show that

n∑
t=1

(
n∑
s=1

wns(Vt)Us

)(
n∑
k=1

wnk(Vt)ηk

)
Ft = oP (n), (B.2)

n∑
t=1

(
n∑
s=1

wns(Vt)Us

)
ηtFt = oP (n), (B.3)

n∑
t=1

(
n∑
s=1

wns(Vt)ηs

)
UtFt = oP (n), (B.4)

n∑
t=1

(
n∑
s=1

wns(Vt)Us

)
J̃(Vt) Ft = oP (n), (B.5)

n∑
t=1

(
n∑
s=1

wns(Vt)ηs

)
H̃(Vt) Ft = oP (n), (B.6)

n∑
t=1

J̃(Vt)UtFt = oP (n), (B.7)

n∑
t=1

H̃(Vt)ηtFt = oP (n), (B.8)

n∑
t=1

H̃(Vt)J̃(Vt)Ft = oP (n), (B.9)

1

n

n∑
t=1

UtηtFt →P Σuη, (B.10)

where Σuη = E [U1η
′
1].

In the rest of the proof of Lemma A.1(i), we verify each of the equations (B.2)–
(B.9). Since some of the proofs are very similar, we only provide some representative

proofs here. Define ŵnk(Vt) = 1
p̂n(Vt)

√
nh
K
(
Vt−Vk
h

)
. In order to verify (B.2), it suffices

to show that for n large enough

n∑
t=1

(
n∑
s=1

ŵns(Vt)Us

)(
n∑
k=1

ŵnk(Vt)ηk

)
Ft = oP (n). (B.11)

Observe that

E

 n∑
t=1

(
n∑
k=1

ŵnk(Vt)Uk

) n∑
q=1

ŵnq(Vt)ηq

Ft
2 (B.12)
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=
n∑
t=1

E

( n∑
k=1

ŵnk(Vt)Uk

)2
 n∑
q=1

ŵnq(Vt)ηq

2

Ft


+

n∑
t1=1

∑
t2 6=t1

E

 n∑
k1=1

ŵnk1(Vt1)Uk1

 n∑
q1=1

ŵnq1(Vt1)ηq1


×

 n∑
k2=1

ŵnk2(Vt2)Uk2

 n∑
q2=1

ŵnq2(Vt2)ηq2

Ft1Ft2


=: Πn,1 + Πn,2.

By Assumption 3.3(i), we have

Πn,1 ≤ C
n∑
t=1

n∑
k=1

n∑
q=1

E
[(
ŵ2
nk(Vt)ŵ

2
nq(Vt)

)
Ft
]
E
[
U2
kη

2
q

]
+ C

n∑
t=1

n∑
k=1

n∑
q=1

E [(ŵ3
nk(Vt)ŵnq(Vt))Ft]E [U3

kηq]

+ C
n∑
t=1

n∑
k=1

n∑
q=1

E [(ŵ3
nk(Vt)ŵnq(Vt))Ft]E [Uqη

3
k]

+ C
n∑
t=1

n∑
k1=1

∑
k2<k1

∑
k3<k2

E[ŵ2
nk1

(Vt)ŵnk2(Vt)ŵnk3(Vt)Ft]E[η2k1Uk2Uk3 ]

+ C
n∑
t=1

n∑
k1=1

∑
k2<k1

∑
k3<k2

E[ŵ2
nk1

(Vt)ŵnk2(Vt)ŵnk3(Vt)Ft]E[U2
k1
ηk2ηk3 ]

+ C
n∑
t=1

n∑
k1=1

∑
k2<k1

∑
k3<k2

∑
k4<k3

E[ŵnk1(Vt)ŵnk2(Vt)ŵnk3(Vt)ŵnk4(Vt)Ft]

× E[Uk1Uk2ηk3ηk4 ]

=: Πn,1(1) + Πn,1(2) + Πn,1(3) + Πn,1(4) + Πn,1(5) + Πn,1(6).

(B.13)
For Πn,1(1), note that

Πn,1(1) =
n∑
t=1

n∑
k=1

E
[
ŵ4
nk(Vt)Ft

]
E
[
U2
kη

2
k

]
(B.14)

+
n∑
t=1

n∑
k=1

∑
q 6=k

E
[
ŵ2
nk(Vt)ŵ

2
nq(Vt)Ft

]
E
[
U2
kη

2
q

]
= : Πn,1(1, 1) + Πn,1(1, 2).

By Assumptions 3.3 and 3.5(ii), we have

Πn,1(1, 1) =
n∑
t=1

n∑
k=1

E [ŵ4
nk(Vt)Ft]E [U2

kη
2
k] ≤ C

n∑
t=1

n∑
k=1

E [ŵ4
nk(Vt)Ft]

= O
(
n−2h−4b−4n

(
nK4(0) +

n∑
t=2

t−1∑
k=1

E
[
K4(Vt−Vk

h
)
]))

= O
(
n−2h−4b−4n

(
nK4(0) +

n∑
t=2

t−1∑
k=1

∫
K4

(
u

ϕt−kh

)
ft,k(u)du

))
= O

(
n−2h−4b−4n

(
nK4(0) +

n∑
t=2

t−1∑
k=1

hϕt−k
∫
K4(u)ft,k (hϕt−ku) du

))
= O

(
n−2h−4b−4n

(
nK4(0) + h

n∑
t=2

t−1∑
k=1

1√
(t−k)

Ls(t− k)
))

= O
(
n−1h−4b−4n + n−

1
2Ls(n)h−3b−4n

)
= o(n2)

(B.15)
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and by Assumptions 3.3 and 3.5(ii) again

Πn,1(1, 2) ≤ C
n∑
t=1

n∑
k1=1

∑
k2 6=k1

E
[
ŵ2
nk1

(Vt)ŵ
2
nk2

(Vt)Ft
]

≤ Cn−2h−4b−4n
n∑
t=1

n∑
k1=1

∑
k2 6=k1

E
[
K2

(
Vt−Vk1

h

)
K2

(
Vt−Vk2

h

)]
≤ Cn−2h−4b−4n

n∑
t=2

t−1∑
k1=1

K2(0)E
[
K2

(
Vt−Vk1

h

)]
+ Cn−2h−4b−4n

n∑
t=3

t−1∑
k1=2

k1−1∑
k2=1

E
[
K2

(
Vt−Vk1

h

)
K2

(
Vt−Vk2

h

)]
≤ Cn−

1
2Ls(n)h−3b−4n + Cn−2h−4b−4n

n∑
t=3

t−1∑
k1=2

k1−1∑
k2=1

ϕt−k1

× E
(∫
K2

(
w1

h

)
K2

(
w1+Vk1−Vk2

h

)
ft,k1(ϕt−k1w1|Fk1)

)
≤ Cn−

1
2Ls(n)h−3b−4n + Cn−2h−4b−4n

n∑
t=3

t−1∑
k1=2

k1−1∑
k2=1

h2ϕt−k1ϕk1−k2

×
∫
K2(u1 + u2)K

2(u2)du1du2

= O(n−
1
2Ls(n)h−3b−4n + n−2h−2b−4n

n∑
t=3

t−1∑
k1=2

k1−1∑
k2=1

(t− k1)−
1
2Ls(t− k1)

× (k1 − k2)−
1
2Ls(k1 − k2))

= O(n−
1
2Ls(n)h−3b−4n + L2

s(n)h−2b−4n ) = o(n2).

(B.16)

By the Hölder inequality and similar to the calculation of Πn,1(1), we have

Πn,1(2) = O
(
L2
s(n)h−2b−4n

)
= o(n2). (B.17)

By Assumption 3.1(ii) and the covariance inequality for α–mixing sequence in Lemma
A.2, we have for k3 < k2 < k1,

E[U2
k1
ηk2ηk3 ] = E[U2

k1
ηk2ηk3 ]− E[U2

k1
]E[ηk2ηk3 ]

+ E[U2
k1

]E[ηk2ηk3 ]− E[U2
k1

]E[ηk2 ]E[ηk3 ] (B.18)

≤ C
(
α
γ2/(4+γ2)
ζ (k1 − k2) + α

γ2/(4+γ2)
ζ (k2 − k3)

)
,

which implies

Πn,1(3) ≤ C
n∑
t=1

n∑
k1=1

∑
k2<k1

∑
k3<k2

E[ŵ2
nk1

(Vt)ŵnk2(Vt)ŵnk3(Vt)Ft]

×
(
α
γ2/(4+γ2)
ζ (k1 − k2) + α

γ2/(4+γ2)
ζ (k2 − k3)

)
≤ CL2

s(n)h−1b−4n = o(n2).

(B.19)

Noting that for k4 < k3 < k2 < k1,

E[Uk1Uk2ηk3ηk4 ] ≤
C
(
α
γ1/(4+γ2)
ζ (k1 − k2) + α

γ2/(4+γ2)
ζ (k2 − k3) + α

γ1/(4+γ2)
ζ (k3 − k4)

)
,

we have for j = 4, 5, 6

Πn,1(j) = O
(√

nL3
s(n)b−4n

)
= o(n2). (B.20)
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By (B.13)–(B.20), we also have

Πn,1 = o(n2). (B.21)

For Πn,2, consider the following decomposition:

Πn,2 =
n∑

t1=1

∑
t2 6=t1

E

 n∑
k1=1

ŵnk1(Vt1)Uk1

 n∑
q1=1

ŵnq1(Vt1)ηq1


×

 n∑
k2=1

ŵnk2(Vt2)Uk2

 n∑
q2=1

ŵnq2(Vt2)ηq2

Ft1Ft2


≤ C
n∑

t1=1

∑
t2 6=t1

n∑
k=1

E
[
ŵ2
nk(Vt1)ŵ

2
nk(Vt2)Ft1Ft2

]
E[U2

kη
2
k]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2 6=k1

E
[
ŵ2
nk1

(Vt1)ŵnk1(Vt2)ŵnk2(Vt2)Ft1Ft2
]
E[U3

k1
ηk2 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2 6=k1

E
[
ŵ2
nk1

(Vt1)ŵnk1(Vt2)ŵnk2(Vt2)Ft1Ft2
]
E[η3k1Uk2 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2 6=k1

E
[
ŵ2
nk1

(Vt1)ŵ
2
nk2

(Vt2)Ft1Ft2
]
E[U2

k1
η2k2 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2 6=k1

E [ŵnk1(Vt1)ŵnk1(Vt2)ŵnk2(Vt1)ŵnk2(Vt2)Ft1Ft2 ]

× E
[
U2
k1
η2k2

]
+ C

n∑
t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2<k1

∑
q1<k2

E[ŵnk1(Vt1)ŵnk1(Vt2)ŵnk2(Vt1)ŵnq1(Vt2)Ft1Ft2 ]

× E[U2
k1
ηk2ηq1 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2<k1

∑
q1<k2

E[ŵnk1(Vt1)ŵnk1(Vt2)ŵnk2(Vt1)ŵnq1(Vt2)Ft1Ft2 ]

× E[η2k1Uk2Uq1 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2<k1

∑
q1<k2

E[ŵ2
nk1

(Vt1)ŵnk2(Vt2)ŵnq1(Vt2)Ft1Ft2 ]

× E[U2
k1
ηk2ηq1 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2<k1

∑
q1<k2

E[ŵ2
nk1

(Vt1)ŵnk2(Vt2)ŵnq1(Vt2)Ft1Ft2 ]

× E[η2k1Uk2Uq1 ]

+ C
n∑

t1=1

∑
t2 6=t1

n∑
k1=1

∑
k2<k1

∑
q1<k2

∑
q2<q1

E[ŵnk1(Vt1)ŵnk2(Vt2)ŵnq1(Vt1)ŵnq2(Vt2)Ft1Ft2 ]

× E[Uk1Uk2ηq1ηq2 ]

≡
9∑
j=1

Πn,2(j).
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By Assumption 3.3, we have

Πn,2(1) ≤ Cn−2h−4b−4n

 n∑
t1=1

∑
t2 6=t1

K2(0)E
[
K2

(
Vt1 − Vt2

h

)]
+ Cn−2h−4b−4n

 n∑
t1=1

∑
t2 6=t1

∑
k 6=t1,t2

E
[
K2

(
Vt1 − Vk

h

)
K2

(
Vt2 − Vk

h

)]
= O

(
n−

1
2Ls(n)h−3b−4n + L2

s(n)h−2b−4n
)

= o(n2).

Similarly, by the Hölder inequality we have

Πn,2(2) = Πn,2(3) = O
(
n

1
2L3

s(n)h−1b−4n
)

= o(n2).

Analogously, we have

Πn,2(4) = Πn,2(5) = O
(
n

1
2L3

s(n)h−1b−4n
)

= o(n2)

and
Πn,2(6) = O

(
n

1
2L3

s(n)h−1b−4n
)

= o(n2).

Applying the proofs of (B.19) and (B.20), we have

Πn,2(7) = O
(
n

1
2L3

s(n)b−4n
)

= o(n2),

Πn,2(8) = O
(
n

1
2L3

s(n)b−4n
)

= o(n2)

and
Πn,2(9) = O

(
nL4

s(n)hb−4n
)

= o(n2).

From the above arguments, we obtain

Πn,2 = o(n2). (B.22)

By (B.12), (B.21), (B.22) and the Markov inequality, we have shown (B.11), which
implies that (B.2) holds.

Using the same arguments as in the proof of Theorem 3.1, we can prove (B.9).
By the law of large numbers for stationary α–mixing process (for example, Hall and
Heyde 1980) and Assumption 3.1(ii), we obtain

1

n

n∑
t=1

Utηt →P Σuη, (B.23)

where Σuη = E [U1η1]. By Assumption 3.5(iii), we can prove that

1

n

n∑
t=1

UtηtF
c
t = oP (1). (B.24)

By (B.23) and (B.24) and noting that

1

n

n∑
t=1

UtηtFt +
1

n

n∑
t=1

UtηtF
c
t =

1

n

n∑
t=1

Utηt,

we have shown that (B.10) holds.
By the Cauchy–Schwarz inequality, (B.2), (B.9) and (B.10), we can show that

(B.3)–(B.7) hold. This completes the proof of Lemma A.1(i).
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8.2 Proof of Lemma A.1(ii)

The result is simply a multivariate version of Corollary 5.1 of Hall and Hedye (1980).

8.3 Proof of Lemma A.2

The lemma is a special case of Lemma A.1 of Gao (2007).
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