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Abstract

In this paper I build a unified model of economic growth to account for the time-series

evolution of output, fertility and population in transition through the industrialization of

an economy. Specifically, I merge the unified growth models à la Galor and Weil (2000)

and Hansen and Prescott (2002) to capture the importance of human capital formation,

fertility decline and the transition from agriculture to industry in transition from

stagnation to growth. Moreover, I also incorporate young adult mortality in the model.

Initially, the aggregate human capital and return to education are low and the mortality

rate is high; therefore parents invest in quantity of children. Once sufficient human capital

is accumulated and mortality rates are reduced thanks to increasing life expectancy, with

the activation of the modern human capital intensive sector, parents start to invest in

quality of their children. The simulation of the model economy improves upon the

quantitative performance of the existing literature and successfully captures the evolution

of fertility, population and GDP of the British economy between 1750 and 2000.

Keywords: Industrial Revolution; Malthusian Growth; Economic Development; Demo-

graphic Change.

JEL Classification Numbers: J10, O11, O41, N10, N30.
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1 Introduction

The process of industrialization or in broader terms economic development can be cat-

egorized in three stages [Galor and Weil (1999, 2000), Hansen and Prescott (2002), Galor

(2005)]: The first stage is called the Malthusian stage, where low (or no) population growth

goes hand in hand with low (if any) growth in output per capita. In the second stage of

development, called the post-Malthusian stage, technological progress rises and both output

per capita and population grow, meaning that the growth rate of output is higher than

the growth rate of population. Finally, there is the modern stage1 where output per capita

continues to grow whereas the population growth is low (if any).

Even though there are no strictly defined time periods for the three stages, the Malthusian

stage accounts for most of history up to the end of 1700’s quite well. Galor and Weil (1999,

2000) and in particular Galor (2005) characterize this stage as one with little education

and human capital, low productivity, and high gross reproduction rate but much lower net

reproduction rate (due to high mortality), in turn leading to low population growth. The

industrial revolution, starting roughly sometime between 1760−1840 [Floud and McCloskey

(1994)], lead to the second stage the characteristics of which lasted up to the 20th century.

The fertility rate did not decrease much in the transition [Galor and Weil (1999, 2000)

and Galor (2005)], but the higher reduction in mortality (or increase in life expectancy)2

lead to an increase in population. However, the growth rate of output was higher than the

growth rate of population, so in this stage output per capita increased and living standards

improved, contrary to the well-known predictions of the Malthusian growth theory. Finally,

the modern stage, in which population growth rates started to decline, began approximately

in the first half of the 20th century. The main characteristics of this stage are low fertility

1Galor and Weil (2000) call these stages Malthusian, post-Malthusian and modern growth regimes,

respectively. Hansen and Prescott (2002) talk about stages which are only differentiated by the Malthus and

Solow production functions.

2This is also documented in Nerlove and Raut (2003) and in Clark (2005).
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and mortality, increased level of education and human capital, and high productivity growth.

The characteristics of this stage, along with the previous ones, is well documented by Galor

and Weil (1999, 2000), Hansen and Prescott (2002), Doepke (2004), Galor (2005), Bar and

Leukhina (2010), and more recently in Galor (2010).

The main purpose of this paper is to build a unified model of economic growth and demo-

graphic change which can account for the characteristics of growth in output and population

in transition through the process of economic development in United Kingdom as described

in Lucas (2002). The model constructed in this paper is a combination of the Malthusian

and Solow growth models with an additional human-capital-intensive production function

which allows for spill-over effects. It is a standard general equilibrium growth model with

overlapping generations and endogenous fertility decision. On the production side there are

two different technologies which differ in their total factor productivities (TFP) and use of

factors. The first one, called the primitive technology is assumed to employ effective labor

(the product of number of workers, the portion of time devoted to work by each worker

and the level of human capital that each worker possesses), reproducible capital and a fixed

amount of land. The second technology, titled the modern production function, does not use

land as an input, but employs effective labor and capital only, and also allows for spill-over

effects. Human capital for each worker depends on the education of the worker, determined

by his parents and the rate of technological change as in Galor and Weil (2000) and Lagerlof

(2006). Moreover, I also introduce mortality into the model by assuming that each genera-

tion of households may live up to 2 periods, however only a fraction of them, depending on

the young-adult mortality rate, survive to the second period. With the help of this specifica-

tion, in equilibrium I am able to obtain a formula for optimal fertility level as a function of

technological improvement, mortality and education. Once the model is simulated, initially,

only the primitive sector is active, the aggregate human capital and return to education

are low and the mortality rate is high; therefore parents have more incentives to invest in

quantity of children. Once sufficient human capital is accumulated and mortality rates are
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reduced, with the activation of the modern human capital intensive sector, parents have

more incentives to invest in quality of their children.

The numerical exercise, I present at the end of the paper, reflects the characteristics

of the three periods discussed in the beginning. The simulation is done for nine periods

corresponding to 300-350 years.3 Assuming that the model economy starts in the early 18th

century, I track the evolution of the variables of the economy up to the end of the 20th

century. The model generates series for output, output per capita, fertility and different

than the fertility level and growth of population which successfully match the data from the

British economy.

This paper is related to various other works in the literature. In accounting for the tran-

sition, the model embodies elements from Tamura (1996), Galor and Weil (2000), Stokey

(2001), Hansen and Prescott (2002), Lagerlof (2006), and Bar and Leukhina (2010). More-

over, the representative agent’s maximization problem with endogenous fertility is similar to

the one used in unified growth theory by Galor and Weil (2000) and many others.

Among the related literature, Galor and Weil (2000), Hansen and Prescott (2002) deserve

more discussion as they are closely related to the present study.

Galor and Weil (2000) is the main point of departure of the model with respect to in-

dividual decision making and the production of human capital. They present a one-sector

OLG model with endogenous technological progress and fertility to account for the evolution

of output, population and technology. 4 The present study, even though largely consistent

with their results, extends their paper with important modifications and differences. Specif-

ically, as Galor (2005) also mentions, the analysis of Galor and Weil (2000) do not explicitly

incorporate the structural transformation from a primitive technology to a modern one. In

3As Hansen and Prescott (2002) also do, I assume that each period in the OLG model economy corre-

sponds approximately to 35-40 years.

4There are also many studies such as Lagerlof (2006), Weisdorf (2006), and Strulik and Weisdorf (2008)

which used the Galor-Weil model as their benchmark.
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my paper however, this transformation explicitly exists and contrary to Hansen and Prescott

(2002), it is related to human capital accumulation. This is one of the key mechanisms gener-

ating the evolution of population in the model. Furthermore, adding young-adult mortality

to the model, helps to account for different behavior of fertility and population growth rates

in the data. Finally, the present study also complements Galor and Weil (2000) by quanti-

tatively accounting5 for the evolution of output, population and fertility in UK through and

after the industrial revolution. In summary, the present study nicely fits the ideas proposed

in Galor and Weil (2000) and complements the related literature.

Hansen and Prescott (2002) is the another point of departure of this study, especially for

the production side of the model. Similar to the present study, they develop an OLG model

with two sectors in which the economy shifts from an agricultural sector to an industrial

sector in the course of economic development.6 However, unlike other unified growth theories

and the model presented in this paper, population growth is simply assumed to be a function

of growth in consumption; thereby lacking micro-foundations for factors behind its transition.

Moreover, human capital formation, that appears to be one of the central forces in the unified

growth literature, is absent in Hansen and Prescott (2002). As Galor (2005) also argues,

such a reduced form analysis does not identify the economic factors behind the process of

technological change, as well as the forces behind the demographic dynamics. The main value

added of the present study on the other hand is filling in the gap in Hansen and Prescott

(2002) by incorporating human capital formation with micro-foundations and endogenous

population dynamics in the model. This allows to better identify the economic factors behind

the evolution of output and population, as well the factors behind the process of technology

5Lagerlof (2006) is another example of a quantitative study in this regard.

6Tamura (2002) presents a model where human capital accumulation causes the economy to switch from

agriculture to industry endogenously. Different than this paper, I look at a shorter period, therefore my

model performs better in terms of explaining the short-run fluctuations in the data after the industrial

revolution. Moreover, I also incorporate young adult mortality into the analysis.
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change. Specifically, it shows that human capital plays a central role in sustaining the rate of

technological progress in the industrial sector and in generating the demographic transition.

The rest of this paper is organized as follows: In the next section, I discuss some empirical

facts from United Kingdom to motivate our model. In section 3, I present the model economy,

defines a competitive equilibrium and solves it. Simulation of the model economy in its

transition through the three stages is then presented in Section 4. Finally, I offer concluding

remarks in Section 5. The appendix presents an easy proof of proposition 2 of section 3.

2 Empirical Motivation

The claim that the economic history can be analyzed in three periods can be easily

observed when one looks at historical data. One can see the different characteristics of the

three periods by looking at GDP, GDP per capita and population figures. Figure 1 below7

illustrates the behavior of the population of the United Kingdom after 1700. The increase

in the level of population in the long-run is obvious. But more important is the slope of this

curve, namely, the growth rate of population over time.

Figure 1 about here

Figure 2 shows the population growth rate derived from the data in figure 1. Even though

there are some fluctuations, the trend is that the growth rate jumps from a very low level

to a higher level after the start of industrial revolution and then decreases over the long-run

7The data for population are obtained from Wrigley and Schofield (1989) and Wrigley et.al.(1997). In an

earlier draft of the paper I also used data presented in Floud and McCloskey (1994) and Maddison (2007).

One important notice should be made at this moment for all data used throughout the paper. To be able

to make better comparison with the simulation, all empirical data presented here averaged out for 35 year

periods from 1716 to 1996, e.g. in the following figure the population level in for 1951 is not the actual

population in that year, but is the average of population between 1916 and 1951. One exception is for

1716 where the average is taken from 1701 to 1716. Data from different sources listed above do not differ

significantly, especially once this averaging is applied.
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almost to its original level. Excluding the fluctuations, and looking at the trend, this picture

confirms the demographic transition in the three different stages which we hypothesized in

the previous section.

Figure 2 about here

There are various reasons why population statistics follow such patterns. Decomposing

the growth rate of population to observe the fertility and mortality rates can be a step

towards that purpose. For that purpose, figure 3 below documents the evolution of the gross

reproduction rate (GRR) and the average life expectancy in England.8 Gross reproduction

rate, which was slightly above 2 before the industrial revolution, jumps to almost 3 in the

1820’s but decreases thereafter up to almost 1 at the end of the 20th century. In the OLG-

model economy which we will discuss in the next section, the mortality rate will be the

probability that the representative agent born at period t will die before t + 1, which has

no counterpart in the data. Therefore, throughout the simulation, we will assume that

the average life expectancy documented in figure 3.2 has a negative relationship with the

mortality rate in our model, even though the form of this relationship is unknown. (A

specific functional form will be assumed to capture this relation later in the paper.) For

now, the data shows that the average life expectancy increases uninterruptedly after the

industrial revolution. Notice that the increase in GRR and life expectancy positively affects

population growth. But when the GRR starts to decrease in time, the population continues

to grow as the life expectancy becomes higher. Towards the end of the 20th century, the

growth in the life expectancy ceases and GRR decreases (almost to 1) which accounts for

the slowdown in the population growth rate.

Figure 3 about here

8GRR data is taken from Clark (2005) and from Office of National Statistics, and life expectancy data

from Arora (2001) and the Human Mortality Website: www.humanmortality.org
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Figure 4 looks9 at GDP and GDP per capita in the United Kingdom. The increasing trend

of both variables after the industrial revolution is obvious. As discussed in the introduction,

prior to the industrial revolution, the growth in GDP is balanced by the growth in population,

so that the growth in GDP per capita is low (if any). But in the second stage both variables

start to grow uninterruptedly.

Figure 4 about here

As a summary of these figures, we can conclude that the three stages which are discussed

in detail in the previous section are observable from the documented data above. Now I can

build a model to explain these observations.

3 The Model

3.1 Households’ Problem

Overlapping generations live for 2 periods. A young household born in period t has the

following utility function:

log ctt + β(1− ξt) log ctt+1 + γn1−ε
t ht+1(et+1) (1)

Here ctt is consumption of the young household in period t, whereas ctt+1 is its consumption

when old. ξt is the probability that the young household does not survive period t. Besides

its own consumption, the representative household can choose the number of children it is

going to have, nt, and the amount of education it should invest for its children, et+1. γ

and ε are simply parameters which show the level of altruism the household has towards its

children.

9Data after 1870 is taken from the Office of National Statistics. Data before that is generated from the

data presented in Broadberry et.al. (2010).
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Human capital evolves according to the following equation:

ht+1(et+1, gt) = ψ(et+1, gt+1) (2)

where gt+1 is the rate of average technological progress which will be defined more in

detail with technology. I further assume that ψ satisfies ψe > 0, ψee < 0, ψg < 0, and

ψgg > 0. The first two conditions indicate that education increases the level of human

capital but at a decreasing rate. For the other two conditions, the assumption is that faster

technological progress erodes human capital by making knowledge obsolete, however at a

decreasing rate.10

Throughout the simulation, I will assume the following functional form for the human

capital accumulation function.

ht+1(et+1, gt+1) = ψ(et+1, gt+1) =
a+ bet+1 − gt+1

a+ bet+1 + gt+1

. (3)

This form obviously satisfies the four properties listed above.11

At any period t, the young agent born at t can spend his income for consumption, ct

buying capital, kt+1 or land lt+1. He earns rent from his capital and land next period. Notice

that the depreciation rate is assumed to be equal to 1. The agent’s labor income at period

t depends on the wage rate wt, the level of human capital that the agent possesses ht(et),

and the amount of time that he spends working, zt. The more he spends his time for work,

the less is the amount of education he can provide for his nt children. Parameters a and b

10Galor and Weil (2000) make a further assumption, namely ψeg > 0. The intuition is that technological

progress increases the return to education or that the erosion of human capital due to technological change

decreases with education. As Lagerlof (2006) also emphasizes, this assumption is sufficient but not necessary

to generate the result that et+1 is increasing in gt+1.

11Notice that a similar function is also used by Lagerlof (2006). Moreover, this function also satisfies the

fifth property that, ψeg > 0, if I restrict ε to be above some threshold level. In the simulation exercise below

this assumption will hold anyhow.

11



represent the time cost of raising children.12 (In the simulation, they will be assumed to be

fixed numbers.) The agent does not work at t+ 1.

Accordingly, the households’ budget and time constraints are given by

ctt + kt+1 + ptlt+1 = wtht(et)zt (4)

ctt+1 = rK,t+1kt+1 + (pt+1 + rL,t+1)lt+1 (5)

zt + nt(a+ bet+1) = z̄, (6)

where pt stands for the relative price of land.

3.2 Technology

The model I present in this paper is an OLG model with 2 different technologies. The

primitive sector employs land, effective labor and physical capital to produce output. The

second sector, called the modern sector, does not employ land. The production functions

are given by:

YPt = APtK
αP
Pt
HθP

Pt
L1−αP−θP

Pt
(7)

YMt = AMtη(St)K
αM
Mt
H1−αM

Mt
(8)

The variables Ai, Yi, Ki, Hi and Li refer to TFP, output, physical capital, effective labor,

and land in sector i∈ {P,M}. I also assume that APt = At
P and AMt = At

M . This means

that TFP in both sectors grow at an exogenous rate.

Remember that gt is defined to be the rate of technological progress of the economy.

With these two production functions in hand,

gt+1 =
At+1 − At

At

, (9)

where At+1 is simply be a weighted average of APt+1 and AMt+1 , i.e.

12Robinson (1997) provides a very detailed survey of this literature.
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At =
YPtAPt + YMtAMtη(St)

Yt

, (10)

where Yt = YPt + YMt . So even though, TFP in the two sectors grow at exogenous rates AP

and AM , the aggregate TFP At is a function of various endogenous variables of the model.

Throughout the model, land does not depreciate and is fixed at 1. Since only the primitive

sector employs land, this will imply that LPt = 1 for any period t.

Consistent with the names of the production function, the modern sector will be capital

intensive and effective-labor intensive compared to the primitive sector. Therefore, through-

out the paper it will be the case that αP < αM and θP < 1− αM .

The modern sector exhibits spill-over effects which are represented by the function η(St),

where η′(St) > 0, η′′(St) < 0, and St = Ntht is the total level of human capital in the

economy. Notice that this specification is not new in the literature.13

Since the depreciation rate for physical capital is assumed to be 1, the feasibility con-

straint of the economy14 is given by

Ct
t + Ct−1

t +Kt+1 = YPt + YMt. (11)

For simplicity it will be convenient to assume that the same firm operates in each sector

alone. Given values for Ai, w, rK , rL, and St, this firm solves the following maximization

problem subject to the production functions

max Yi − wHi − rKKi − rLLi i ∈ {P,M} (12)

13See Romer (1986) or Wang and Xie (2004)

14The implicit simplifying assumption made here is that capital in possession of the young who do not

survive to the next period is automatically transferred to those who survive.
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3.3 Equilibrium and Characterization

Given N0, k0,and ξt (and assuming that Lt = 1 for all t), a competitive equilibrium in this

economy is defined to be sequences of household allocation {ctt, ct+1
t , kt+1, lt+1, zt, nt, et+1} ,

firm allocations {KMt , KPt , HMt , HPt , YMt , YPt} and prices {pt, wt, rK,t, rL,t} such that given

prices:

1. Households maximize their utility subject to the budget constraints specified above.

2. The representative firm maximizes its profits subject to the production functions.

3. Market clearing conditions hold. Specifically:

HMt +HPt = Ht = zthtNt (13)

St = htNt (14)

LPt+1 = Lt+1 = lt+1Nt = 1 (15)

KMt +KPt = Kt = ktNt−1 (16)

Ct
t + Ct−1

t +Kt+1 = YMt + YPt (17)

Nt+1 = ntNt. (18)

Here are some theorems that are worth to state before solving for the competitive equi-

librium:

Proposition 1: For any wage rate w and capital rental rate rK, the firm finds it profitable

to operate in the primitive sector. This implies that YPt > 0 for all t. Proof. The proof of

this proposition is in Hansen and Prescott (2002).

Proposition 2: Given a wage rate w and capital rental rate rK, maximized profit per

unit of output in the modern sector is positive if and only if

AMt >
1

η(St)
(
rK

αM

)αM (
w

1− αM

)1−αM . (19)
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Proof. The proof of proposition 2 is presented in the appendix.

To make use of these propositions, in some period t one should first calculate

wt = APtθPK
αP
t HθP−1

t (20)

and

rKt = APtαPK
αP−1
t HθP

t (21)

If the condition of proposition 2 does not hold under these prices, then these are the equi-

librium wage and capital rental rate. If proposition 2 holds, then these are not equilibrium

prices; instead, one should use the following system of equations:

wt = APtθPK
αP
Pt
HθP−1

Pt
= AMtη(St)(1− αM)KαM

Mt
H−αM

Mt
(22)

and

rK,t = APtαPK
αP−1
Pt

HθP
Pt

= AMtη(St)(αM)KαM−1
Mt

H1−αM
Mt

. (23)

In each period t, using these equalities and the market clearing conditions, it is straight-

forward to calculate KPt , HPt KMt and HMt .

Now consider the households’ maximization problem: First notice that from the first-

order conditions one directly obtains an expression for et+1 which directly determines ht+1

et+1 = (λgt+1 −
a

b
), (24)

where λ > 0 is a constant, namely a function of some parameters of the model. 15

First-order conditions also yield:

pt+1 = ptrK,t+1 − rL,t+1. (25)

Moreover, the budget constraint implies

15Specifically λ =
1

1−ε +
√

1+( 1
1−ε )2

b
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Nt(wtztht − ctt)− pt = Kt+1, (26)

and when I combine the budget constraint and first-order conditions I obtain

ctt =
wthtzt

1 + β(1− ξt)
. (27)

Lastly, from first-order conditions one can derive

nε
t =

γ(1− ε)ht+1zt

(1 + β(1− ξt))(a+ bet+1)
. (28)

Equations (28) and (6) yield a system of 2 equations and and 2 unknowns: nt and zt.

Given values of the parameters and ξt, it is straightforward to solve for both of them. Careful

examination of equation (28) reveals that nt also depends on the rate of technological progress

through et+1. Everything being equal, this captures the Malthusian idea that technology may

limit population growth as in Kremer (1993).

Notice that Nt is the number of young agents(or workers) at any time t, whereas popu-

lation at t is given by this number plus the number of old agents at time t, i.e.

πt = Nt + (1− ξt−1)Nt−1. (29)

So the population growth rate from t to t+ 1 is given by

πt+1 − πt

πt

=
Nt+1 + (1− ξt)Nt − (Nt + (1− ξt−1)Nt−1)

Nt + (1− ξt−1)Nt−1

. (30)

4 Simulation

Notice that, given the parameters and the sequences of {AMt , APt}tn
t=0, initial capital

stock, and initial number of young agents, (K0, N0 respectively), the initial price of land p0

and the mortality ξt, all equilibrium allocations can easily be calculated. One complication

is that, to compute p0, I use a numerical (recursive) shooting algorithm similar to one used

16



in Hansen and Prescott (2002). Moreover, notice that gt+1 (which is one of the determinants

of et+1 and hence of zt) depends on At+1 the value of which is unknown in period t because

it depends on shares of the two sectors in period t + 1. This requires using the numerical

shooting algorithm to accurately obtain gt+1 in period t. I will describe the process in more

detail below.

Before starting the discussion of the simulation exercise there is one more task: Choosing

values for various parameters of the model. Most of the chosen parameters are consistent with

the existing literature. Table 1 below documents the values chosen for the key parameters

of the benchmark model with mortality.

Table 1: Values for Basic Parameters in the Benchmark Model

Parameter Description Value

AP TFP in the primitive sector 1.032

AM TFP in the modern sector 1.518

αP Capital share in the primitive sector 0.1

θP Effective Labor share in primitive sector 0.6

αM Capital share in modern sector 0.4

β discount rate 1

γ altruism 0.675

ε altruism 0.49

a fixed cost of each child 0.15

b educational cost of each child 1

z̄ total amount of time 20

My choice of AP , AM , αP , θP , and αM is from Hansen and Prescott (2002). Moreover,

the values of a and b are from Lagerlof (2006). I calibrated ε and γ to match the GRR’s and

population growth rates in 1716 and 1751. Finally, I normalized z̄ to a value of 20.

For the modern sector the form of the spill-over effect is assumed to be given by

17



η(St) =
St + ν

St + 1
, (31)

where ν is less than 1. First, notice that this specification of the function satisfies the desired

properties stated above. Furthermore, since the initial conditions are chosen such that the

modern sector is idle at t = 0, this requires that ν < 0.4116. Various values are experimented

for its value, and the reported simulation of the benchmark model takes it to be equal to

0.2.

Moreover, I need values for ξt, which is the probability that the household does not

survive to the second period. The evolution of the average life expectancy in UK is plotted

in figure 3.2. Assuming that each period in the model corresponds to a period of 35 years

and the life expectancy in UK is normally distributed with the mean values plotted in figure

3.2 and a standard deviation of 25 years17, I can calculate ξt. With this I now have all

information to do the simulation. To clearly understand the effect of ξt on the model, I run

two simulations. In one of them I feed in ξt’s I calculate from the data into the model in

the way I describe above. In the second simulation, denoted by ”model without mortality”,

I assume that there is no mortality whatsoever, i.e. ξt = 0.

The simulation basically works as follows:

Since I assume that the economy initially is in the steady state with the primitive pro-

duction function, g0=g−1=AP − 1.18 Therefore, I also have e0 and h0. Given ξ0, AP , AM ,

K0, N0, and p0, I can then calculate e1, h1, n0 and z0 provided that I know g1. However, g1

depends on whether proposition 2 holds in period 1 or not. Now, if proposition 2 does not

hold in period 1, then g1 is simply equal to AP −1. In this case I can calculate e1, h1, n0 and

16For all other value of ν the modern sector is active at t = 0

17I should notice that the choice of the variance is somewhat arbitrary here; however since I assume a

constant variance, it only affects the level of ξt, not it’s trend, whereas the mean (average life expectancy)

is time variant and also affects the evolution of ξt.

18Notice that when At = APt
and At+1 = APt+1 , then gt+1 = At+1

P −At
P

At
P

= AP − 1
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z0. However, if proposition 2 holds in period 1. Then, I cannot assume that g1 = AP − 1,

because since this means that the modern sector is activated A1 will not equal AP1 . Instead,

it will equal a weighted average of AP1 and AM1 . To calculate the weights of this average,

I use a shooting algorithm and guess the weights of the primitive and modern sectors in

total production in period 1 and calculate all the above mentioned variables accordingly,

including the output weights in period 119. If my guess of the weights is above or below the

calculated weights, I update my guess and recalculate. Using this algorithm, I simulate the

model economy for 9 periods from t = 0. Each period represents 35 years, as the idea is to

simulate the transition of population and output from the beginning of the 18th century up

to the third millennium.

Below I present the results of the simulation:

Figure 5 presents the evolution of the population in the model simulations together with

the data. As evident from the figure, the model with variable ξt closely follows the evolution

of the population in the data, whereas the model without mortality is underestimates the

level of population . Moreover, one can further evaluate the model’s performance to account

for the population by looking at figure 6.

Figure 5 about here

In the benchmark model with mortality, the population starts to grow at an increasing

rate after the industrial revolution but then its growth rate declines, as it is the case in the

data. One reason why the population increases at an increasing rate is that the mortality

rate ξt decreases, as the life expectancy goes up. Increasing life expectancy is also the

crucial factor behind the gradual reduction in the population growth. That is also why the

population growth declines steadily in the model without mortality.

Figure 6 about here

19Notice that, calculating output weights in period 1 requires knowledge of z1 and e2 which in turn

requires knowledge of g2 etc. Therefore, what I actually guess is a output-weight vector from periods 0 to t.
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Next, I plot the fertility rates nt in figure 7. Notice that in the benchmark model the

fertility increases first (which is the other reason why the population increases at an increasing

rate) but then sharply decreases in the following periods almost to 1. On the other hand,

in the model without mortality, the fertility rate steadily declines and underpredicts it’s

counterpart in the data.

Figure 7 about here

In figure 8, I observe what happens to output and output per capita, respectively. Here,

I didn’t draw the output simulation without the mortality per se since there isn’t any signif-

icant difference between both model simulations. Notice that output slowly increases from

period 0 but with a parallel increase in the population, output per capita remains stagnant.

With the industrial revolution this situation changes and both variables increase together.

Figure 8 about here

Figure 9 shows the average rate of technological progress (gt) and the fraction of time

spent for each child again in the benchmark model. They follow the same pattern as the

latter is an increasing function of the former. Time spent for each child goes from a level of

2% up to almost 21% of total available time of the parent. This is to explain the increase in

the education and human capital of children.

Figure 9 about here

Lastly, figure 10 illustrates the evolution of the shares of the primitive and the modern

sectors. The primitive sector never shuts down but becomes very insignificant after the fifth

period of the model, whereas the modern sector slowly becomes the dominant sector of the

economy.

Figure 10 about here
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5 Concluding remarks

In this paper I built a unified model of economic growth to account for the time-series

evolution of output, fertility and population in transition through the industrialization of

the British economy. For this purpose, I merged the models presented in Galor and Weil

(2000) and and in Hansen and Prescott (2002) to capture the importance of human capital

formation, fertility decline and the transition from agriculture to industry in transition from

stagnation to growth. Furthermore, I also incorporated young adult mortality in my model

which allowed to differentiate the behavior of fertility and population in certain periods.

This way, the model captures explicitly the shift from a primitive to a modern sector in

the transition from stagnation to growth, without assuming away human capital formation

and the endogenous determination of population and fertility. Moreover, the presented

simulations of the model economy significantly improve upon the quantitative performance

of the existing literature by successfully capturing the evolution of fertility, population and

GDP of the British economy between 1750 and 2000.

One extension of the present model can be made by endogenizing the mortality rate ξt.

Considering that life expectancy is foremost affected by leaving standards, one way of doing

this is assuming that the mortality rate is some decreasing and convex function of output

per capita.

Moreover, the model economy can also be used to quantitatively investigate behavior of

relevant variables in different economies. In this regard, similar simulations can be performed

to explain data from various other European countries, but lack of data might be a serious

issue here.
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Appendix

Here I provide the proof of the proposition 2.

Proof.

First notice that the modern production function is given by

YMt = AMtη(St)K
θ
Mt
N1−θ

Mt
. (32)

Given w and rK I can write the profit function (for simplicity of notation drop time and

modern sector subscripts) as

Y − wN − rKK. (33)

The profit per unit is then

1− w
N

Y
− rK

K

Y
. (34)

If I multiply the reciprocal of (33) by N we obtain

N/Y =
1

Aη(St)
(
N

K
)θ, (35)

and similarly multiplying the reciprocal of (33) by K I obtain

K/Y =
1

Aη(St)
(
N

K
)θ−1. (36)

Substituting (36) and (37) into (35), I get

1− w

Aη(St)
(
N

K
)θ − rK

Aη(St)
(
N

K
)θ−1. (37)

Now, maximizing this function with respect to N and K, I obtain the following FOCs

− w

Aη(St)
K−θθN θ−1 +

rK

Aη(St)
K1−θ(1− θ)N θ−2 = 0 (38)

w

Aη(St)
K−θ−1θN θ − rK

Aη(St)
K−θ(1− θ)N θ−1 = 0. (39)
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Both of these first order conditions separately imply the same thing which is

w

1− θ
N =

rK

θ
K (40)

or

N

K
=
rK(1− θ)

wθ
. (41)

Now what needs to be done is show that

1− w

Aη(St)
(
N

K
)θ − rK

Aη(St)
(
N

K
)θ−1 > 0 (42)

if and only if inequality (18) is satisfied. To prove this, it is enough to show that (18)

and (38) are equivalent.

To show this, I take (38) which immediately becomes

1 >
w

Aη(St)
(
N

K
)θ +

rK

Aη(St)
(
N

K
)θ−1. (43)

Now using (42) this becomes

1 >
w

Aη(St)
(
rK(1− θ)

wθ
)θ +

rK

Aη(St)
(

wθ

rK(1− θ)
)1−θ (44)

or

Aη(St) > w(
rK(1− θ)

wθ
)θ + rK(

wθ

rK(1− θ)
)1−θ (45)

or

Aη(St) > w1−θrθ
K(1− θ)θθ−θ + w1−θrθ

K(1− θ)θ−1θ1−θ (46)

or

Aη(St) > (
rK

θ
)θ(

w

1− θ
)1−θ(1− θ + θ) (47)

which is simply

A >
1

η(St)
(
rK

θ
)θ(

w

1− θ
)1−θ (48)

23



References

Arora, S. (2001) Health, Human Productivity, and Long- Term Economic Growth. The

Journal of Economic History 61, 699-749.

Bar, M. and O. Leukhina (2010) Review of Economic Dynamics 13, 424-451.

Broadberry, S., Campbell, B., Klein, A., Overton, M. and B. van Leeuwen (2010) British

Economic Growth, 1270-1870: Some Preliminary Estimates, University of Warwick, working

paper.

Clark, G. (2005) Human capital, fertility and the industrial revolution. Journal of European

Economic Association 3, 505-515.

Doepke, M. (2004) Accounting for fertility decline during the transition to growth. Journal

of Economic Growth 9, 347-383.

Floud, D. and D. N. McCloskey (1994) The Economic History of Britain since 1700. Cam-

bridge University Press, Volumes 1, 2 and 3.

Galor, O. and D. N. Weil (1999) From malthusian stagnation to modern growth. American

Economic Review 89, 150-154.

Galor, O. and D. N. Weil (2000) Population, technology and growth: From Malthusian

stagnation to the demographic transition and beyond. American Economic Review 90, 806-

828.

Galor, O. (2005) From Stagnation to Growth: Unified Growth Theory. Handbook of Eco-

nomic Growth, Philippe Aghion and Steven Durlauf (ed.) edition 1, v.1, ch. 4, 171-293.

Galor, O. (2010) The 2008 Klein Lecture: Comparative Economic Development: Insights

from Unified Growth Theory International Economic Review 51, 1-44.

24



Hansen, G. and E. N. Prescott (2002) Malthus to Solow. American Economic Review 92,

1205-1217.

Kremer, M. (1993) Population growth and technological change: One million B.C. to 1990.

Quarterly Journal of Economics 10, 681-716.

Lagerlof, N.P. (2006) The GalorWeil model revisited: A quantitative exercise. Review of

Economic Dynamics 9, 116 142.

Lucas, R.E., (2002) The industrial revolution: past and future. Lectures on Economic

Growth. Cambridge, Mass.: Harvard University Press.

Maddison, A. (2007) World population, GDP and per capita GDP, 1-2003 AD. Updated

August 2007. Available at http://www.ggdc.net/maddison/.

Nerlove, M. and L. Raut (2003) Growth models with endogeneous population: A general

framework. Handbook of Population and Family Economics Ch. 20, 1117-1174.

Robinson, W. C. (1987) The time cost of children and other household production. Popula-

tion Studies 41, 313-323.

Romer, P. (1986) Increasing returns and long-run growth. Journal of Political Economy 94,

1002 1037.

Stokey, N. (2001) A Quantitative Model of the British Industrial Revolution: 1780-1850.

Carnegie-Rochester Conference Series on Public Policy 55, 55-109.

Strulik, H. and J. Weisdorf (2008) Population, Food, and Knowledge: A Simple Unified

Growth Theory. Journal of Economic Growth 13, 195-216.

Tamura, R. (1996) From decay to growth: A demographic transition to economic growth.

Journal of Economic Dynamics and Control 20, 1237-1261.

25



Tamura, R. (2002) Human capital and the switch from agriculture to industry. Journal of

Economic Dynamics and Control 27, 207-242.

Tamura, R., (2006) Human capital and economic development. Journal of Development

Economics 79, 26-72.

Wang, P., Xie, D., 2004. Activation of a modern industry. Journal of Development Economics

74 (2), 393-410.

Weisdorf, J.L., 2004. From stagnation to growth: Revisiting three historical regimes. Journal

of Population Economics 17 (3), 455-472.

Wrigley, E.A., Schofield, R.S., 1989. The Population History of England, 1541-1871: A

Reconstruction, Cambridge: Cambridge University Press.

Wrigley, E.A., Davies, R.S., Oeppen, J.E., Schofield, R.S., 1997. English Population History

from Family Reconstitution, 1580-1837, Cambridge: Cambridge University Press.

26



27



28



29



30



31



32



33



34



35



36


