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. Introduction

The water supply industry typically is dependentost-intensive network structures
and therefore, by implication, is a candidate fatunal monopoly. To ensure
efficient production and distribution of good-quwliwater in sufficient quantity,
countries like England, Wales, Australia and Slaadrave established a regulation
based on yardstick competition in their water sypgpdustries, but in Germany
active price regulation is still in the beginningge. In the federal state of Hesse a
number of trials administered by the Hessian C&féice have been undertaken to
decrease the prices, primarily because of the walege of prices observed
throughout the country. Currently, prices for resitlal water customers differ
between 0.52 Euro and 3.95 Euro per cubic metendBsverband der Energie- und
Wasserwirtschaft, 2008a). In 2009, the German F¢deourt of Justice agreed on
the proceedings of the Hessian Cartel Office (decidKVR 66/08). This legal
decision forced one water supplier to decreasgrites for water by 29.4%.

To identify the causes, structural differencesfficency, and to affirm whether the
price variations observed are justified, we applffetent methods of Data
Envelopment Analysis (DEA) and Stochastic Fronfiealysis (SFA). For the non-
parametric DEA, a three-stage approach for effmyameasurement is used. In stage
1, we calculate DEA efficiency scores and deterntirgereturns to scale technology
via a test proposed by Simar and Wilson (2002xtage 2, the efficiency scores are
explained by structural variables in a bootstrappadcated regression framework
(Simar and Wilson, 2007). In stage 3, we calcutatinical efficiency (TE) scores
based on a standard DEA model after including theewiral differences through the
input adjustment approach proposed by Feedl.(1999). Furthermore, we apply
SFA and estimate a cross-sectional cost frontiecdmpare the results for the
structural variables and efficiencies.

Our objective is to encourage in-depth studiesfiddiency analysis that could lead
the way to the implementation of equitable regaolati Thus, a robust and
representative measurement of efficiency is necgssa provide a thorough
understanding of Germany’s water supply industmrgjuding abstraction, treatment,
and distribution.

In Germany groundwater is the most important squcoenprising 65.5% of total
water production, followed by surface water, inchgdreservoir water (26.4%) and

wells/springs (8.1%). In 2006, total water prodoctiwas about 5.3 billion cubic
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meters, 20% less than in 1990. Per capita consampas declined in recent years,
from 147 liters per day and per capita in 199026 liters per day and per capita in
2006 (Bundesverband der Energie- und Wasserwirfts@@08b). In east Germany
the decline between 1990 and 2006 is more signifideom 142 to 99 liters per day
and per capita.

To ensure stable, safe drinking water qualityjtigd have invested about 42 billion
Euros in supply infrastructure since 1990, of whadimost 60% has been spent on
network infrastructuré. The breakdown of the industry’s cost structure2i&:5%
depreciation, 20.6% personnel costs, 15.4% suppfy services, 13.7%
administration, 9.6% cost of water purchases an@4®ther cosfs(Bundesverband
der Energie- und Wasserwirtschaft, 2008b). Watgiplyu companies consist of
municipal utilities GStadtwerkg and regional and supra-regional acting special
purpose associations known AweckverbandeThe majority of municipal utilities
are privately organized but under public controhey often provide additional
services such as sewerage, local public transpmd, electric and natural gas
distribution. Special purpose associations werabdished to exploit economies of
scale, especially in areas of low population dgndihey benefit from fewer labor
input requirements, higher amounts of water soltl @wssibly from lower wholesale
prices if supply by third parties is necessary. Massociations are large in size and
often do not deliver drinking water to the end oustr, but instead organize water
production and purchase. Since including theseifgpspecial purpose associations
produces inconsistencies in efficiency analysis,ivetude only the special purpose
associations which supply very few communities detiver drinking water to the
end customer.

Efficiency analysis is a key component of incentirggulation for Germany’s
electricity and gas distribution networkdn combination with the liberalization of
energy delivery, incentive regulation has causedtmaunicipal utilities to legally
separate (“unbundle”) the services they provide tanektablish separate accounting.
Thus, regulators may have access to operational fiamadcial information. We

suggest that a similar regulatory requirement caa@chpplied to the water industry,

2 This could explain both the low average share afewlosses of 6.8% in 2004 in comparison to
other countries as well as the high drinking wateality with only a few cases of measurements
failing to meet standards (see Deutsche VereiniglesgGas- und Wasserfaches e.V., 2006).

3 Other costs include interest payment for debtentcosts and taxes. Additionally, municipalities
in some federal states may require licensing fees.

4 See Agrellet al.(2008) for the methods and calculation based enotfdinance for the incentive
regulation Anreizregulierungsverordnun@\RegV).
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especially if research confirms that the widesprpeade differences observed are
caused by inefficiencies or excessive profit get@mna

The article is structured as follows. Section Zees relevant literature with respect
to the applied methodologies. Section 3 explaires rtfethodologies applied, and
Section 4 discusses the data used. Results arenpgdsin Section 5, and Section 6

concludes.

[l. Literature Review

A detailed current survey of the literature on watigpply efficiency with respect to
Germany is provided by Hirschhausenal. (2009a). There is no comprehensive
efficiency analysis of Germany’s water supply inys®ased on a representative and
consistent data set. A study of rural water sugplyCantner and Hanusch (1991)
determined the technical inefficiencies of only Bal utilities using a corrected
ordinary least squares (COLS) approach. Sauer estthérg (2007) applied SFA to
a relatively small sample of 47 water utilities @ast and west Germany, using a
symmetric generalized McFadden function to compidue technical efficiency
levels. They concluded that the utilities shouldu® on efficient usage of the input
chemicals in order to increase allocative efficienc

Walter et al. (2009) surveyed the international literature orewartilities and found
three general categories:

1. studies to determine whether private or pubkecvises are more efficient.
Examples are Bhattacharygé al. (1995), Saal and Parker (2001), Sgiahl. (2007)
and more recently Benitet al.(2010). The main conclusion is that the institaéib
setting and regulation rather than ownership tygterthine efficiency.

2. studies on the estimation of economies of scdémsity, and scope using
stochastic frontier methods. Examples are Saal d&atker (2000, 2005),
Sauer (2003, 2004, 2006) and Filippatial. (2008). Whereas economies of density
and scope throughout the water supply chain, aneersge, electricity and gas
activities can be affirmed, economies of scale appge be exhausted beyond a
certain threshold. Saal and Parker (2005) foundcdisomies of scale for the UK
water sector with a mean output level of 62.89 fn nFraquelliet al. (2004)
estimated a cost function for a sample of Italiamtirutilities providing gas, water

and electricity, and found economies of scope tet@nly for smaller utilities while



cost advantages of diversification could not beficoed for utilities larger than the
median output level.

3. studies using DEA and regression analysis teeroehe whether structural
variables influence individual efficiency scores.

We review this third category in more detail, givear similar approach. Table 1
shows four recent DEA studies evaluating the impafctstructural and quality
variables with the resulting significant variabl®enzetti and Dupont (2009) use the
multistage procedure recommended by Feeédl. (1999), focusing on the relative
efficiency of 64 municipal water suppliers in OmpaiCanada. Inputs and outputs are
involved in an application of a variable returnssiwale DEA procedure passing
through stage 1. Stage 2 examines the role of sigrmal factors upon water
agencies by regressing the total input slack vatuea vector of variables that are
expected to influence efficiency, but are beyoreldbntrol of agency managers. The
six factors are: differences in elevation betweanhecity’s highest point and its
water treatment facility, the maximum weekly sumrteanperature in 1996 in each
city, total precipitation in each city, populatidensity, ratio of residential water use
to total water agency output, and number of residemwellings. Due to the
censored normal distribution of the error termdhéhors use a Tobit regression, and
to undertake valid hypothesis testing they adopbatstrapped truncated regression
algorithm as described in Simar and Wilson (200%).stage 3 another DEA
procedure with original output and adjusted inpgiasures is conducted to establish
a base equal to the least-favorable external condit The adjustment removes the
differences in external operating environments thay distort efforts to assess the
utilities’ relative technical efficiency. DEA meagfficiency scores are absolutely
higher in stage 3 than in stage 1 by 6.6% usingl'tt@t adjustment, and by 28.4%
using the truncated regression adjustment.

Garcia-Sanchez (2006) uses a four-stage approadiitoate the technical and scale
efficiency of 24 Spanish municipal water supplyrages with staff, treatment plants
and network length as the inputs. The outputs mr@uat of water delivered, number
of properties connected and water analyses pertbriSéage 1 is the statistical
selection of inputs and outputs using Pearson’selaiion coefficient to eliminate
those which are improperly correlated. FollowinglRx al. (1989), the DEA model
with the best- discriminating characteristics i®g¢n. To produce a homogeneous

analysis of the particular external conditions afcle municipality, a three-step



process in stage 2 detects the influence of edtemtaimstances on the estimation of
levels of efficiency via a Tobit model. The tenccimstances (social variables) are:
population, population density, level of income,emge temperature, size of
municipal area, tourist index, square meters oémgoelts, economic activity, number
of houses, and average number of people per h&@tage 3 estimates constant
returns to scale (CRS) efficiency scores accordmgCharneset al.(1978) and
variable returns to scale (VRS) efficiency scoresoading to Bankeet al.(1984).
Stage 4 compares the differences in efficiency xedecaused by the type of
ownership using the Mann-Whitney-Test. This methoglp produces three best-
discriminating DEA models with nearly identical ieféncy scores, all of which find
that only population density has a statistical ifigant impact on inefficiencies.
Garcia-Sanchez concludes that efficiency scoresnatodepend on the type of
ownership.

Tupper and Resende (2004) determine whether cttculkefficiency levels in the
Brazilian water sector depend on structural andityueariables by using a second
stage Tobit regression. Their results suggestahigt water losses have a significant
impact on efficiency levels. Looking at 38 Spanishter utilities and comparing
DEA efficiency levels with and without the inclusief quality variables, Picazo-
Tadeoet al.(2008) also conclude that water losses have afisagmt impact on
efficiency levels, and that the different efficieas do not influence the utilities’
ranking. The mean efficiency score is 0.773 whenhawgounting for the operating
environment and 0.851 for the adjusted efficiemayras. In this study, unaccounted-

for water is seen as indicator for service quality.

[11. Methodology

DEA approaches

Unlike parametric approaches, DEA approaches camtl@azero outputs, assign
individual weights to the outputs of each firm sode with low industrial demand
are not punished, and they do not req@reriori assumptions on the functional
form.

DEA uses linear programming methods to obtain nreasof technical efficiency. A

piece-wise surface (frontier) consisting of inpotlautput variables for a sample of
firms can be constructed. Firms’ efficiency is mead by calculating the distance
between each data point and the point on the &onlihe frontier represents the



most-efficient firms with technical efficiency edqua one, the so-called peer firms.
Under input orientation, the firms produce the savagput with fewer inputs. The
Banker, Charnes and Cooper (BEGyrmulation of DEA is expressed by the

following linear programming problem (see Bankeal, 1984):

min, , &

st. —-q+QA=0
&k, — X120
11'A=1
A=0

with 8 as a scalarX as NL | input matrix forN inputs and firms, Q as M LI

output matrix forM outputs andl as al [1 vector of ones. Inputs and outputs for
thei-th firm are represented by the column vectgrand q,, andZ represents &1

vector of constants. Using the BCC formulation vhatlows for differences in the

sizes of firms, we construct a convex hull enveilgpthe data points.

DEA models can be either input- or output-orientedider input orientation the

efficiency scores correspond to the largest feagiobportional reduction in inputs
for fixed outputs, and under output orientationttte largest feasible proportional
expansion in outputs for fixed inputs. It is commenactice to apply input

orientation when analyzing network utilities, besathe firms are generally required
to supply services to a fixed geographical area hence the output vector is
essentially fixed.

To determine the returns-to-scale technology, wedaot a two-part returns-to-scale
test as proposed by Simar and Wilson (2002). Teéss$ts the null hypothesis that the
production frontier exhibits global CRS against digernative test hypothesis that
the production frontier exhibits VRS. If the nulygothesis is rejected, test 2 is
conducted. It tests the null hypothesis that tredpection frontier exhibits globally

non-increasing returns to scale (NIRS) againstaiternative hypothesis of VRS.

Following Simar and Wilson (2002), the returns-tale test is:

Test 1: Ho: the production frontier is globally CRS
Hi: the production frontier is VRS

Test 2: Ho: the production frontier is globally NIRS
Hi: the production frontier is VRS

® The BCC formulation is often referred to as aafale returns to scale formulation.



The ratio of means defined by
SERS =3 D%, y1) / D DYR (%, vi)
i=1 i=1

for test 1 is used as a test statistic and measheedistance between the CRS and

the VRS frontier, whereD represents an efficiency estimate. For test dlik@nce
between the NIRS and the VRS frontier is measusauguhis test statistic. For both
tests, the null hypothesis is not rejected whendis&ance between both frontiers is

small.

Within a bootstrap procedure, pseudo samp®&s with b=1...,B bootstrap
replications are generated according to the origiaanple S, to derive bootstrap
estimatesd), , with « denoting a univariate parameter for each testmoglpm and

& as a consistent estimator af. With &, denoting the observed value of the test
statistic mentioned above, we can dempsealues according to the approximation
p=Pr@ <da,.|H,S,). For both testg-values higher than the significance level

of 5% lead to the rejection of the null hypothesis.

A three-stage approach including bootstrapping

This article applies a three-stage DEA approacbhbtain valid results for technical
efficiency scores. Our stage 1 includes outlieredibdn, in which the partial
indicator revenues divided by total water outpig used to detect extreme
observations. We also apply the super-efficienqyr@@ach proposed by Banker and
Gifford (1988), noting that some observations mayeh efficiency scores greater
than one, i.e. lie above the constructed froritig¥e apply the super-efficiency
criterion repeatedly until no clear outliers remarlierefore, we set the maximum
attainable efficiency score on a level of 1.2 doeatdense distribution of technical
efficiency scores up to this level, as suggeste®dyker and Chang (2006). Above
the level of 1.2, technical efficiency scores assl densely distributed and show
higher dispersion. Finally, we use a standard Dppr@ach to obtain first technical
efficiency scores.

Stage 2 regresses the efficiency scores obtaindtiebgtandard DEA approach on

several explanatory variables such as output densithe location of the utility in

® Within a super-efficiency reference, observatidos the evaluation of an observatianare
constructed by only using all observations othanih See Banker and Gifford (1988) or Banker and
Chang (2006).
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east or west Germany. Studies calculating effigiestores using the non-parametric
DEA approach often conduct a regression analysies{noften Tobit) for the
inclusion of parametric components. However, Sianrad Wilson (2007) argue that
the use of a Tobit regression in a two-stage aisigsnappropriate, because it fails
to account for serial correlation in DEA efficienegtimates and the results can be
invalid and lead to incorrect inference. Similari@rosskopf (1996) argues that
problems may arise through the distribution of #reor terms due to a possible
correlation between the explanatory variables usetegression analysis and the
variables used for calculating the DEA efficiencgoes. To sidestep this
controversial issue, we apply a bootstrapped triggcaegression as proposed by
Simar and Wilson (2007) with two different possilallgorithms. While the goal of
algorithm 1 is only to improve on inference, algjom 2 considers bias correction.
Unfortunately, the application of bias correctioancintroduce additional noise,
which we find to be the case, and therefore we algerithm 1 without bias

correction. In a first step, we derive coeﬁiciemﬂtimates,é and an estimate of the

standard deviation of the error ter@i, from the truncated regression of the

efficiency valuesé?i >1 on the explanatory variables using the maximuralillood

method. Therefore, we use the reciprocal valueghefDEA technical efficiency
scores resulting from stage 1. Next, we conductoatdbrap algorithm withB
bootstrap replications based on those coefficiextimates and on the estimated

standard deviation of the error term.

Within the bootstrap algorithm, the error tergn for each observationis drawn
from a N(0,67) distribution, for which we assume a left-truncatian (1- zi,@).

Based on the error terms;, we can calculate new efficiency estimates

g :zi,3+£i, which can be regressed again on explanatory hlasausing

maximum likelihood estimation with left truncatiah one. As follows, the bootstrap
algorithm vyieldsB estimates for each coefficient. Using this setcogfficient
estimates, confidence intervals can be constructeliowing Simar and
Wilson (2000).

Stage 3 of our approach includes the regressiaritsesithin the calculation of new
DEA efficiency scores; we adjust inputs for theluehce of exogenous variables

following Friedet al.(1999), who recommend regressing total input Satdfined



as (L-TE) Dx'j‘ for thej=1,..., N firms andk inputs on explanatory variables to

derive coefficient estimates and an estimate o&ther term’” We then predict input

slacks based on the estimated coefficients antdhese to adjust inputs according to
x4 = x, +[Max{ TS} - ITS,]
for the one-input case WitH'ij denoting the predicted input slacks. For all

observationsj =1,...,N inputxis proportionally adjusted by the difference betwee

the maximum predicted input sladkax I'ij} of all observations and the predicted

input slack of the unit under consideration. Fag thit operating under the least-
favorable circumstances and thus exhibiting théédsg input slack the difference in
parentheses is equal to zero and the inputs areimoéased. For all other
observations the difference is positive and thaits@are increased while output is
held constant so that the efficiency scores areiséefj for external influences.
According to Frieckt al. (1999), the new efficiency scores incorporatedperating

environment directly into the production proceshud, having adjusted the inputs
for the operating environment, we conclude thatn$r management causes the

remaining inefficiency.

SFA approach

In comparison to DEA, SFA can reduce the impactstdtistical noise and
measurement errors to produce results that are rabuest against outliers. SFA uses
econometric techniques for the estimation of ahsstic frontier that can be used for
the determination of efficiency scores. It is alsossible to estimate production
functions, cost functions and input and outputatfise functions.

Aigner et al. (1977) develop a normal/half-normal model for Skith a composed
error term. They propose the decomposition of theréerm into a noise term and

an inefficiency termu. The noise termv; aims to capture statistical noise and

measurement errors and is assumed to be normathybdited withv, ~iid N (0,07) .

The half-normally distributed error terns; with u, ~iid N*(0,07) captures

inefficiency effects. For a total cost functiongthAigneret al. model (ALS model)
has the form

"We focus only on the radial portion of total inlacks, hence on the pure inefficiency, because we
want to evaluate the impact of structural diffeeson efficiency scores.
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INTC =G, +xB+V, +y,
whereTC denotes total costg, the vector of explanatory variables andndu; the

error terms as described above for all firmaith i=1,..., N. The parameters to be

estimated are represented b, for the intercept andgB for the vector of

coefficients. Only the realizations of the composer & =u, +V, are observable.

Jondrowet al. (1982) propose to predict the inefficiency teunby the conditional
expectation oty given the realizations of; :

ui = E[ui |ui +Vi]
Using the estimates af, a measure of technical efficiency (TE) is theni®l as
TE =exptu,).
As mentioned earlier, for the application of SFAist necessary to assume a
functional form. The most common functional formsed are the Cobb-Douglas
function and the Translog function. In this artigle apply both types of functional
relationships and we choose the more suitableiéobased on information criteria
and a Likelihood-Ratio test. All variables includadthe function are divided by
their means as the point of approximation. To eblaiearity in the parameters, we
take the natural logarithm of all variabfés.
For the specification of our SFA cost model, westder the same input, outputs and
structural variables used in the DEA model to emstomparability of the results.
Since our dataset lacks information on input pricess not possible to estimate a
cost function including input prices and output wmjittees as required by standard
microeconomic theory (see Chambers, 1988). Therefwe can only include total
costs as the dependent variable and different tutpeasures as explanatory
variables. Due to the omission of input prices he tost function, we can only
consider technical efficiency rather than technaatl allocative efficiency. Input
prices usually capture regional price differen@imilar to our approach, Martiret
al. (2006) estimate a cubic cost function for the tguese water industry while
omitting input prices. They argue that regionafet#nces in prices are small in a
small country like Portugal. We assume that théscomaterials, capital and energy
input are similar throughout Germany. In fact, thean be significant regional

differences with respect to the price of labor kesw east and west Germany since

8 When necessary, zero-values were replaced ByTltls approach is in line with
Fraquelliet al. (2004).
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the average wage level in east Germany is stilelothan in the western part. We
therefore include a dummy variable for east Germwater utilities to account for
differences between east and west Germany.

According to the ALS model, we specify our model as
K M
INTC, =B, +>_ B Inx, +>.6,Inz,; +v, +u,
k=1 j=1

with TC denoting total costsi representing the vector of tkeexplanatory variables
andv; andy; as the two error terms as shown above. We incudet ofj=1,..., M
structural variables denoted lzyto account for the operating environment. he
variables are included in the function since theyassumed to directly influence the
production process such that each utility in ouaset faces an individual frontier.
We thus follow the methodology chosen for DEA, wéhéhe input adjustment
approach is assumed to change the production motBse new radial efficiency
measures incorporate the influences of the extevaabbles on the production
process, and isolate the managerial componenteffigrency” (Friedet al, 1999).
For DEA and SFA, final efficiency scores are thes$ af structural influences and
represent managerial inefficiencies (Coetlal, 1999). In the SFA framework, it

would also be possible to let the operating envitent influence the inefficiency
termu; by allowing for a non-zero mean accordinguto-iid N*(u,07) as proposed

by Stevenson (1980). Using such an approach, teeatpg environment would
have an impact on the distance between each olieerend the estimated common
frontier. The operating environment would still lbaan impact on the resulting
efficiency scores (Coelbt al, 1999). Thus, we include tlzevariables directly in our
function to be in line with the methodology chosenDEA.

Further assumptions on the error terms are negesddadri (1999) and
Hadriet al. (2003) argue that size-related heteroscedasigilikely to occur in the
two-sided noise term; when using cross-section data. Heteroscedastaity also
occur due to considerable differences in the sfz&rms included in a dataset. Not
accounting for heteroscedasticity might lead tosédh parameter estimates and
efficiency estimates. We therefore let the standhadation of the two-sided noise
term vary with water intake as a proxy variablefion size. The standard deviation

of v is g,; =expWy), with W, representing the set of explanatory variables

assumed to influence the standard deviation; @nd y representing the vector of

parameters to be estimated (see Hadri, 1999).
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V. DataDescription

This article is based on cross-sectional data 0620ith an original dataset of 1096
water utilities. Full data availability is givenrf@73 observations. The data is taken
from the statistical publication published by ther@an Association for Energy and
Water Industries (Bundesverband der Energie- undséfavirtschaft, 2008c) and the
utilities’ annual financial statements. Topographicmaps provide elevation
differences. The descriptive statistics for thelaldes are shown in Table 2 and the
correlation matrix is shown in Table 3.

The utilities deliver drinking water to about 32lion people (approximately 39%
of the total population) and are located in allefied states except Bremen. Although
the dataset includes only a fraction of the industr6500 firms, it can be
characterized as representative, considering tipailation served and the type of
utility.

There are both large and small utilities, the tat#h only 199 000 cubic meters
water delivered to households. Total water delasm@re 1.98 billion cubic meters.
Some supply private customers at higher cost du¢héoneed for more water
connections, while those serving primarily indwdtdustomers or re-distributors can
often deliver at lower cost since fewer water catioas are needed. This
relationship can also be justified by the higherreation of water deliveries to
private customers than deliveries to non-househds treatprivate consumption
andindustrial/other consumptioas separate outputs. Totehter meterss an output
variable to avoid discriminating against utilitihat serve low-consumption
customers. This is also justified by the relativiely correlation between the number
of meters and private consumption. Similar modeks#rations were recommended
by Thanassoulis (2000a, b) and applied e.g., bgi@aralifias and Mufiz (2007). In
contrast to the model specifications used in theidies, we do not include network
length in our model.

We use total revenues from water supply in 2006hasproxy fortotal costs We
assume revenues to be equal to the costs of sdpwing the European water
framework directive (Directive 2000/60/EC, Artic® which states that revenues
must cover all material costs, depreciation anandatosts’ In addition, efficiency

can be measured by the amounts that customersopayater supply, so our results

® This cost recovery principle for water supply amsein the legislation for local public authorities
all German federal states.
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can be interpreted as “consumer-perceived effigienc Brunner and
Riechmann (2004) recommend this approach to deternvhether tariffs for water
deliveries are reasonable, and if not, by how mhely can be reduced. A regulator
is mainly concerned with the protection of consum&rests so that water tariffs are
of more interest than, e.g., the capital structoirea water utility. Under perfect
competition, firms cannot charge different pricese do different capital structures.
The advantage of this revenue yardstick approattmaisthere is no need to measure
capital and capital costs. Hence, we treat reveases reasonable alternative input
variable with interpretative possibilities. Howeyéssues like public transfers to
municipal companies could bias results. Moreovespite the use of monetary data,
we consider only technical efficiency and not adltdee efficiency.

The variablenetwork lengtlshows large differences in firm and area sizes.owié
this as an input variable, because costs for nétwndrastructure and investments are
already included within the total cost block regreed by total revenues. However,
we includenetwork lengthwhen calculating the structural varialletput density
Stages 2 and 3 of our DEA and the SFA also congsitler explanatory variables,
such astotal population and output density,when we compare the possible
differences between water utilities in rural antarr areas. On the one hand, higher
density might lead to efficiency advantages sirmsef capital input, i.e. network
infrastructure, is required to distribute a certamount of water. But high density
can also lead to efficiency disadvantages e.g.nwagng pipes in densely settled
downtowns. The assumption of efficiency advantagjgsgher density is confirmed
by Renzetti and Dupont (2008) and Garcia-SancHa26(2 Output densityis
computed as total amount of water delivered to @bakls and non-households per
kilometer of network length Metermengenwert® We omit population in the
regression analysis due to its very high corretatidth the output variablevater
delivered to households

We consider theshare of groundwater inpuper utility, because groundwater
requires less treatment than surface water. Whiteging costs tend to be higher for
groundwater (see Filippirat al, 2008; Garcia and Thomas, 2001), the capital costs
are normally lower than for the use of storage wéBoelli and Walding, 2006).
Hence, utilities using more groundwater tend taexahigher efficiency scores. We

assume that the type of water extracted is giveagexously, since only available

9 This variable serves as a key indicator in thellaipn of water utilities in Hesse (see Hirschteaus
et al, 2009b).
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water sources can be used in a utility’s servicatoey. The water utilities in our
dataset extract 75.1% of the raw water input fromugdwater resources, while
20.8% are surface water and 4.1% well-spring seuftbus, they use slightly more
groundwater than is typical for the entire Germater supply industry.

The variableleak ratio is defined as water losses between extractionemaduser
consumption divided by total water input. While eralosses depend on exogenous
circumstances such as the type of soil, they cem la¢ influenced by management
via better maintenance or replacement investménighermore, water losses can
also be a proxy for the age of the infrastructu®dder networks usually are
characterized by an increased pipe bursts resuttifggher water losses. Thus, in
the short run it is arguable that water losseseagenously determined since the
replacement of the infrastructure is only possvaliin a longer time horizon.

We also consideelevation differencesvithin utility service territory, e.g., water
distribution in hilly regions requires higher pumgicosts. The variable measures the
difference between the highest settlement in aicerea and the lowest point. We
assume that higher elevation differences will have@egative impact on firms’
performance.

Yet another variable igperational differences in east and west Germahkiyer
German reunification, significant investments werade to modernize eastern water
networks and treatment plants. Regional differerstesnv up in price differentials,
where prices for drinking water in the east areallguhigher than in western
Germany. A closer look at the differences in thiickeincy scores of the utilities in
each geographical area is thus of interest. Waidegch dummy variable with a value
of one when the utility is situated in the easteant of Germany.

The water utilities are also characterized by d#ffé governance modes and
ownership structures. We include a dummy variabiih walue of one for water
utilities with aprivate governance modand zero otherwise. Even under a private
governance mode, ownership can be public, priviagerixture of both.

We include theper-capita debtof each municipality since municipalities usually
require water utilities to pay concession feeadrn a particular rate of return such
that the municipalities can balance their budgeth whe additional earnings. We
assume that higher per-capita debt might lead thdmi prices for water and

corresponding higher inefficiency values.
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Finally, we include a dummy variable for possildeope effects with sewage
services

Total water intake of the utilities in our dataget2.21 billion cubic meters. Water
intake consist of both own water abstraction antemaurchases from other utilities,
e.g., bulk water suppliers. The variab¥ater intakeis a measure for firm size and
included as a heteroscedastic variable in the atadndeviation of the two-sided

noise term in SFA to account for size-related lustegdasticity as described earlier.

V. Results

DEA efficiency scores and regression on structuealables

We apply a three-stage procedure to obtain vatidite for DEA technical efficiency
scores In stage 1, the ratio of revenues and total watgput is used as a partial
indicator for outlier detection. Here, 11 observa$ are deleted. For the application
of the super-efficiency approach, variable retumseale and input orientation are
assumed? The assumption of VRS is confirmed by the retumseale test at a
significance level of 1% conducting 1000 bootstraplications. In the following
application of the super-efficiency criterion, 2@déional observations are deleted
due to technical efficiency scores greater thanctiteeal value of 1.2. The detected
outliers do not belong to a specific group of wattities. We observe no systematic
scheme when looking at characteristics like firaesneasured by total water output,
eastern or western location, output densities,Mtmicipal utilities as well as some
special purpose associations are excluded.

Table 4 summarizes the efficiency scores obtainexfage 1. Efficiency scores show
high dispersion and a relatively low mean leveb64f24%, possibly due to the large
difference in prices and hence revenue disparifies.

In stage 2, the input slacks are regressed on aeseplanatory variables. We apply
a bootstrapped truncated regression with 2000c&jmins as proposed by Simar and
Wilson (2007) to check for structural reasons fdficency differences. The

estimated coefficients and significance levelssmewn in Table 5. The signs of the

! Some authors even refer to the approach choserabet four-stage approach.

12 DEA and the bootstrapped truncated regressio@nducted using Software R with the package
FEAR by P. W. Wilson.

13 We also apply DEA with bias-corrections (bootspiag). Due to the application of bias-
corrections, the mean efficiency level is 0.588H as thus lower than under the standard DEA
approach (0.6424). Regression results in stagee Ziarilar to the results using standard DEA. For
simplicity we focus on the results of standard DEAhe following sections.

16



coefficients show that higher share of groundwatput has a negative impact on
input slacks (i.e. a positive impact on efficienayjus confirming our assumption of
the efficiency-enhancing effect of a higher grouatbv usage compared to the use of
surface water. A higheshare of water lossehigheroutput densityhigherelevation
differences higher per-capita debtin the municipality,eastern location private
governanceandprovision of sewage servicegve a positive impact on input slacks.
The positive sign of the coefficient for theutput densityindicates that the
disadvantages of a higher density overcome the ilgesefficiency gains of
supplying water with less capital input. Water itigb under a private governance
mode show higher input slacks compared to publichnaged utilities. A possible
explanation is the greater revenues attained byately organized water utilities
since they are unregulated natural monopolies dlrat to maximize profits. The
assumption of possible scope effects between watdr sewage services is not
confirmed.

Factoring our variables into the calculation ofhteical efficiency scores using the
input adjustments approach proposed by Faedl.(1999) requires us to predict
inefficiencies via regression analysis. Using #pproach, only variables that cannot
be influenced by management are included. ArguabBnagement can change the
governance mode and the provision of sewage sarvit@wever, since only cross-
sectional data is available, we assume that irstioet run given by our dataset, those
variables are not influenceable. While water logsasat least partially be influenced
by better maintenance efforts, they also depenéxagenous factors and on the age
of infrastructure. The age of infrastructure casoabe evaluated as more or less
exogenously given due to the longevity of netwarkastructure investments. We
thus use the regression results described abovetawh in Table 5 to adjust inputs
for the operating environment.

Using the standard DEA approach in stage 3 agaiwslus to obtain the final
technical efficiency scores as shown in Table £dmparison to the results of stage
1 before accounting for structural variables, theam efficiency score increases
substantially from 0.6424 to 0.7351. The minimuricefncy score obtained is now
0.5219 compared to 0.2983 before input adjustndotvever, additional influencing
exogenous factors, e.g., climatic conditions oreatpof economic geography could
be considered, given extended data availabilitye®sected, the correlation between

the efficiency scores in stages 1 and 3 is low. $pearman correlation coefficient
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has a value of 0.1305. Similarly, tiRearson rank correlation coefficietietween
the efficiency scores is 0.1817, and tkendall rank correlation coefficienis
0.0889. The significant change in efficiency scoafter input adjustment is also
shown in Fig. 1 for the 10% of utilities with theost significant changes in
efficiency scores. While efficiency scores incrememost utilities after taking the
operating environment into account, efficiency ssoalso considerably decrease for
others.

An illustration of efficiency scores obtained imgé 3 appears in the Salter diagram
depicted in Fig. 2. On the y-axis, the utilitieg @orted according to their efficiency
scores. On the x-axis, the width of a bar represanttility’s total water deliveries.
The highest efficiency scores are obtained by sraall larger water utilities
representing the VRS approach of our DEA specificatThe lowest efficiency
scores are represented by the smaller utilitiestHisi requires careful interpretation.
By using a VRS approach, these inefficiencies ctanpe scale-inefficiency;
however, there appears to be a cost disadvantagarialler firms. Further research
is needed to identify the actual saving potenti@sulting from mergers and
acquisitions:*

Assuming that all residual inefficiency after st&8yeannot be assigned to structural
differences, the free area in the upper left afeth® graph (above the inefficient
utilities) represents the potential for price deses. The inefficiency is therefore
equal to the price decrease, whereas the x-axiggepts the quantity that could
benefit from this decrease.

SFA efficiency scores and interpretation

Coefficient estimates for both the Cobb-Douglas el@hd the Translog Stochastic
Frontier model are given in Table'®8We include the same inputs, outputs and
structural variables as in the DEA model. We onke uhe 340 observations
remaining after the application of the DEA supdieagncy approach to ensure
comparability of the results. In the Cobb-Douglesfework, all output coefficients
are positive and highly significant. Thus, the mdyp of a cost function to be non-
decreasing in outputs is fulfilled (see Coellial, 2005, p. 23). In the Translog
model, the linear output coefficients remain pesitbut the coefficient of the water

meters is no longer significantly different from rae However, the Akaike

* The high efficiencies for the largest utilitiescaso be due to missing peers.
!5 Estimations are conducted using the STATA 11.fissigal software.
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information criterion (AIC) and the Bayesian infation criterion (BIC) both
recommend using the Translog function. This is cordd by a Likelihood-Ratio

test (LR-test). The value of the test statistiZés10 and is thus higher than thé

value of 12.59 with 6 degrees of freedom for a ictEnfce level of 95%.

Looking at the influence of the structural variahlevater losses the share of
groundwater inputelevation differenceand thelocation in east Germanfiave a
significant impact on total costs in the Cobb-Da@asghnd Translog models. The
signs of the estimated coefficients are in linehwihe bootstrapped truncated
regression. The coefficient of thmutput densityis only significant in the Cobb-
Douglas model and has a positive impact on totstiscdt shows a positive impact on
input slacks as seen in the bootstrapped trunaa&gekssion. The coefficients for
per-capita debt, private governance modegscope effects with sewage serviaes
not significant in the SFA models and hence naihircompared with bootstrapped
truncated regression results. The coefficient efwblume of water intake, included
as heteroscedastic variable in the standard dewiafithe two-sided noise tern is
negative and highly significant in both models, fooning the assumption of size-
related heteroscedasticity.

Efficiency scores for both SFA models together witie results of the DEA
approaches are shown in Table 4. At the mean amdnidian, the SFA efficiency
scores are significantly higher than the DEA eéfiwy scores. The rank correlation
between the DEA and SFA efficiency scores is qlote. Comparing the DEA
efficiency scores and the results of the Cobb-Dasighodel, theSpearman rank
correlation coefficienhas a value of only 0.0381 and 0.0300 in the Tognsmodel.
The DEA and SFA results can thus be regarded aspemtient. The minimum
efficiency scores of both approaches are similéh %2.2% for DEA and 54.4% for
SFA under the Cobb-Douglas model. For the Trangtogdel, the minimum
efficiency score is 63.6%.

Since DEA and SFA are different approaches, a doemparison of their resulting
efficiency scores might be misleading. Efficieneyéls in DEA also depend on the
number of variables and observations. Indeed, tier &erm of the employed SFA

captures statistical noise and measurement etvatsthe availability of panel data

8 We also estimate a model without heteroscedastioity. While parameter estimates remained
similar, a LR-test suggested using the model wkimtiects for heteroscedasticity-¥alue of 0.0028

in the Translog model). This is emphasized by tigh Isignificance of the estimated parameter for
volume of water intake
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would allow for the application of sophisticated/Sodels considering unobserved
firm-specific heterogeneity. Given the lack of impuices and the occurrence of zero
values for some of the variables, our dataset igemfectly suited for stochastic
frontier models. However, the comparisons with DA results are a satisfying

cross-check and nicely illustrate the dependendb®applied methodology.

VI. Conclusions

This article has provided the first efficiency arsad of water utilities throughout
Germany. To avoid distortions in DEA efficiency se® we employed the super-
efficiency approach for outlier detection. The aggtion of a bootstrapped truncated
regression identified the factors that significgntifluenced the technical efficiency
scores. Output density water losses groundwater ratio, elevation differenges
location in east Germanygovernance modgoint provision of water andewage
servicesandper-capita debbof a municipalitywere included to account for structural
differences in water supply. The significance alemsity measure confirmed other
international studies. The leak ratio showed aiBg@mt positive impact on input
slacks. We observed that the significance indica@ssible underinvestment for
companies with high leak ratios. DEA efficiency s showed a relatively low
mean level, although we chose a VRS approach basedreturns-to-scale test. In
addition to the DEA approach, we estimated a cses$ional cost frontier using SFA
and included the same variables in the estimatautiér as in the DEA approach.
The signs of the significant coefficients for theustural variables were in line with
the regression results for the DEA input slackdickeicy levels under SFA were
substantially higher than under DEA, which might lexplained by the
methodological differences between DEA and SFA.

In summary, we found large differences in efficignan indication of the potential
for cost savings and consumer price decreaseshdfuthe striking inefficiency of
small water utilities introduces the issue of thdeguacy of such firms’ supply
structures.

We propose that future research should examiner gibssible exogenous factors;
the use of panel data and sophisticated stochdstittier models; and the
determination of economies of scale, scope andityend/e suggest that the

regulatory policies currently under discussion stidae based upon solid analyses of
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firms’ performance and the prudent selection ofaldes in addition to considering

exogenous circumstances.
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Table 1: Studies evaluating the impact of structural and quality variableswith focus on DEA
(Walter et al., 2009)

Resultsfor structural

Author(s) Data sample DEA . Inputs Outputs and
specification : .
quality variables
Renzetti and 64 Canadian Input Labor costs, Water delivered Elevation differences,
Dupont water utilities orientation;  materials population density,
(2009) in 1996 VRS costs, ratio of residential
delivery water and number of
network private dwellings with
significant impact on
efficiency
Garcia- 24 Spanish  Input Staff, Water delivered, Network density with
Sanchez water utilities orientation;  treatment number of significant influence on
(2006) in 1999 CRS plants, connections, efficiency
delivery chemical
network analyses
performed
Tupper and 20 Brazilian Output Labor costs, Water produced, Network densities and
Resende water and orientation;  operational treated sewage, accounted-for water
(2004) sewerage VRS costs, population ratio with significant
utilities from capital served-water, influence on efficiency
1996-2000 costs population
served-treated
sewage
Picazo- 38 Spanish  Output Delivery Population Accounted-for water
Tadeoet al. water utilities orientation;  network, served, does not influence the
(2008) (with 20 also CRS sewer water delivered, ranking of utilities
providing network, treated sewage
sewerage labor,
services) in operational
2001 COSts

Notes:CRS = constant returns to scale, VRS = varialileme to scale
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Table 2: Descriptive statistics

Variable Description ~ Abbr.  Classification Sum Min. Mean Median M ax. Std.

Dev.
Revenues [1000 Euro] cost Input 3563 312 466 9843 3823 424 000 27 878
Water meters meters Output 6 850 857 1653 18 925 9074 1008 7337 152
[number]
Water delivered to wdelhh Output 1490 046 199 4116 1520 142 700 B 87
households [1000 m3]
Water delivered to wdelnh Output 487 598 0.00 1347 354 58 800 4 000
non-households
[1000 m?3]
Network length [km] net -* 156 834 39 433 225 7858 675
Population [1000] pop Sk 32373 5 89 35 3400 233
Output density dens Structural var. - 1.02 10.46 9.25 52.94 5.61
[1000 m3 per km of
network]
Leak ratio leak Structural var. - 0.01 0.10 0.09 300. 0.06
Groundwater ratio ground  Structural var. - 0.00 705 0.71 1.00 0.42
Volume of water intake -k 2205111 271 6091 2191 217 890 15775
intake [1000 m3]
Elevation difference elev Structural var. - 0.00 53.82 40.00 240.00 ar7.3
[m]
Debt per capita debt Structural var. - 0 1017.12 24198 17 253.90 1202.81
Dummy for east deast Structural var. 65 0.00 0.18 0.00 1.00 0.38
Germany
Dummy for private dpriv Structural var. 285 0 0.79 1 1 0.41
governance
Dummy for sewage dsew Structural var. 78 0.00 0.22 0.00 1.00 0.41

services

Notes:*Used to calculate the structural variableput density*Omitted for correlation reasons (see correlatiatrix),

*** Included as heteroscedastic variable in SFA.
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Table 3: Correlation matrix

cost meters net wdelhh  wdelnh pop dens leak grounithtake elev deast dpriv debt dsew
cost 1.000
meters 0.644 1.000
net 0.883 0.704 1.000
wdelhh 0.976 0.753 0.883 1.000
wdelnh 0.907 0.456 0.812 0.845 1.000
pop 0.991 0.716 0.900 0.988 0.875 1.000
dens 0.410 0.247 0.246 0.435 0.438 0.394 1.000
leak -0.001 -0.011 0.068 -0.018 -0.045 -0.002 ©.21 1.000
ground -0.050 0.011 -0.027 -0.041 -0.012 -0.038 18D. -0.030 1.000
intake 0.988 0.695 0.896 0.990 0.910 0.988 0.449 .0080 -0.041 1.000
elev 0.178 0.134 0.188 0.178 0.148 0.169 0.216 00.26-0.324 0.186 1.000
deast -0.017 -0.013 0.107 -0.044 -0.004 -0.004 170.2 0.235 -0.015 -0.025 -0.031 1.000
dpriv 0.019 0.061 0.034 0.036 -0.022 0.027 0.214 .04D -0.157 0.025 0.096 -0.038 1.000
debt 0.798 0.665 0.699 0.793 0.677 0.819 0.238 130.0 0.011 0.780 0.108 -0.067  -0.012 1.000
dsew 0.064 0.001 0.095 0.040 0.036 0.065 -0.182 060.1 0.132 0.043 -0.124 0.368 -0.237 0.015 1.000
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Table 4: Descriptive statistics for efficiency scores

Mean Median  Std. Dev. Min Max.
DEA - Stagel  TE score 0.6424 0.6050 0.1834 0.2983 1.0000
Inefficiency 0.3576 0.3950 0.1834 0.0000 0.7000
DEA-Stage3  TEscoe 07351 07210 01024 05219 10000
Inefficiency 0.2649 0.2790 0.1024 0.0000 0.4781
U CobbDouglas 08353  0.8497 00630 05443  0.9471
Translog 0.8607 0.8707 0.0515 0.6356 0.9512
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Table 5: Resultsfor regression analysis of input slacks

Par. Variable Regression
Bo constant -38.591% (10.1156)
B dens 0.962% (0.2213)
B, leak 30.7805 (13.3956)
Bs ground -4.0238(2.1853)
B, elev 0.0753" (0.0199)
Bs debt 0.0028 (0.0014)
Bs deast 4.3098(2.2449)
B, dpriv 8.3448 (3.4429)
Bs dsew 7.2748 (2.1798)

Notes:* significant at 10%, ** significant at 5%, ***
significant at 1%. Standard errors in parentheBes.
dependent variable is scaled down by’ 16
representation purposes.



Table 6: Coefficient estimatesfor SFA

Parameters Cobb-Douglas Trandog
By constant 16.1875 (0.0691)  16.1470 (0.0705)
B Inwdelhh 0.8136" (0.0594) 0.8565 (0.0583)
B> Inwdelnh 0.0088" (0.0028) 0.1440 (0.0161)
B Inmeters 0.1866" (0.0631) 0.0121 (0.0690)
B (Inwdelhh? - 0.2478 (0.1804)
Ba  (Inwdelnh? - 0.0088" (0.0011)
Bas  (In metery? - 0.1982 (0.2195)
B2 Inwdelhtin wdelnh - -0.0011 (0.0104)
,313 In wdelhHln meters - -0.2275 (0.2004)
,823 In wdelnhln meters - -0.0014 (0.0120)
6, In dens 0.0928" (0.0438) -0.0482 (0.0433)
6,  Inleak 0.0659" (0.0218) 0.0652 (0.0198)
6, In ground -0.0031 (0.0016) -0.0044 (0.0015)
6,  Inelev 0.0050 (0.0029) 0.0052(0.0029)
6 Indebt -0.0050 (0.0057) -0.0041 (0.0052)
G;  deast 0.1681" (0.0410) 0.0971 (0.0389)
6,  dpriv -0.0090 (0.0388) -0.0380 (0.0354)
G dsew -0.0365 (0.0379) -0.0367 (0.0340)
Yo constant -3.2400 (0.2557) -3.5093 (0.3024)
n In intake -0.2048 (0.1116) -0.3256 (0.1213)
g, 0.2384 0.1968
AIC 74.0660 9.9701
BIC 131.5002 90.3779
Log-Likelihood -22.0330 16.0150

Notes:* significant at 10%, ** significant at 5%, *** gnificant at 1%. Standard errors
in parentheses.
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Fig. 1: Efficiency changes and input quantity changes after input adjustment
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Fig. 2: Salter diagram of DEA technical efficiency scores after inclusion of structural variables
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