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Abstract: Germany’s water supply industry is characterized by a multitude of 
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we use Data Envelopment Analysis and Stochastic Frontier Analysis to determine the 

utilities’ technical efficiency scores based on cross-sectional data from 373 public 

and private water utilities in 2006. We find large differences in technical efficiency 

scores even after accounting for significant structural variables like network density, 

share of groundwater usage and water losses.  
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I. Introduction 

The water supply industry typically is dependent on cost-intensive network structures 

and therefore, by implication, is a candidate for natural monopoly. To ensure 

efficient production and distribution of good-quality water in sufficient quantity, 

countries like England, Wales, Australia and Slovenia have established a regulation 

based on yardstick competition in their water supply industries, but in Germany 

active price regulation is still in the beginning stage. In the federal state of Hesse a 

number of trials administered by the Hessian Cartel Office have been undertaken to 

decrease the prices, primarily because of the wide range of prices observed 

throughout the country. Currently, prices for residential water customers differ 

between 0.52 Euro and 3.95 Euro per cubic meter (Bundesverband der Energie- und 

Wasserwirtschaft, 2008a). In 2009, the German Federal Court of Justice agreed on 

the proceedings of the Hessian Cartel Office (decision KVR 66/08). This legal 

decision forced one water supplier to decrease its prices for water by 29.4%. 

To identify the causes, structural differences, inefficiency, and to affirm whether the 

price variations observed are justified, we apply different methods of Data 

Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). For the non-

parametric DEA, a three-stage approach for efficiency measurement is used. In stage 

1, we calculate DEA efficiency scores and determine the returns to scale technology 

via a test proposed by Simar and Wilson (2002). In stage 2, the efficiency scores are 

explained by structural variables in a bootstrapped truncated regression framework 

(Simar and Wilson, 2007). In stage 3, we calculate technical efficiency (TE) scores 

based on a standard DEA model after including the structural differences through the 

input adjustment approach proposed by Fried et al. (1999). Furthermore, we apply 

SFA and estimate a cross-sectional cost frontier to compare the results for the 

structural variables and efficiencies. 

Our objective is to encourage in-depth studies of efficiency analysis that could lead 

the way to the implementation of equitable regulation. Thus, a robust and 

representative measurement of efficiency is necessary to provide a thorough 

understanding of Germany’s water supply industry, including abstraction, treatment, 

and distribution.  

In Germany groundwater is the most important source, comprising 65.5% of total 

water production, followed by surface water, including reservoir water (26.4%) and 

wells/springs (8.1%). In 2006, total water production was about 5.3 billion cubic 
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meters, 20% less than in 1990. Per capita consumption has declined in recent years, 

from 147 liters per day and per capita in 1990 to 126 liters per day and per capita in 

2006 (Bundesverband der Energie- und Wasserwirtschaft, 2008b). In east Germany 

the decline between 1990 and 2006 is more significant: from 142 to 99 liters per day 

and per capita. 

To ensure stable, safe drinking water quality, utilities have invested about 42 billion 

Euros in supply infrastructure since 1990, of which almost 60% has been spent on 

network infrastructure.2 The breakdown of the industry’s cost structure is: 21.5% 

depreciation, 20.6% personnel costs, 15.4% supply of services, 13.7% 

administration, 9.6% cost of water purchases and 40.7% other costs3 (Bundesverband 

der Energie- und Wasserwirtschaft, 2008b). Water supply companies consist of 

municipal utilities (Stadtwerke) and regional and supra-regional acting special 

purpose associations known as Zweckverbände. The majority of municipal utilities 

are privately organized but under public control. They often provide additional 

services such as sewerage, local public transport, and electric and natural gas 

distribution. Special purpose associations were established to exploit economies of 

scale, especially in areas of low population density. They benefit from fewer labor 

input requirements, higher amounts of water sold and possibly from lower wholesale 

prices if supply by third parties is necessary. Most associations are large in size and 

often do not deliver drinking water to the end customer, but instead organize water 

production and purchase. Since including these specific special purpose associations 

produces inconsistencies in efficiency analysis, we include only the special purpose 

associations which supply very few communities and deliver drinking water to the 

end customer. 

Efficiency analysis is a key component of incentive regulation for Germany’s 

electricity and gas distribution networks.4 In combination with the liberalization of 

energy delivery, incentive regulation has caused most municipal utilities to legally 

separate (“unbundle”) the services they provide and to establish separate accounting. 

Thus, regulators may have access to operational and financial information. We 

suggest that a similar regulatory requirement could be applied to the water industry, 

                                                 
2 This could explain both the low average share of water losses of 6.8% in 2004 in comparison to 
other countries as well as the high drinking water quality with only a few cases of measurements 
failing to meet standards (see Deutsche Vereinigung des Gas- und Wasserfaches e.V., 2006). 
3 Other costs include interest payment for debt, material costs and taxes. Additionally, municipalities 
in some federal states may require licensing fees.  
4 See Agrell et al. (2008) for the methods and calculation based on the ordinance for the incentive 
regulation, Anreizregulierungsverordnung (ARegV). 
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especially if research confirms that the widespread price differences observed are 

caused by inefficiencies or excessive profit generation.  

The article is structured as follows. Section 2 reviews relevant literature with respect 

to the applied methodologies. Section 3 explains the methodologies applied, and 

Section 4 discusses the data used. Results are presented in Section 5, and Section 6 

concludes. 

II. Literature Review 

A detailed current survey of the literature on water supply efficiency with respect to 

Germany is provided by Hirschhausen et al. (2009a). There is no comprehensive 

efficiency analysis of Germany’s water supply industry based on a representative and 

consistent data set. A study of rural water supply by Cantner and Hanusch (1991) 

determined the technical inefficiencies of only 13 rural utilities using a corrected 

ordinary least squares (COLS) approach. Sauer and Frohberg (2007) applied SFA to 

a relatively small sample of 47 water utilities in east and west Germany, using a 

symmetric generalized McFadden function to compare the technical efficiency 

levels. They concluded that the utilities should focus on efficient usage of the input 

chemicals in order to increase allocative efficiency.  

Walter et al. (2009) surveyed the international literature on water utilities and found 

three general categories: 

1. studies to determine whether private or public services are more efficient. 

Examples are Bhattacharyya et al. (1995), Saal and Parker (2001), Saal et al. (2007) 

and more recently Benito et al. (2010). The main conclusion is that the institutional 

setting and regulation rather than ownership type determine efficiency.  

2. studies on the estimation of economies of scale, density, and scope using 

stochastic frontier methods. Examples are Saal and Parker (2000, 2005), 

Sauer (2003, 2004, 2006) and Filippini et al. (2008). Whereas economies of density 

and scope throughout the water supply chain, and sewerage, electricity and gas 

activities can be affirmed, economies of scale appear to be exhausted beyond a 

certain threshold. Saal and Parker (2005) found diseconomies of scale for the UK 

water sector with a mean output level of 62.89 m m3.  Fraquelli et al. (2004) 

estimated a cost function for a sample of Italian multi-utilities providing gas, water 

and electricity, and found economies of scope to exist only for smaller utilities while 
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cost advantages of diversification could not be confirmed for utilities larger than the 

median output level. 

3. studies using DEA and regression analysis to determine whether structural 

variables influence individual efficiency scores.  

We review this third category in more detail, given our similar approach. Table 1 

shows four recent DEA studies evaluating the impact of structural and quality 

variables with the resulting significant variables. Renzetti and Dupont (2009) use the 

multistage procedure recommended by Fried et al. (1999), focusing on the relative 

efficiency of 64 municipal water suppliers in Ontario, Canada. Inputs and outputs are 

involved in an application of a variable returns to scale DEA procedure passing 

through stage 1. Stage 2 examines the role of six external factors upon water 

agencies by regressing the total input slack values on a vector of variables that are 

expected to influence efficiency, but are beyond the control of agency managers. The 

six factors are: differences in elevation between each city’s highest point and its 

water treatment facility, the maximum weekly summer temperature in 1996 in each 

city, total precipitation in each city, population density, ratio of residential water use 

to total water agency output, and number of residential dwellings. Due to the 

censored normal distribution of the error term the authors use a Tobit regression, and 

to undertake valid hypothesis testing they adopt a bootstrapped truncated regression 

algorithm as described in Simar and Wilson (2007). In stage 3 another DEA 

procedure with original output and adjusted input measures is conducted to establish 

a base equal to the least-favorable external conditions. The adjustment removes the 

differences in external operating environments that may distort efforts to assess the 

utilities’ relative technical efficiency. DEA mean efficiency scores are absolutely 

higher in stage 3 than in stage 1 by 6.6% using the Tobit adjustment, and by 28.4% 

using the truncated regression adjustment. 

García-Sánchez (2006) uses a four-stage approach to estimate the technical and scale 

efficiency of 24 Spanish municipal water supply agencies with staff, treatment plants 

and network length as the inputs. The outputs are amount of water delivered, number 

of properties connected and water analyses performed. Stage 1 is the statistical 

selection of inputs and outputs using Pearson’s correlation coefficient to eliminate 

those which are improperly correlated. Following Roll et al. (1989), the DEA model 

with the best- discriminating characteristics is chosen. To produce a homogeneous 

analysis of the particular external conditions of each municipality, a three-step 
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process in stage 2 detects the influence of external circumstances on the estimation of 

levels of efficiency via a Tobit model. The ten circumstances (social variables) are: 

population, population density, level of income, average temperature, size of 

municipal area, tourist index, square meters of greenbelts, economic activity, number 

of houses, and average number of people per house. Stage 3 estimates constant 

returns to scale (CRS) efficiency scores according to Charnes et al. (1978) and 

variable returns to scale (VRS) efficiency scores according to Banker et al. (1984). 

Stage 4 compares the differences in efficiency indexes caused by the type of 

ownership using the Mann-Whitney-Test. This methodology produces three best-

discriminating DEA models with nearly identical efficiency scores, all of which find 

that only population density has a statistical significant impact on inefficiencies. 

García-Sánchez concludes that efficiency scores do not depend on the type of 

ownership. 

Tupper and Resende (2004) determine whether calculated efficiency levels in the 

Brazilian water sector depend on structural and quality variables by using a second 

stage Tobit regression. Their results suggest that only water losses have a significant 

impact on efficiency levels. Looking at 38 Spanish water utilities and comparing 

DEA efficiency levels with and without the inclusion of quality variables, Picazo-

Tadeo et al. (2008) also conclude that water losses have a significant impact on 

efficiency levels, and that the different efficiencies do not influence the utilities’ 

ranking. The mean efficiency score is 0.773 when not accounting for the operating 

environment and 0.851 for the adjusted efficiency scores. In this study, unaccounted-

for water is seen as indicator for service quality. 

III. Methodology 

DEA approaches 

Unlike parametric approaches, DEA approaches can handle zero outputs, assign 

individual weights to the outputs of each firm so those with low industrial demand 

are not punished, and they do not require a priori assumptions on the functional 

form. 

DEA uses linear programming methods to obtain measures of technical efficiency. A 

piece-wise surface (frontier) consisting of input and output variables for a sample of 

firms can be constructed. Firms’ efficiency is measured by calculating the distance 

between each data point and the point on the frontier. The frontier represents the 
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most-efficient firms with technical efficiency equal to one, the so-called peer firms. 

Under input orientation, the firms produce the same output with fewer inputs. The 

Banker, Charnes and Cooper (BCC)5 formulation of DEA is expressed by the 

following linear programming problem (see Banker et al., 1984): 

minθ ,λ θ
s.t. − qi +Qλ≥0

θxi − Xλ≥0

I1'λ=1

λ≥0

 

with θ as a scalar, X as IN ∗  input matrix for N inputs and I firms, Q as IM ∗  

output matrix for M outputs and I1 as a 1∗I  vector of ones. Inputs and outputs for 

the i-th firm are represented by the column vectors ix  and iq , and λ represents a 1∗I  

vector of constants. Using the BCC formulation which allows for differences in the 

sizes of firms, we construct a convex hull enveloping the data points.  

DEA models can be either input- or output-oriented. Under input orientation the 

efficiency scores correspond to the largest feasible proportional reduction in inputs 

for fixed outputs, and under output orientation to the largest feasible proportional 

expansion in outputs for fixed inputs. It is common practice to apply input 

orientation when analyzing network utilities, because the firms are generally required 

to supply services to a fixed geographical area, and hence the output vector is 

essentially fixed.  

To determine the returns-to-scale technology, we conduct a two-part returns-to-scale 

test as proposed by Simar and Wilson (2002). Test 1 tests the null hypothesis that the 

production frontier exhibits global CRS against the alternative test hypothesis that 

the production frontier exhibits VRS. If the null hypothesis is rejected, test 2 is 

conducted. It tests the null hypothesis that the production frontier exhibits globally 

non-increasing returns to scale (NIRS) against the alternative hypothesis of VRS. 

Following Simar and Wilson (2002), the returns-to-scale test is: 

 

Test 1: H0: the production frontier is globally CRS 

H1: the production frontier is VRS 

Test 2: H0: the production frontier is globally NIRS 

H1: the production frontier is VRS 

                                                 
5 The BCC formulation is often referred to as a variable returns to scale formulation. 
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The ratio of means defined by  
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for test 1 is used as a test statistic and measures the distance between the CRS and 

the VRS frontier, where D̂  represents an efficiency estimate. For test 2 the distance 

between the NIRS and the VRS frontier is measured using this test statistic. For both 

tests, the null hypothesis is not rejected when the distance between both frontiers is 

small. 

Within a bootstrap procedure, pseudo samples *
bnS  with Bb ,...,1=  bootstrap 

replications are generated according to the original sample nS  to derive bootstrap 

estimates *ˆbω , with ω  denoting a univariate parameter for each testing problem and 

ω̂  as a consistent estimator of ω . With obsω̂  denoting the observed value of the test 

statistic mentioned above, we can derive p-values according to the approximation 

),|ˆˆPr(ˆ 0
*

nobs SHp ωω ≤= . For both tests, p-values higher than the significance level 

of 5% lead to the rejection of the null hypothesis. 

 

A three-stage approach including bootstrapping 

This article applies a three-stage DEA approach to obtain valid results for technical 

efficiency scores. Our stage 1 includes outlier detection, in which the partial 

indicator revenues divided by total water output is used to detect extreme 

observations. We also apply the super-efficiency approach proposed by Banker and 

Gifford (1988), noting that some observations may have efficiency scores greater 

than one, i.e. lie above the constructed frontier.6 We apply the super-efficiency 

criterion repeatedly until no clear outliers remain. Therefore, we set the maximum 

attainable efficiency score on a level of 1.2 due to a dense distribution of technical 

efficiency scores up to this level, as suggested by Banker and Chang (2006). Above 

the level of 1.2, technical efficiency scores are less densely distributed and show 

higher dispersion. Finally, we use a standard DEA approach to obtain first technical 

efficiency scores. 

Stage 2 regresses the efficiency scores obtained by the standard DEA approach on 

several explanatory variables such as output density or the location of the utility in 
                                                 
6 Within a super-efficiency reference, observations for the evaluation of an observation i are 
constructed by only using all observations other than i. See Banker and Gifford (1988) or Banker and 
Chang (2006). 
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east or west Germany. Studies calculating efficiency scores using the non-parametric 

DEA approach often conduct a regression analysis (most often Tobit) for the 

inclusion of parametric components. However, Simar and Wilson (2007) argue that 

the use of a Tobit regression in a two-stage analysis is inappropriate, because it fails 

to account for serial correlation in DEA efficiency estimates and the results can be 

invalid and lead to incorrect inference. Similarly, Grosskopf (1996) argues that 

problems may arise through the distribution of the error terms due to a possible 

correlation between the explanatory variables used in regression analysis and the 

variables used for calculating the DEA efficiency scores. To sidestep this 

controversial issue, we apply a bootstrapped truncated regression as proposed by 

Simar and Wilson (2007) with two different possible algorithms. While the goal of 

algorithm 1 is only to improve on inference, algorithm 2 considers bias correction. 

Unfortunately, the application of bias correction can introduce additional noise, 

which we find to be the case, and therefore we use algorithm 1 without bias 

correction. In a first step, we derive coefficient estimates β̂  and an estimate of the 

standard deviation of the error term εσ̂  from the truncated regression of the 

efficiency values 1ˆ >iθ  on the explanatory variables using the maximum likelihood 

method. Therefore, we use the reciprocal values of the DEA technical efficiency 

scores resulting from stage 1. Next, we conduct a bootstrap algorithm with B 

bootstrap replications based on those coefficient estimates and on the estimated 

standard deviation of the error term.  

Within the bootstrap algorithm, the error term iε  for each observation i is drawn 

from a )ˆ,0( 2
εσN distribution, for which we assume a left-truncation at )ˆ1( βiz− . 

Based on the error terms iε , we can calculate new efficiency estimates 

iii z εβθ += ˆ* , which can be regressed again on explanatory variables using 

maximum likelihood estimation with left truncation at one. As follows, the bootstrap 

algorithm yields B estimates for each coefficient. Using this set of coefficient 

estimates, confidence intervals can be constructed following Simar and 

Wilson (2000).  

Stage 3 of our approach includes the regression results within the calculation of new 

DEA efficiency scores; we adjust inputs for the influence of exogenous variables 

following Fried et al. (1999), who recommend regressing total input slacks defined 



 10 

as k
jxTE ∗− )1(  for the j=1,…, N firms and k inputs on explanatory variables to 

derive coefficient estimates and an estimate of the error term.7 We then predict input 

slacks based on the estimated coefficients and use them to adjust inputs according to  

]ˆ}ˆ{[ jjj
adj
j STISTIMaxxx −+=  

for the one-input case with jSTI ˆ denoting the predicted input slacks. For all 

observations Nj ,...,1=  input x is proportionally adjusted by the difference between 

the maximum predicted input slack }ˆ{ jSTIMax  of all observations and the predicted 

input slack of the unit under consideration. For the unit operating under the least-

favorable circumstances and thus exhibiting the highest input slack the difference in 

parentheses is equal to zero and the inputs are not increased. For all other 

observations the difference is positive and the inputs are increased while output is 

held constant so that the efficiency scores are adjusted for external influences. 

According to Fried et al. (1999), the new efficiency scores incorporate the operating 

environment directly into the production process. Thus, having adjusted the inputs 

for the operating environment, we conclude that firms’ management causes the 

remaining inefficiency. 

 

SFA approach 

In comparison to DEA, SFA can reduce the impact of statistical noise and 

measurement errors to produce results that are more robust against outliers. SFA uses 

econometric techniques for the estimation of a stochastic frontier that can be used for 

the determination of efficiency scores. It is also possible to estimate production 

functions, cost functions and input and output distance functions.  

Aigner et al. (1977) develop a normal/half-normal model for SFA with a composed 

error term. They propose the decomposition of the error term into a noise term vi and 

an inefficiency term ui. The noise term vi aims to capture statistical noise and 

measurement errors and is assumed to be normally distributed with ),0(~ 2
vi Niidv σ . 

The half-normally distributed error term ui with ),0(~ 2
ui Niidu σ+  captures 

inefficiency effects. For a total cost function, the Aigner et al. model (ALS model) 

has the form 

                                                 
7 We focus only on the radial portion of total input slacks, hence on the pure inefficiency, because we 
want to evaluate the impact of structural differences on efficiency scores. 
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iiii uvxTC +++= ββ '
0ln  

where TC denotes total costs, xi the vector of explanatory variables and vi and ui the 

error terms as described above for all firms i with i=1,…, N. The parameters to be 

estimated are represented by 0β  for the intercept and β  for the vector of 

coefficients. Only the realizations of the composed error iii vu +=ε  are observable. 

Jondrow et al. (1982) propose to predict the inefficiency term ui by the conditional 

expectation of ui given the realizations of iε : 

[ ]iiii vuuEu += |  

Using the estimates of ui, a measure of technical efficiency (TE) is then derived as 

)exp( ii uTE −= .  

As mentioned earlier, for the application of SFA it is necessary to assume a 

functional form. The most common functional forms used are the Cobb-Douglas 

function and the Translog function. In this article we apply both types of functional 

relationships and we choose the more suitable frontier based on information criteria 

and a Likelihood-Ratio test. All variables included in the function are divided by 

their means as the point of approximation. To obtain linearity in the parameters, we 

take the natural logarithm of all variables.8 

For the specification of our SFA cost model, we consider the same input, outputs and 

structural variables used in the DEA model to ensure comparability of the results. 

Since our dataset lacks information on input prices, it is not possible to estimate a 

cost function including input prices and output quantities as required by standard 

microeconomic theory (see Chambers, 1988). Therefore, we can only include total 

costs as the dependent variable and different output measures as explanatory 

variables. Due to the omission of input prices in the cost function, we can only 

consider technical efficiency rather than technical and allocative efficiency. Input 

prices usually capture regional price differences. Similar to our approach, Martins et 

al. (2006) estimate a cubic cost function for the Portuguese water industry while 

omitting input prices. They argue that regional differences in prices are small in a 

small country like Portugal. We assume that the costs of materials, capital and energy 

input are similar throughout Germany. In fact, there can be significant regional 

differences with respect to the price of labor between east and west Germany since 

                                                 
8 When necessary, zero-values were replaced by 10-6. This approach is in line with 
Fraquelli et al. (2004). 
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the average wage level in east Germany is still lower than in the western part. We 

therefore include a dummy variable for east German water utilities to account for 

differences between east and west Germany.  

According to the ALS model, we specify our model as 

∑ ∑
= =

++++=
K

k

M

j
iiijjikki uvzxTC

1 1
,,0 lnlnln θββ  

with TC denoting total costs, xk representing the vector of the k explanatory variables 

and vi and ui as the two error terms as shown above. We include a set of j=1,…, M 

structural variables denoted by zj to account for the operating environment. The z 

variables are included in the function since they are assumed to directly influence the 

production process such that each utility in our dataset faces an individual frontier. 

We thus follow the methodology chosen for DEA, where the input adjustment 

approach is assumed to change the production process: “The new radial efficiency 

measures incorporate the influences of the external variables on the production 

process, and isolate the managerial component of inefficiency” (Fried et al., 1999). 

For DEA and SFA, final efficiency scores are thus net of structural influences and 

represent managerial inefficiencies (Coelli et al., 1999). In the SFA framework, it 

would also be possible to let the operating environment influence the inefficiency 

term ui by allowing for a non-zero mean according to ),(~ 2
ui Niidu σµ+  as proposed 

by Stevenson (1980). Using such an approach, the operating environment would 

have an impact on the distance between each observation and the estimated common 

frontier. The operating environment would still have an impact on the resulting 

efficiency scores (Coelli et al., 1999). Thus, we include the z variables directly in our 

function to be in line with the methodology chosen for DEA. 

Further assumptions on the error terms are necessary. Hadri (1999) and 

Hadri et al. (2003) argue that size-related heteroscedasticity is likely to occur in the 

two-sided noise term vi when using cross-section data. Heteroscedasticity can also 

occur due to considerable differences in the size of firms included in a dataset. Not 

accounting for heteroscedasticity might lead to biased parameter estimates and 

efficiency estimates. We therefore let the standard deviation of the two-sided noise 

term vary with water intake as a proxy variable for firm size. The standard deviation 

of vi is )exp(, γσ iiv W= , with Wi representing the set of explanatory variables 

assumed to influence the standard deviation of vi and γ  representing the vector of 

parameters to be estimated (see Hadri, 1999).  
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IV. Data Description 

This article is based on cross-sectional data in 2006 with an original dataset of 1096 

water utilities. Full data availability is given for 373 observations. The data is taken 

from the statistical publication published by the German Association for Energy and 

Water Industries (Bundesverband der Energie- und Wasserwirtschaft, 2008c) and the 

utilities’ annual financial statements. Topographical maps provide elevation 

differences. The descriptive statistics for the variables are shown in Table 2 and the 

correlation matrix is shown in Table 3.  

The utilities deliver drinking water to about 32 million people (approximately 39% 

of the total population) and are located in all federal states except Bremen. Although 

the dataset includes only a fraction of the industry’s 6500 firms, it can be 

characterized as representative, considering the population served and the type of 

utility.  

There are both large and small utilities, the latter with only 199 000 cubic meters 

water delivered to households. Total water deliveries are 1.98 billion cubic meters.  

Some supply private customers at higher cost due to the need for more water 

connections, while those serving primarily industrial customers or re-distributors can 

often deliver at lower cost since fewer water connections are needed. This 

relationship can also be justified by the higher correlation of water deliveries to 

private customers than deliveries to non-households. We treat private consumption 

and industrial/other consumption as separate outputs. Total water meters is an output 

variable to avoid discriminating against utilities that serve low-consumption 

customers. This is also justified by the relatively low correlation between the number 

of meters and private consumption. Similar model specifications were recommended 

by Thanassoulis (2000a, b) and applied e.g., by García-Valiñas and Muñiz (2007). In 

contrast to the model specifications used in their studies, we do not include network 

length in our model. 

We use total revenues from water supply in 2006 as the proxy for total costs. We 

assume revenues to be equal to the costs of supply following the European water 

framework directive (Directive 2000/60/EC, Article 9) which states that revenues 

must cover all material costs, depreciation and labor costs.9 In addition, efficiency 

can be measured by the amounts that customers pay for water supply, so our results 

                                                 
9 This cost recovery principle for water supply appears in the legislation for local public authorities in 
all German federal states. 
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can be interpreted as “consumer-perceived efficiency”. Brunner and 

Riechmann (2004) recommend this approach to determine whether tariffs for water 

deliveries are reasonable, and if not, by how much they can be reduced. A regulator 

is mainly concerned with the protection of consumer interests so that water tariffs are 

of more interest than, e.g., the capital structure of a water utility. Under perfect 

competition, firms cannot charge different prices due to different capital structures. 

The advantage of this revenue yardstick approach is that there is no need to measure 

capital and capital costs. Hence, we treat revenues as a reasonable alternative input 

variable with interpretative possibilities. However, issues like public transfers to 

municipal companies could bias results. Moreover, despite the use of monetary data, 

we consider only technical efficiency and not allocative efficiency. 

The variable network length shows large differences in firm and area sizes. We omit 

this as an input variable, because costs for network infrastructure and investments are 

already included within the total cost block represented by total revenues. However, 

we include network length when calculating the structural variable output density. 

Stages 2 and 3 of our DEA and the SFA also consider other explanatory variables, 

such as total population and output density, when we compare the possible 

differences between water utilities in rural and urban areas. On the one hand, higher 

density might lead to efficiency advantages since fewer capital input, i.e. network 

infrastructure, is required to distribute a certain amount of water. But high density 

can also lead to efficiency disadvantages e.g., when laying pipes in densely settled 

downtowns. The assumption of efficiency advantages of higher density is confirmed 

by Renzetti and Dupont (2008) and García-Sánchez (2006). Output density is 

computed as total amount of water delivered to households and non-households per 

kilometer of network length (Metermengenwert).10 We omit population in the 

regression analysis due to its very high correlation with the output variable water 

delivered to households.  

We consider the share of groundwater input per utility, because groundwater 

requires less treatment than surface water. While pumping costs tend to be higher for 

groundwater (see Filippini et al., 2008; Garcia and Thomas, 2001), the capital costs 

are normally lower than for the use of storage water (Coelli and Walding, 2006). 

Hence, utilities using more groundwater tend to achieve higher efficiency scores. We 

assume that the type of water extracted is given exogenously, since only available 
                                                 
10 This variable serves as a key indicator in the regulation of water utilities in Hesse (see Hirschhausen 
et al., 2009b). 
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water sources can be used in a utility’s service territory. The water utilities in our 

dataset extract 75.1% of the raw water input from groundwater resources, while 

20.8% are surface water and 4.1% well-spring sources. Thus, they use slightly more 

groundwater than is typical for the entire German water supply industry.   

The variable leak ratio is defined as water losses between extraction and end-user 

consumption divided by total water input. While water losses depend on exogenous 

circumstances such as the type of soil, they can also be influenced by management 

via better maintenance or replacement investments. Furthermore, water losses can 

also be a proxy for the age of the infrastructure. Older networks usually are 

characterized by an increased pipe bursts resulting in higher water losses. Thus, in 

the short run it is arguable that water losses are exogenously determined since the 

replacement of the infrastructure is only possible within a longer time horizon. 

We also consider elevation differences within utility service territory, e.g., water 

distribution in hilly regions requires higher pumping costs. The variable measures the 

difference between the highest settlement in a service area and the lowest point. We 

assume that higher elevation differences will have a negative impact on firms’ 

performance. 

Yet another variable is operational differences in east and west Germany. After 

German reunification, significant investments were made to modernize eastern water 

networks and treatment plants. Regional differences show up in price differentials, 

where prices for drinking water in the east are usually higher than in western 

Germany. A closer look at the differences in the efficiency scores of the utilities in 

each geographical area is thus of interest. We include a dummy variable with a value 

of one when the utility is situated in the eastern part of Germany.  

The water utilities are also characterized by different governance modes and 

ownership structures. We include a dummy variable with value of one for water 

utilities with a private governance mode and zero otherwise. Even under a private 

governance mode, ownership can be public, private or a mixture of both.  

We include the per-capita debt of each municipality since municipalities usually 

require water utilities to pay concession fees or to earn a particular rate of return such 

that the municipalities can balance their budgets with the additional earnings. We 

assume that higher per-capita debt might lead to higher prices for water and 

corresponding higher inefficiency values.  
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Finally, we include a dummy variable for possible scope effects with sewage 

services. 

Total water intake of the utilities in our dataset is 2.21 billion cubic meters. Water 

intake consist of both own water abstraction and water purchases from other utilities, 

e.g., bulk water suppliers. The variable water intake is a measure for firm size and 

included as a heteroscedastic variable in the standard deviation of the two-sided 

noise term in SFA to account for size-related heteroscedasticity as described earlier. 

V. Results 

DEA efficiency scores and regression on structural variables  

We apply a three-stage procedure to obtain valid results for DEA technical efficiency 

scores.11 In stage 1, the ratio of revenues and total water output is used as a partial 

indicator for outlier detection. Here, 11 observations are deleted. For the application 

of the super-efficiency approach, variable returns-to-scale and input orientation are 

assumed.12 The assumption of VRS is confirmed by the returns-to-scale test at a 

significance level of 1% conducting 1000 bootstrap replications. In the following 

application of the super-efficiency criterion, 22 additional observations are deleted 

due to technical efficiency scores greater than the critical value of 1.2. The detected 

outliers do not belong to a specific group of water utilities. We observe no systematic 

scheme when looking at characteristics like firm size measured by total water output, 

eastern or western location, output densities, etc. Municipal utilities as well as some 

special purpose associations are excluded. 

Table 4 summarizes the efficiency scores obtained in stage 1. Efficiency scores show 

high dispersion and a relatively low mean level of 64.24%, possibly due to the large 

difference in prices and hence revenue disparities.13  

In stage 2, the input slacks are regressed on several explanatory variables. We apply 

a bootstrapped truncated regression with 2000 replications as proposed by Simar and 

Wilson (2007) to check for structural reasons for efficiency differences. The 

estimated coefficients and significance levels are shown in Table 5. The signs of the 

                                                 
11 Some authors even refer to the approach chosen here as a four-stage approach. 
12 DEA and the bootstrapped truncated regression are conducted using Software R with the package 
FEAR by P. W. Wilson.  
13 We also apply DEA with bias-corrections (bootstrapping). Due to the application of bias-
corrections, the mean efficiency level is 0.5881 and is thus lower than under the standard DEA 
approach (0.6424). Regression results in stage 2 are similar to the results using standard DEA. For 
simplicity we focus on the results of standard DEA in the following sections. 
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coefficients show that higher share of groundwater input has a negative impact on 

input slacks (i.e. a positive impact on efficiency), thus confirming our assumption of 

the efficiency-enhancing effect of a higher groundwater usage compared to the use of 

surface water. A higher share of water losses, higher output density, higher elevation 

differences, higher per-capita debt in the municipality, eastern location, private 

governance and provision of sewage services have a positive impact on input slacks. 

The positive sign of the coefficient for the output density indicates that the 

disadvantages of a higher density overcome the possible efficiency gains of 

supplying water with less capital input. Water utilities under a private governance 

mode show higher input slacks compared to publicly managed utilities. A possible 

explanation is the greater revenues attained by privately organized water utilities 

since they are unregulated natural monopolies that aim to maximize profits. The 

assumption of possible scope effects between water and sewage services is not 

confirmed.    

Factoring our variables into the calculation of technical efficiency scores using the 

input adjustments approach proposed by Fried et al. (1999) requires us to predict 

inefficiencies via regression analysis. Using this approach, only variables that cannot 

be influenced by management are included. Arguably, management can change the 

governance mode and the provision of sewage services. However, since only cross-

sectional data is available, we assume that in the short run given by our dataset, those 

variables are not influenceable. While water losses can at least partially be influenced 

by better maintenance efforts, they also depend on exogenous factors and on the age 

of infrastructure. The age of infrastructure can also be evaluated as more or less 

exogenously given due to the longevity of network infrastructure investments. We 

thus use the regression results described above and shown in Table 5 to adjust inputs 

for the operating environment. 

Using the standard DEA approach in stage 3 again allows us to obtain the final 

technical efficiency scores as shown in Table 4. In comparison to the results of stage 

1 before accounting for structural variables, the mean efficiency score increases 

substantially from 0.6424 to 0.7351. The minimum efficiency score obtained is now 

0.5219 compared to 0.2983 before input adjustment. However, additional influencing 

exogenous factors, e.g., climatic conditions or aspects of economic geography could 

be considered, given extended data availability. As expected, the correlation between 

the efficiency scores in stages 1 and 3 is low. The Spearman correlation coefficient 
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has a value of 0.1305. Similarly, the Pearson rank correlation coefficient between 

the efficiency scores is 0.1817, and the Kendall rank correlation coefficient is 

0.0889. The significant change in efficiency scores after input adjustment is also 

shown in Fig. 1 for the 10% of utilities with the most significant changes in 

efficiency scores. While efficiency scores increase for most utilities after taking the 

operating environment into account, efficiency scores also considerably decrease for 

others. 

An illustration of efficiency scores obtained in stage 3 appears in the Salter diagram 

depicted in Fig. 2. On the y-axis, the utilities are sorted according to their efficiency 

scores. On the x-axis, the width of a bar represents a utility’s total water deliveries. 

The highest efficiency scores are obtained by small and larger water utilities 

representing the VRS approach of our DEA specification. The lowest efficiency 

scores are represented by the smaller utilities, but this requires careful interpretation. 

By using a VRS approach, these inefficiencies cannot be scale-inefficiency; 

however, there appears to be a cost disadvantage for smaller firms. Further research 

is needed to identify the actual saving potentials resulting from mergers and 

acquisitions.14 

Assuming that all residual inefficiency after stage 3 cannot be assigned to structural 

differences, the free area in the upper left area of the graph (above the inefficient 

utilities) represents the potential for price decreases. The inefficiency is therefore 

equal to the price decrease, whereas the x-axis represents the quantity that could 

benefit from this decrease.  

 

SFA efficiency scores and interpretation 

Coefficient estimates for both the Cobb-Douglas model and the Translog Stochastic 

Frontier model are given in Table 6.15 We include the same inputs, outputs and 

structural variables as in the DEA model. We only use the 340 observations 

remaining after the application of the DEA super-efficiency approach to ensure 

comparability of the results. In the Cobb-Douglas framework, all output coefficients 

are positive and highly significant. Thus, the property of a cost function to be non-

decreasing in outputs is fulfilled (see Coelli et al., 2005, p. 23). In the Translog 

model, the linear output coefficients remain positive but the coefficient of the water 

meters is no longer significantly different from zero. However, the Akaike 
                                                 
14 The high efficiencies for the largest utilities can also be due to missing peers. 
15 Estimations are conducted using the STATA 11.1 statistical software. 
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information criterion (AIC) and the Bayesian information criterion (BIC) both 

recommend using the Translog function. This is confirmed by a Likelihood-Ratio 

test (LR-test). The value of the test statistic is 76.10 and is thus higher than the 2χ  

value of 12.59 with 6 degrees of freedom for a confidence level of 95%. 

Looking at the influence of the structural variables, water losses, the share of 

groundwater input, elevation differences and the location in east Germany have a 

significant impact on total costs in the Cobb-Douglas and Translog models. The 

signs of the estimated coefficients are in line with the bootstrapped truncated 

regression. The coefficient of the output density is only significant in the Cobb-

Douglas model and has a positive impact on total costs. It shows a positive impact on 

input slacks as seen in the bootstrapped truncated regression. The coefficients for 

per-capita debt, private governance mode, and scope effects with sewage services are 

not significant in the SFA models and hence not further compared with bootstrapped 

truncated regression results. The coefficient of the volume of water intake, included 

as heteroscedastic variable in the standard deviation of the two-sided noise term vi, is 

negative and highly significant in both models, confirming the assumption of size-

related heteroscedasticity.16 

Efficiency scores for both SFA models together with the results of the DEA 

approaches are shown in Table 4. At the mean and the median, the SFA efficiency 

scores are significantly higher than the DEA efficiency scores. The rank correlation 

between the DEA and SFA efficiency scores is quite low. Comparing the DEA 

efficiency scores and the results of the Cobb-Douglas model, the Spearman rank 

correlation coefficient has a value of only 0.0381 and 0.0300 in the Translog model. 

The DEA and SFA results can thus be regarded as independent. The minimum 

efficiency scores of both approaches are similar, with 52.2% for DEA and 54.4% for 

SFA under the Cobb-Douglas model. For the Translog model, the minimum 

efficiency score is 63.6%. 

Since DEA and SFA are different approaches, a direct comparison of their resulting 

efficiency scores might be misleading. Efficiency levels in DEA also depend on the 

number of variables and observations. Indeed, the error term of the employed SFA 

captures statistical noise and measurement errors, but the availability of panel data 

                                                 
16 We also estimate a model without heteroscedasticity in vi. While parameter estimates remained 
similar, a LR-test suggested using the model which corrects for heteroscedasticity (p-value of 0.0028 
in the Translog model). This is emphasized by the high significance of the estimated parameter for 
volume of water intake.  
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would allow for the application of sophisticated SFA models considering unobserved 

firm-specific heterogeneity. Given the lack of input prices and the occurrence of zero 

values for some of the variables, our dataset is imperfectly suited for stochastic 

frontier models. However, the comparisons with the DEA results are a satisfying 

cross-check and nicely illustrate the dependence on the applied methodology.  

VI. Conclusions 

This article has provided the first efficiency analysis of water utilities throughout 

Germany. To avoid distortions in DEA efficiency scores we employed the super-

efficiency approach for outlier detection. The application of a bootstrapped truncated 

regression identified the factors that significantly influenced the technical efficiency 

scores. Output density, water losses, groundwater ratio, elevation differences, 

location in east Germany, governance mode, joint provision of water and sewage 

services and per-capita debt of a municipality were included to account for structural 

differences in water supply. The significance of a density measure confirmed other 

international studies. The leak ratio showed a significant positive impact on input 

slacks. We observed that the significance indicates possible underinvestment for 

companies with high leak ratios. DEA efficiency scores showed a relatively low 

mean level, although we chose a VRS approach based on a returns-to-scale test. In 

addition to the DEA approach, we estimated a cross-sectional cost frontier using SFA 

and included the same variables in the estimated frontier as in the DEA approach. 

The signs of the significant coefficients for the structural variables were in line with 

the regression results for the DEA input slacks. Efficiency levels under SFA were 

substantially higher than under DEA, which might be explained by the 

methodological differences between DEA and SFA. 

In summary, we found large differences in efficiency, an indication of the potential 

for cost savings and consumer price decreases. Further, the striking inefficiency of 

small water utilities introduces the issue of the adequacy of such firms’ supply 

structures. 

We propose that future research should examine: other possible exogenous factors; 

the use of panel data and sophisticated stochastic frontier models; and the 

determination of economies of scale, scope and density. We suggest that the 

regulatory policies currently under discussion should be based upon solid analyses of 
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firms’ performance and the prudent selection of variables in addition to considering 

exogenous circumstances. 
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Table 1: Studies evaluating the impact of structural and quality variables with focus on DEA 

(Walter et al., 2009) 

Author(s) Data sample 
DEA 

specification 
Inputs Outputs 

Results for structural 
and 

quality variables 

Renzetti and 
Dupont  
(2009) 

64 Canadian 
water utilities 
in 1996 

 

Input 
orientation; 
VRS 
 

Labor costs, 
materials 
costs, 
delivery 
network 
 

Water delivered 
 

Elevation differences, 
population density, 
ratio of residential 
water and number of 
private dwellings with 
significant impact on 
efficiency 

García-
Sánchez 
(2006) 

24 Spanish 
water utilities 
in 1999 
 

Input 
orientation; 
CRS 
 

Staff, 
treatment 
plants, 
delivery 
network 

Water delivered, 
number of 
connections, 
chemical 
analyses 
performed 

Network density with 
significant influence on 
efficiency 
 

Tupper and 
Resende  
(2004) 

20 Brazilian 
water and 
sewerage 
utilities from 
1996-2000 

Output 
orientation; 
VRS 

Labor costs, 
operational 
costs, 
capital 
costs 

Water produced, 
treated sewage, 
population 
served-water, 
population 
served-treated 
sewage 

Network densities and 
accounted-for water 
ratio with significant 
influence on efficiency 

Picazo-
Tadeo et al. 
(2008) 

38 Spanish 
water utilities 
(with 20 also 
providing 
sewerage 
services) in 
2001 

Output 
orientation; 
CRS 
 

Delivery 
network, 
sewer 
network, 
labor, 
operational 
costs 

Population 
served, 
water delivered, 
treated sewage 
 

Accounted-for water 
does not influence the 
ranking of utilities 

Notes: CRS = constant returns to scale, VRS = variable returns to scale 
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Table 2: Descriptive statistics 

Variable Description Abbr. Classification Sum 

 

Min. Mean Median Max. Std. 
Dev. 

Revenues [1000 Euro] cost Input 3 563 312 466 9843 3382 424 000 27 878 

Water meters 
[number] 

meters Output 6 850 857 1653 18 925 9074 1 008 732 57 152 

Water delivered to 
households [1000 m³] 

wdelhh Output 1 490 046 199 4116 1520 142 700 10 873 

Water delivered to 
non-households  
[1000 m³] 

wdelnh Output 487 598 0.00 1347 354 58 800 4 000 

Network length [km] net -* 156 834 39 433 225 7858 675 

Population [1000] pop -** 32 373 5 89 35 3400 233 

Output density    
[1000 m³ per km of 
network] 

dens Structural var. - 1.02 10.46 9.25 52.94 5.61 

Leak ratio leak Structural var. - 0.01 0.10 0.09 0.30 0.06 

Groundwater ratio ground Structural var. - 0.00 0.57 0.71 1.00 0.42 

Volume of water 
intake [1000 m³] 

intake -*** 2 205 111 271 6091 2191 217 890 15 775 

Elevation difference 
[m] 

elev Structural var. - 0.00 53.82 40.00 240.00 47.36 

Debt per capita debt Structural var. - 0 1017.12 1024.58 17 253.90 1202.81 

Dummy for east 
Germany 

deast Structural var. 65 0.00 0.18 0.00 1.00 0.38 

Dummy for private 
governance 

dpriv Structural var. 285 0 0.79 1 1 0.41 

Dummy for sewage 
services 

dsew Structural var. 78 0.00 0.22 0.00 1.00 0.41 

Notes: *Used to calculate the structural variable output density, **Omitted for correlation reasons (see correlation matrix), 
*** Included as heteroscedastic variable in SFA. 
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Table 3: Correlation matrix 

 cost meters net wdelhh wdelnh pop dens leak ground intake elev deast dpriv debt dsew 

cost 1.000            
   

meters 0.644 1.000           
   

net 0.883 0.704 1.000          
   

wdelhh 0.976 0.753 0.883 1.000         
   

wdelnh 0.907 0.456 0.812 0.845 1.000        
   

pop 0.991 0.716 0.900 0.988 0.875 1.000       
   

dens 0.410 0.247 0.246 0.435 0.438 0.394 1.000      
   

leak -0.001 -0.011 0.068 -0.018 -0.045 -0.002 -0.210 1.000     
   

ground -0.050 0.011 -0.027 -0.041 -0.012 -0.038 -0.187 -0.030 1.000    
   

intake 0.988 0.695 0.896 0.990 0.910 0.988 0.449 -0.005 -0.041 1.000   
   

elev 0.178 0.134 0.188 0.178 0.148 0.169 0.216 0.260 -0.324 0.186 1.000  
   

deast -0.017 -0.013 0.107 -0.044 -0.004 -0.004 -0.217 0.235 -0.015 -0.025 -0.031 1.000    

dpriv 0.019 0.061 0.034 0.036 -0.022 0.027 0.214 -0.042 -0.157 0.025 0.096 -0.038 1.000   

debt 0.798 0.665 0.699 0.793 0.677 0.819 0.238 -0.013 0.011 0.780 0.108 -0.067 -0.012 1.000  

dsew 0.064 0.001 0.095 0.040 0.036 0.065 -0.182 0.106 0.132 0.043 -0.124 0.368 -0.237 0.015 1.000 
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Table 4: Descriptive statistics for efficiency scores 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 

 

  Mean Median Std. Dev. Min. Max. 

DEA - Stage 1  TE score 0.6424 0.6050 0.1834 0.2983 1.0000 

 Inefficiency 0.3576 0.3950 0.1834 0.0000 0.7000 

DEA - Stage 3  TE score 0.7351 0.7210 0.1024 0.5219 1.0000 

 Inefficiency 0.2649 0.2790 0.1024 0.0000 0.4781 

SFA Cobb-Douglas 0.8353 0.8497 0.0639 0.5443 0.9471 

 Translog 0.8607 0.8707 0.0515 0.6356 0.9512 
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Table 5: Results for regression analysis of input slacks 

Par. Variable Regression 

0β  constant -38.5914*** (10.1156) 

1β  dens 0.9622*** (0.2213) 

2β  leak 30.7805**  (13.3956) 

3β  ground -4.0238* (2.1853) 

4β  elev 0.0752***  (0.0199) 

5β  debt 0.0029**  (0.0014) 

6β  deast 4.3098* (2.2449) 

7β  dpriv 8.3446**  (3.4429) 

8β  dsew 7.2748***  (2.1798) 

Notes: * significant at 10%, ** significant at 5%, *** 
significant at 1%. Standard errors in parentheses. The 
dependent variable is scaled down by 10-3 for 
representation purposes. 
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Table 6: Coefficient estimates for SFA 

 

 

 

 

 

 

Parameters Cobb-Douglas Translog 

0β  constant 16.1875***  (0.0691) 16.1470***  (0.0705) 

1β  ln wdelhh 0.8136***  (0.0594) 0.8565***  (0.0583) 

2β  ln wdelnh 0.0088***  (0.0028) 0.1440***  (0.0161) 

3β  ln meters 0.1866***  (0.0631) 0.0121 (0.0690) 

11β  (ln wdelhh)² - 0.2478 (0.1804) 

22β  (ln wdelnh)² - 0.0089***  (0.0011) 

33β  (ln meters)² - 0.1982 (0.2195) 

12β  ln wdelhh*ln wdelnh - -0.0011 (0.0104) 

13β  ln wdelhh*ln meters - -0.2275 (0.2004) 

23β  ln wdelnh*ln meters - -0.0014 (0.0120) 

1θ  ln dens 0.0928**  (0.0438) -0.0482 (0.0433) 

2θ  ln leak 0.0659***  (0.0218) 0.0652***  (0.0198) 

3θ  ln ground -0.0031* (0.0016) -0.0044***  (0.0015) 

4θ  ln elev 0.0050* (0.0029) 0.0052* (0.0029) 

5θ  ln debt -0.0050 (0.0057) -0.0041 (0.0052) 

6θ  deast 0.1681***  (0.0410) 0.0971**  (0.0389) 

7θ  dpriv -0.0090 (0.0388) -0.0380 (0.0354) 

8θ  dsew -0.0365 (0.0379) -0.0367 (0.0340) 

 

0γ  constant -3.2400***  (0.2557) -3.5093***  (0.3024) 

1γ  ln intake -0.2048* (0.1116) -0.3256***  (0.1213) 

 

uσ   0.2384 0.1968 

    

 AIC 74.0660 9.9701 

 BIC 131.5002 90.3779 

 Log-Likelihood -22.0330 16.0150 

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. Standard errors 
in parentheses. 
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Fig. 1: Efficiency changes and input quantity changes after input adjustment 
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Source: Own depiction. 
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Fig. 2: Salter diagram of DEA technical efficiency scores after inclusion of structural variables 
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Source: Own depiction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


