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1 Introduction

There is a large literature on comparisons of productive efficiency, beginning with the work

of Farrell (1957). Assessments of the relative efficiency of agricultural producers have been

of particular interest for a number of reasons. First, because agricultural producers typically

own land and live on their farms, the standard assumption that market competition will

ensure that only efficient producers remain in a given industry is unlikely to be applicable,

and the process of adjustment is likely to cause social problems. Second, there exist a wide

range of policy interventions, such as education, training and extension programs, which

may be interpreted as attempts to increase the efficiency of agricultural production. Third,

policy questions relating to the existence and estimation of an optimal size, or minimum

efficient size, for farms have been debated in many countries.

All production is subject to uncertainty, but the risks associated with agricultural pro-

duction are particularly salient. Crop yields may be affected by the amount and timing of

rainfall, temperatures during the growing season, pests, diseases, hailstorms and fire among

many other factors. Hence, observed differences in outputs and inputs may reflect differences

in efficiency, differences in the outcomes of risky decisions, or both.

One common method for dealing with production uncertainty in efficiency comparisons

has been the estimation of stochastic frontier models (see among others, Battese, Ram-

baldi and Wan, 1997; Kumbhakar 2002; Karagiannis, Tzouvelekas and Xepapadeas, 2003;

Morrison Paul and Nehring, 2005). In the standard stochastic frontier model, maximum

likelihood estimation is used to partition deviations from an estimated production frontier

into two components: a one-sided stochastic term representing technical efficiency and a two-

sided term representing exogenous stochastic shocks. Implicitly, the production technology

being modelled is stochastic.

In general equilibrium theory and finance theory, among other fields, it is more common to

model uncertainty in terms of a state-contingent technology. The origins of state-contingent

production theory, which considers that outputs are conditional on the states of Nature (each

state representing a particular uncertain event) can be traced back to Arrow and Debreu

(1954). More recently, Chambers and Quiggin (2000) have shown that all the tools of modern
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production theory, including cost and distance functions, may be applied to state-contingent

production technologies.

Chambers and Quiggin (2000) describe several different types of state-contingent pro-

duction technologies, including technologies they refer to as state-allocable. A feature of

state-allocable technologies is that producers can manage uncertainty through the allocation

of productive inputs to different states of Nature. This concept is best illustrated by a sim-

plified example (Chambers and Quiggin, 2000, pp. 36-39). Consider a producer who makes

a pre-season allocation of a fixed amount of effort to construction of irrigation infrastructure

and/or flood-control facilities. If the producer allocates his pre-season effort to the devel-

opment of irrigation facilities instead of flood control, output will be relatively high if there

happens to be a drought (state 1) and low in the event of a flood (state 2). Conversely, if

pre-season effort is allocated mainly to flood control, output will be relatively high in state

2 and low in state 1. In this simple example, different pre-season allocations of the input

imply a trade-off between output realized in state 1 and output realized in state 2. That is,

the producer allocates the input to different states of Nature in order to effect a substitution

between state-contingent outputs.

The state-contingent approach, by permitting the allocation of productive inputs to differ-

ent states of Nature, recognizes that actions (input choices) can have different consequences

in different states of Nature. This is not a property of conventional stochastic production

theory, in which the role that inputs play remains the same regardless of which state occurs,

and which does not permit substitutability between state-contingent outputs. The different

types of state-contingent technology described by Chambers and Quiggin allow for more or

less substitutability between state-contingent outputs. A technology that does not permit

any substitutability between state-contingent outputs is referred to as output-cubical (such

a technology is Leontief in state-contingent outputs).

Whereas, on the one hand, the theory of state-contingent production is now well es-

tablished, on the other hand, empirical implementation of the state-contingent approach is

still in its infancy. The most notable applications to efficiency analysis are O’Donnell and

Griffiths (2006), O’Donnell, Chambers and Quiggin (2006), and Chavas (2008). O’Donnell

and Griffiths (2006) have used a Bayesian approach to estimate an output-cubical state-
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contingent production frontier for rice farmers from the Philippines. They show that, where

state-contingent uncertainty plays a major role, the stochastic frontier approach may lead

to significant overestimation of the inefficiency of some producers. Indeed, the part of the

deviation from the frontier that was due to risk was misinterpreted as inefficiency in the con-

ventional stochastic frontier model. Chavas (2008) estimates a state-contingent cost function

using aggregated data from the US (1949-1999 annual series). The results generated using

this data provide empirical support for an output-cubical technology. O’Donnell, Chambers

and Quiggin (hereafter OCQ) have used simulated data to estimate a stochastic frontier

which allows for state-allocable inputs. They show that, where technically efficient pro-

ducers make state-contingent production plans under conditions of uncertainty, standard

techniques of efficiency analysis (SFA and DEA) may produce spurious findings of ineffi-

ciency. An overly restrictive feature of the single-input model of OCQ is that the (single)

input is state-specific in the sense that output realized in a particular state of Nature will

be zero if none of the input has been allocated to that state.

Overall, this small set of empirical studies indicates that, in uncertain decision environ-

ments, conventional stochastic production frontier models can provide a restrictive and often

unrealistic representation of the production process, and can lead to significantly biased es-

timates of measures of technical efficiency. However, in a state-contingent framework, such

producers are judged to have merely encountered a state of Nature that is unfavorable, given

their state-contingent production plan, and need not necessarily be inefficient. For exam-

ple, a producer may choose to use a low level of pesticides because the expected return is

negative. In states of nature leading to a severe pest infestation, output will be low.1

In this article, we propose to i) generalize the state-allocable model of OCQ so that

output in a particular state of Nature can still be non-zero even when none of the input

has been allocated to that state (such an input is said to be state-general), ii) allow the

OCQ model to accommodate additional inputs that cannot be allocated to different states,

iii) show how this multiple-input state-allocable model can be estimated within a frontier

framework, and iv) use the methodology to estimate levels of input-allocability and technical

1Kumbhakar (2002) shows the importance of controlling for both risk and inefficiency in an expected

utility framework.
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efficiency using farm data from Finland.

The paper is organized as follows. The theoretical model, which is an extension of OCQ

(2006), is described in Section 2. In Section 3, we present the empirical application, including

a discussion of model specification, description of data, and discussion of estimation results.

Section 4 concludes.

2 Theoretical model

2.1 The technology

In OCQ (2006), the technology of production is modeled as follows:

ln qs = b−1(lnxs − ln as) (1)

where qs denotes output realized in state s ∈ Ω = (1, 2, . . . , S) and xs is the amount of input

x allocated to state s. OCQ assume that the producer chooses xs for all values of s before

the uncertainty is resolved (i.e., before s is known). The unknowns satisfy b ≥ 1 and as ≥ 0

for all s. The input is state-specific in the sense that output in state s is zero if no input has

been allocated to that state. The parameters as can be thought of as technical parameters

that are specific to the production of output in state s. The parameter b is interpretable as

the cost flexibility associated with production in state s (OCQ, 2006) and will thus indicate

the extent to which the state-contingent outputs are substitutable: as b → 1, the state-

contingent production transformation curve tends to a linear function which corresponds to

perfect substitutability between state-contingent outputs. As b → ∞, the state-contingent

transformation curve is Leontief in outputs, indicating that no substitution is possible and

that the production technology is output-cubical. The restriction that b ≥ 1 implies that

the technology always exhibits non-increasing returns to scale (OCQ, 2006). As explained

in the introduction, this model is likely to be too restrictive if estimated using real-world

data, if only because pure state-specific inputs seldom exist. Accordingly, we consider the

following more flexible model:

ln qs = b−1[ln(θx− θxs + xs)− ln as] (2)
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where 0 ≤ θ ≤ 1. The parameter θ is a measure of how output in state s responds to input

allocations to states other than s. Three cases are of special interest. First, if θ = 0 the

model collapses to the state-specific model of OCQ, as described in (1). Second, if θ 6= 0

then the input is state-general in the sense that output in state s is non-zero for any non-zero

level of total input, even if none of the input has been allocated to state s. Finally, if θ = 1

then the technology is output-cubical for all values of b ≥ 1. Specifically, if θ = 1 then

ln qs = b−1[lnx− ln as]. (3)

In this restrictive model, the parameter b is also the inverse of the elasticity of output with

respect to x.

2.2 Firm behavior

This section is incidental to the empirical application, but provides some insights into the

properties of our assumed technology. For related details and discussion, see OCQ (2006).

The technology (2) can be written in the following equivalent form:

qs =
(θx− θxs + xs

as

)1/b

. (4)

The ex post net return in state of Nature s is defined as

ys = qs − w
S∑

s=1

xs (5)

where w is the normalized price of input x. We assume the firm chooses x1, . . . , xS and

q1, . . . , qS to

maxW (y) s.t. qs =
(θx− θxs + xs

as

)1/b

∀s ∈ Ω (6)

where W (.) is a benefit function and y = (y1, . . . , yS)′ is the vector of state-contingent net

returns. The benefit function is assumed to be strictly increasing in y and suitably smooth

to allow differential changes in its arguments (OCQ, 2006).2 The first-order conditions for an

interior solution can be solved to yield the following system of S equations in S unknowns:

bw =
S∑

s=1

[
πs

(θx− θxs + xs

as

)1/b(θ − θδms + δms

θx− θxs + xs

)]
for m = 1, . . . , S, (7)

2An expected utility function is one example of such an objective function.
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where δms is the Kronecker delta and πs ≡ Ws(y)/
∑S

s=1Wm(y) is a risk-neutral probability.

This result says that any efficient choice for a rational firm with an objective function defined

over net-returns can be viewed as though it were generated by a risk-neutral firm with

subjective probabilities given by π = (π1, . . . , πS)′. This means it is possible to analyze the

behavior of any firm as if it were risk-neutral.

In the case where θ = 1, the technology is output-cubical and the system (7) becomes:

x =
(∑S

s=1[πsa
−1/b
s ]

bw

) b−1
b

for m = 1, . . . , S. (8)

Thus, the firm only chooses the amount of total input. In the case where θ = 0, the

technology is state-allocable and the inputs are state-specific. OCQ (2006) discuss the nature

of input choices in this case.

2.3 The case of multiple inputs

Let z = (z1, . . . , zK)′ denote a vector of K non-negative exogenous variables, including inputs

that are not state-allocable. A simple way of incorporating these variables into the analysis

is to simply replace as in (2) with asf(z). Then the technology takes the form:

ln qs = b−1[ln(θx− θxs + xs)− ln as − ln f(z)]. (9)

3 Empirical illustration

3.1 Specification of the model

Using equation (9), observed log-output is given by

ln q = b−1

S∑
s=1

es ln(θx− θxs + xs)−
S∑

s=1

esb
−1 ln as − b−1 ln f(z) (10)

where es is a dummy variable that takes the value 1 when Nature chooses state s (and 0

otherwise). In our empirical illustration we assume ln f(z) is linear:

ln f(z) =
K∑

k=1

αkzk (11)
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where αk (k = 1, . . . , K) a set of unknown parameters to be estimated. Combining and then

embedding (10) and (11) in a stochastic frontier framework gives:

ln q =
S∑

s=1

βses + β
S∑

s=1

es ln(θx− θxs + xs) +
K∑

k=1

γkzk + v − u (12)

where β = b−1; βs = −b−1 ln as; γk = −βαk; v is a symmetric random error representing

noise; and u ≥ 0 is a one-sided random variable representing technical inefficiency. We

assume that the v’s are independently and identically distributed normal random variables

with mean zero and variance σ2
v , and that the u’s are independently and identically dis-

tributed half-normal random variables with scale parameter σ2
u. In what follows, we will

adopt the following notation: σ2 = σ2
v +σ2

u and λ = σ2
u/(σ

2
v +σ2

u). Recall that the unknowns

in (10) satisfy b ≥ 1, as ≥ 0 and 0 ≤ θ ≤ 1. Thus, the parameters in (12) must satisfy

0 ≤ β ≤ 1 and 0 ≤ θ ≤ 1. Equation (12) is in the form of a conventional stochastic frontier

model except that it is nonlinear in the parameters. Thus, estimation is straightforward in

any nonlinear sampling theory or Bayesian framework.

3.2 Data

The data have been taken from the Finnish profitability bookkeeping records (which serve as

a basis for the European Commission’s Farm Accountancy Data Network (FADN) survey)

and cover the 1998-2003 period. The data comprise annual farm-level observations on acreage

allocated to each crop, crop output and expenditures on labor, pesticides and fertilizers.3

The sample used in our analysis considers specialized grain farmers from southern regions

in Finland, the main grain production area in the country. These data were complemented

by weather data (rainfall, temperature, and starting date of the growing season) for each

province produced by the Finnish Meteorological Institute. Data on input and output prices

have been collected from Finnish Agriculture and Rural Industries, an annual report of

Finnish agriculture. Our sample is an unbalanced panel of 274 farmers from 17 provinces

over the 1998-2003 period, making a total of 1,020 observations.

Because of the northern location, climatic conditions in Finland are relatively harsh for

agriculture - from time to time, frost occurs in the middle of the summer in all parts of the

3As is often the case with agricultural data sets, input data are not available by crop.
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country. Consequently, cereal yields (which reach only about half of the yields in Central

Europe) are highly variable, and farmers face significant production risk. Production risk due

to unstable weather conditions is recognized as the main source of risk for cereal producers

in this country.4 Most farms are family owned and operated, and the average farm size (39

hectares of arable land) is small compared to other European Union countries.

In our model, the output variable is an implicit quantity index obtained by dividing the

total value of production of wheat, barley and oats by an output price index. We consider

five inputs: land (x), labor (which corresponds to total working hours in crop production,

including both hired labor and family labor) (z1), capital (defined as the total value of

fixed assets on the farm) (z2), fertilizers (z3) and plant protection (z4). We also control for

technical change by including a time trend variable (z5).

We consider three states of Nature: a state of Nature that is most favorable to the

growing of wheat (s = 1), a state of Nature that is most favorable to the growing of barley

(s = 2), and a state of Nature that is most favorable to the growing of oats (s = 3). Based

on our discussions with Finnish grain specialists, the wheat-, barley- and oats-favorable

states of Nature have been defined in terms of two meteorological variables: the starting

date of the growing season and the sum of rainfall in June.5 The comparison of crop yields

under different conditions (early, average, and late start of the growing season, and low,

average and high sum of rainfall) permits identification of the three states as described in

Table 1.6 Table 1 reads as follows: an early start of the growing season combined with a low

[respectively average, and high] rainfall in June is most favorable to barley [resp. oats, and

barley], i.e. the highest yields are observed on average for barley [resp. oats, and barley].

An average starting date of the growing season is always favorable to wheat production. A

late start of the growing season combined with a low [resp. average, and high] rainfall is

4Liu and Pietola (2005) showed that yield volatility is large and dominates price volatility in the hedging

decisions of Finnish wheat producers. See also Koundouri et al. (2007) for related discussions.
5The starting date of the growing season (measured as a number of days from January 1st) is defined as

the period of each year with daily mean temperatures above +5 Celsius degrees, which is the temperature

at which soil is sufficiently thawed for root activity to begin.
6The comparison of crop yields has been made on a sub-sample of observations since information on yields

is missing for some farmers.

8



Table 1: Definition of crop-favorable states

Starting date

Early Average Late

Low rainfall barley wheat barley

Average rainfall oats wheat wheat

High rainfall barley wheat wheat

most favorable to barley [resp. wheat, and wheat]. Hence, for each observation (a farmer in

a specific year), based on the observation of the starting date of the growing season and the

sum of rainfall in June in the province (we have 17 such provinces), we know whether the

realized state of Nature was wheat-favorable, barley-favorable or oats-favorable. In Table 2,

we report the number of farmers experiencing each of the three states, for each year covered

by our sample.

In our model, only land (x) is regarded as state-allocable. Specifically, farmers are as-

sumed to allocate the land input to the production of wheat, barley and/or oats, in line with

subjective risk-neutral probabilities attached to states of Nature that are considered favor-

able to the production of each of those crops. Land allocated to wheat, barley and oats is

denoted x1, x2, and x3, respectively. For each farmer and each year, we have x = x1+x2+x3,

with xk ≥ 0 for k = 1, 2, 3.

Basic statistics of the main variables of interest are shown in Table 3.

3.3 Estimation results

The most flexible production technology (model FLEX) that we estimate is given by

ln q =
3∑

s=1

βses + β
3∑

s=1

es ln(θx− θxs + xs) +
5∑

k=1

γkzk + v − u (13)

where β = b−1; βs = −b−1 ln as; γk = −βαk. We then compare the FLEX model to three

more restrictive models. The first of these is a state-allocable model in which inputs are

state-specific (model OCQ) - this model corresponds to the FLEX model with θ constrained
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Table 2: Distribution of farmers across states, by year

Year Wheat-favorable Barley-favorable Oats-favorable Total

state state state

(s=1) (s=2) (s=3)

1998 123 16 28 167

1999 20 124 13 157

2000 26 33 102 161

2001 170 0 0 170

2002 150 0 20 170

2003 126 48 21 195

Total 615 221 184 1,020

Table 3: Descriptive statistics of the main variables

Variable Unit Mean Std. Dev. Min Max

land (x) ha 38.58 30.94 1.61 233.78

land to wheat (x1) ha 11.53 20.53 0 157.07

land to barley (x2) ha 18.55 23.27 0 211.76

land to oats (x3) ha 8.49 10.42 0 89.15

labor (z1) hours/year 876 789 0 12319

capital (z2) quantity index 199,219 155,220 4,989 1,022,397

fertilizers (z3) quantity index 3,968 4185 0 27,837

plant protection (z4) quantity index 1,837 2,422 0 25,027

trend (z5) 3.59 1.74 1 6
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to be 0:

ln q =
3∑

s=1

βses + β

3∑
s=1

es ln(xs) +
5∑

k=1

γkzk + v − u, (14)

We then estimate an output-cubical (model OC) model - this model corresponds to the

FLEX model with θ constrained to be 1:

ln q =
3∑

s=1

βses + β
3∑

s=1

es ln(x) +
5∑

k=1

γkzk + v − u. (15)

Finally, we estimate the conventional frontier model (CF):

ln q = β0 + β ln(x) +
5∑

k=1

γkzk + v − u. (16)

Estimation results are shown in Table 4. When estimating the model FLEX, the pa-

rameters β and θ were constrained to lie in the unit interval, but only the constraint on β

was ever binding. The ML estimate of θ was found using a combination of grid search and

gradient methods and all t-ratios are thus conditional on θ (to conduct valid finite sample

inference we would need to use a Bayesian approach). The parameters of interest θ and b

have been estimated at 0.8573 and 1/0.9889 = 1.0112 respectively. As expected, θ is found

to be different from 0, which indicates that land in our model is state-general, in the sense

that output in state s is non-zero even if none of the land has been allocated to that state.

For example, output will be strictly positive even for a farmer who planted only wheat and

barley in an oats-favorable state. The coefficients of the non-allocable inputs (labor, capital,

fertilizers and plant protection) are all found positive but do vary across specifications. In

the FLEX model, the rate of technical change is estimated at 1.35% per year. In the OCQ

model, θ is constrained to be zero and b is found equal to 288. This model is however likely

to be inappropriate for this data set, since we observe output to be non-zero in state s even

when no land has been allocated to that state. In the OC and CF models, θ is constrained

to be 1 and b is estimated at values very close to 1.

We compare the more flexible model FLEX to the three other specifications using a

Likelihood-Ratio (LR) test: LR = −2[lnLR − lnLU ] ∼ χ2(J) where lnLR and lnLU denote

the maximized values of the restricted and unrestricted log-likelihood functions and J is the

number of restrictions. The outcome of these tests indicates that FLEX is preferred to the

three (restricted) models (OCQ, OC and CF) - see Table 5.
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Table 4: Estimation results for the four models

FLEX OCQ OC CF

Parameter Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio

β1 6.2636 75.32 8.9998 107.36 6.1270 69.95 6.1331 69.42

β2 -0.1714 -5.04 -0.0458 -0.95 -0.1302 -3.81 . .

β3 0.1066 3.03 0.0698 1.37 0.0874 2.46 . .

β 0.9889 36.00 0.0035 2.37 0.9935 35.32 0.9836 34.62

γ1 2.48E-05 0.96 2.00E-04 5.18 2.24E-05 0.86 1.90E-05 0.72

γ2 5.30E-07 3.77 2.22E-06 12.08 5.65E-07 4.01 6.08E-07 4.23

γ3 7.37E-06 1.35 6.94E-05 9.69 7.18E-06 1.30 7.74E-06 1.39

γ4 2.60E-05 2.95 8.71E-05 7.34 2.82E-05 3.14 3.09E-05 3.42

γ5 0.0135 1.63 0.0230 1.97 0.0147 1.76 0.0185 2.27

σ2 0.5336 16.50 1.3085 17.20 0.5389 16.52 0.5598 16.60

γ 0.9066 56.21 0.9397 84.91 0.9050 55.50 0.9098 58.30

b 1.0113 288.1080 1.0065 1.0167

θ 0.8573 0.0000 1.0000 0.0000

Table 5: LR tests - FLEX model against OCQ, OC and CF

FLEX OCQ OC CQ

Log-L -640.0708 -1055.0253 -647.2202 -660.9343

LR against FLEX 829.9090 14.2988 41.7270

p-value 0.0000 0.0002 0.0000
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3.4 Elasticities of output and technical efficiency scores

The elasticity of output in state s with respect to the amount of input allocated to state k

can be computed as follows:

ηsk ≡
∂ ln qs
∂ lnxk

= b−1∂ ln(θx− θxs + xs)

∂xk

∂xk

∂ lnxk

=
xk(θ − θδks + δks)

b(θx− θxs + xs)
(17)

where δks is the Kronecker delta. If xk > 0 and θ > 0 then ηsk > 0 for all s and k.

The elasticity of total output with respect to the amount of input allocated to state k is

ηk ≡
∑S

s=1 esηsk. The elasticity of total output with respect to zk is:

εk ≡
∂ ln q

∂ ln zk

= γkzk. (18)

In Table (6), we report (estimated) elasticities of output in the three states with respect

to the amount of land allocated to each of those states (ηsk for s, k = 1, 2, 3) as well as the

elasticity of output with respect to the four non-allocable inputs (εk for k = 1 to 4). The

elasticities have been evaluated at the sample means of x, z1, z2, z3 and z4 (see Table 3

for mean values). As for land allocated to wheat, barley, and oats, we report elasticities

computed at x1 = x2 = x3 = 1
3
x̄ where x̄ is the sample average of total land, in order to

allow for a simpler discussion of elasticities. Elasticities of output computed from the FLEX

model have expected signs and reasonable magnitude. Elasticities of output with respect to

land vary between 0.31 and 0.36, with higher values when land has been allocated to the

crop for which conditions are the most favorable (η11, η22, η33). More precisely, if the input

is equally allocated between states then, for the FLEX model, ceteris paribus, a 1% increase

in xs leads to a 0.3643% increase in qs and a 0.3123% increase in qk for k 6= s; whereas in

the more restrictive OC model, a 1% increase in xs leads to a 0.3312% increase in qk for all

k and s. The OCQ model produces elasticities that are quite far from elasticities obtained

with the FLEX and OC models. Elasticities from the OCQ model may be low because the

OCQ model considers that there is no output in state s if xs = 0. In other words, this model

forces ∂ ln qs/∂ ln zk = 0 whenever xs = 0. It means that there can be no output response to

an increase in capital, for example, if no land was allocated to the realized state (and this

happens a lot in our sample). In the FLEX model, we find that elasticities of output with

respect to labor, capital, fertilizers, and plant protection are respectively 0.02, 0.11, 0.03 and

0.05.
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Table 6: Elasticities of output

FLEX OCQ OC CF

η11 0.3643 0.0035 0.3312 0.9836

η12 0.3123 0.0000 0.3312

η13 0.3123 0.0000 0.3312

η21 0.3123 0.0000 0.3312

η22 0.3643 0.0035 0.3312 0.9836

η23 0.3123 0.0000 0.3312

η31 0.3123 0.0000 0.3312

η32 0.3123 0.0000 0.3312

η33 0.3643 0.0035 0.3312 0.9836

ε1 (labor) 0.0217 0.1752 0.0196 0.0166

ε2 (capital) 0.1056 0.4413 0.1126 0.1212

ε3 (fertilizers) 0.0293 0.2755 0.0285 0.0307

ε4 (plant protection) 0.0478 0.1600 0.0518 0.0568

Table 7: Technical efficiency scores

FLEX OCQ OC CF |FLEX-OCQ| |FLEX-OC| |FLEX-CF|

Mean 0.6309 0.5056 0.6298 0.6244 0.1552 0.0165 0.0281

St. Dev. 0.1828 0.2234 0.1827 0.1861 0.1313 0.0118 0.0235

Max 0.9429 0.9326 0.9483 0.9493 0.7197 0.0711 0.1164

Min 0.0381 0.0148 0.0372 0.0369 0.0011 0.0001 0.0001
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We then compute individual technical efficiency (TE) scores in the four models and

report some summary statistics in Table 7. In the last three columns of the table, we report

summary statistics for the difference (in absolute value) between TE scores obtained with

the FLEX model and TE scores obtained using the OCQ, OC and CF models, respectively.

The average TE score in the FLEX model is 0.63, varying between from 0.04 to 0.94. The

average TE in the FLEX model is only slightly higher than the average TE estimated in the

OC and CF models, but estimated TEs do vary across models on an individual basis. The

OCQ model appears to overestimate farmer’s inefficiency, on average.

4 Conclusions

In this article, we present one of the first real-world empirical applications of state-contingent

production theory. Our state-contingent behavioural model allows us to analyze production

under both inefficiency and uncertainty without regard to the nature of producer risk pref-

erences. Using farm data for Finland, we estimate a flexible production model that permits

substitutability between state-contingent outputs. Our model extends the theoretical model

described in OCQ (2006) by allowing for a state-general input as well as multiple non-

allocable inputs. In our application, we treat land as a state-allocable input, and we specify

four non-allocable inputs (labor, capital, fertilizers and pesticides). Uncertainty is repre-

sented by three states of Nature, defined in terms of climatic conditions (rainfall and start of

the growing season): a wheat-favorable state, a barley-favorable state, and an oats-favorable

state. We test empirically, and reject, an assumption that has been implicit in almost all

efficiency studies conducted in the last three decades, namely that the production technology

is output-cubical. Our results indicate that a state-allocable state-contingent production

model is preferred to the more restrictive output-cubical state-contingent model, as well as

a conventional stochastic frontier.
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