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Consistent Estimation of Longitudinal Censored Demand Systems 

 
 
 
 
 
 

Abstract 

In this paper we derive a joint continuous/censored demand system suitable for 

the analysis of commodity demand relationships using panel data.  Unobserved 

heterogeneity is controlled for using a correlated random effects specification and a 

Generalized Method of Moments framework used to estimate the model in two stages.  

While relatively small differences in elasticity estimates are found between a flexible 

specification and one that restricts the relationship between the random effect and budget 

shares to be time invariant, larger differences are observed between the most flexible 

random effects model and a pooled cross sectional estimator.  The results suggest the 

limited ability of such estimators to control for preference heterogeneity and unit value 

endogeneity leads to parameter bias.   

 
Keywords:  Censored Demand System, Almost Ideal Demand System, GMM, Random 
Effects 
 
JEL Classifications:  C33, C34, D12 
 



Introduction 

Our understanding of how public policy instruments such as taxes, subsidies, and 

social programs impact consumer behavior has been greatly enhanced by the expanding 

availability of comprehensive microeconomic data, yet full exploitation of the data for 

policy analysis is often hampered by the arduous econometric techniques required to 

extract vital information.  In particular, the high proportion of zero expenditure levels for 

individual commodities makes it difficult to estimate large, theoretically consistent 

disaggregated consumer demand models.  The two principle reasons for zero 

expenditures in microeconomic data are households at a corner solution for the 

commodity in question, and limited survey periods leading to infrequency of purchase 

(IFP) errors.  Because of the basis for the former in economic theory and the recent 

proliferation of survey data designed to mitigate the latter, most of the econometric 

techniques developed thus far are designed to model economic non-consumption. 

Much of the recent empirical research on censored demand systems has focused 

on developing computationally feasible estimation techniques that circumvent the “curse 

of dimensionality” associated with the theoretically consistent models proposed by Wales 

and Woodland and Lee and Pitt (1986, 1987).  For example, Shonkwiler and Yen develop 

an improved two-step approach that is general enough to model IFP errors as well as 

other processes generating zero expenditures.  Nonetheless, its application to corner 

solutions has been criticized by Arndt, Lui, and Preckel for an inability to account for the 

role of reservation prices.  Instead, Arndt proposes the use of maximum entropy (ME) 

techniques to address this shortcoming and generate a simpler framework for the 

imposition of coherency conditions.  Limiting this estimator’s feasibility, however, is the 

fact that its asymptotic properties are unknown in non-linear applications such as the 

censored demand problem.  
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More recently, Perali and Chavas have developed a consistent approach to the 

problem based on generalized method of moments (GMM) techniques, while Yen, Lin, 

and Smallwood formulate a quasi-maximum likelihood approach they claim is more 

efficient in small to moderately sized samples.  Although all of the above approaches 

provide a means of obtaining consistent estimates of disaggregated demand models, they 

are designed for cross sectional data, which suffers from a number of shortcomings.  

Chief among these are the limited ability to control for heterogeneous preferences and 

lack of significant real price variation. 

Therefore, we develop a methodology for consistently estimating large, 

theoretically plausible longitudinal censored demand systems using a GMM framework 

similar to that employed by Perali and Chavas.  The estimator is able to exploit the 

greater price, expenditure, and demographic variability of panel data, and provides a 

means to reduce bias through more effective controls for household-level heterogeneity 

and unit value endogeneity.  In order to determine the sensitivity of price and income 

elasticities from censored demand systems to the presence of unobserved heterogeneity, 

we first implement the longitudinal estimator on a three-year panel data set from 

Romania and then compare the elasticity estimates to those that result when a more 

restrictive random effects specification is assumed and when the panel is pooled to create 

a large cross section. 

Specification and Estimation 

Theoretical and Empirical Specification          

In accordance with the random utility hypothesis (RUH, McFadden), define the 

direct utility function as ),;,( jjtjtjt caqU ε , where Tt ,...,1=  indexes time periods, 

Jj ,...,1=  indexes households, ),...,( 1 ′= Njtjtjt qqq  is a vector containing household j’s 
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demand levels for the N commodity groups in time period t, ),...,( 1 ′= Njtjtjt εεε  is a 

vector of random disturbances distributed ),0( 2
εσN , ),...,( 1 ′= Ljtjtjt aaa  is a vector of L 

household demographic variables (not all of which are time varying), and jc  is a time 

invariant household specific effect representing unobserved heterogeneity across 

households.TP

1
PT  If it is further assumed )  ( ⋅U represents a preference ordering of the 

PIGLOG class, then consumer maximization of utility leads to the familiar cost function 

corresponding to Deaton and Muellbauer’s Almost Ideal Demand System (AIDS);  
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where jtu  is a reference level of utility and ktp  is the price of good k in time t.  Since the 

household specific effect is akin to a collection of unobserved demographic variables, it 

is included in the empirical specification via demographic translating (Pollack and 

Wales) like the observed demographics.  The random disturbance terms are also 

translated into the cost function to maintain consistency with the RUH.  

 Inverting (1) to obtain the indirect utility function and applying Roy’s Identity 

produces the following Marshallian uncompensated demand functions in budget share 

form: 
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and ∑−=
k kjtktnnjtnjt p εβεε log~ .   

  The most flexible specification of equations (2) and (3) possible allows all of the 

estimable parameters to vary over time.  For large, comprehensive demand systems, 

however, it is unlikely the resulting parameter set could be precisely estimated, and 

economic conditions may not require such parameter flexibility.  The estimation 

approach detailed in the next section allows us to focus on a sub-set of the estimable 

parameters and leave the others unrestricted.  Because there are no historical events 

during the sample period that suggest structural change in demand patterns, we assume 

that the coefficients on the economic variables (prices and total expenditure) are stable 

and time invariant.  Nonetheless, the intercept of each share equation is allowed to vary 

over time to capture changes on macroeconomic conditions that may influence the 

structure of demand. 

Since the observed demographic variables are not of primary interest and included 

in the model only as controls, their coefficients are left unrestricted.  Indeed, little is 

know about the temporal relationship between demand patterns and measured 

demographics, and there are many situations warranting this flexibility.  Similarly, the 

household specific effect contains a time varying coefficient, leading to a more flexible 

specification than is typically found in applied work, where the fixed effects specification 

is frequently used to account for unobserved heterogeneity in linear models.  Fixed 

effects implicitly constrains tnnt ,   1 ∀=δ , but if this restriction is invalid and the fixed 

effect is correlated with the model’s regressors, parameter estimates of the slope 

coefficients will be biased.  One of the advantages of the GMM approach used below is 

that it allows explicit testing of such restrictions. 

Another common method for modeling unobserved heterogeneity using panel 

data is the random effects approach, which treats jc  as a component of the disturbance 



term and uses GLS to estimate the model.  In order for random effects estimators to 

produce unbiased estimates, the random effect must be orthogonal to model’s regressors, 

an assumption that cannot be made in general.  Rarely do surveys contain the exogenous 

market prices called for in theory, rather, prices are often computed as unit values, where 

the household’s expenditures on a certain item are divided by the physical quantity 

purchased.  These unit values are correlated to the household’s preferences for goods of 

different quality, and consequently, with the household specific effect.  Furthermore, it is 

possible that  is correlated with the observable demographic variables in the model. jc

The nonlinear methods required to estimate censored demand equations lead to 

additional issues that must be addressed when applying fixed or random effects models, 

which are summarized by Jakubson (1988) in the context of labor supply.  Although 

fixed effects estimation places no distributional requirements on the form of the 

unobserved heterogeneity, it is consistent only when the time series dimension of the 

panel is large.  By contrast, random effects requires one assume the household specific 

effect follows a specified distribution, but is consistent in short panels.  Because the data 

series used in our analysis contains only three time periods, consistency of the parameter 

estimates can only be achieved through the random effects approach.  However, we find 

that single equation Hausman tests (Greene, p.576) conducted on the non-censored 

equations reject the null hypothesis of orthogonality of the random effect with the 

regressors.       

In order to incorporate the correlation of the random effect with the regressors 

into the estimating equation, we employ a specification developed by Jakubson (1988) 

for single equation Tobit estimation on panel data, based of previous work by 

Chamberlain in the linear (1982) and probit context (1984).  This correlation is modeled 

as a linear projection of  on all the right hand side variables:   jc
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where jυ is assumed to be independent of both the exogenous regressors and njtε~ , D
jtx  is 

expenditure deflated by an appropriate price index, and jυ  is distributed ),0( 2
υσN .  For 

notational convenience, define D
tttt xpax log|log| ′′=′  as a row vector of length 

)1( ++ NL  that includes all the regressors in (2) less the intercept.TP

2
PT  Jakubson notes there 

are certain cases in which the assumption of independence between jυ  and 

Txx ′′=′ ,...,1x  may be invalid.  For example, since the effect of the regressors outside 

the sampling period is contained in jυ , if x′  exhibits strong serial correlation, the 

independence assumption is violated. When the expression in (4) is used to integrate the 

household specific effect out of the demand equations, the resulting demand system 

disturbances are normally distributed,  heteroscedatic within each equation, and 

correlated across equations through both the s'ε  and υ .TP

3
PT    

 In order to linearize the above budget share equations and reduce the potential for 

severe multicollinearity between the AIDS price index and the rest of the specification, 

we replace (2) with a scale-invariant log linear Laspeyres index, which has been shown 

by Moschini and Buse to have good approximation properties.  This index is equivalent 

to the geometrically weighted average of prices ∑=
k

ktk
G

t psP loglog 0 when 0ks  is 

calculated for some base level.  Following substitution of the price index and random 

effect specification into (1), the reduced form linearized AIDS model (LAIDS) can be 

written as  

           njtnTjTnjnjnjtnjt uxxxs +′++′+′+= πππα ...2211                   (5) 

 

where ),...,( 1 ′′′= nTnnt πππ  is the reduced form parameter vector of demand equation n in 

time period t.  Note that the regressors from all time periods enter the reduced form 

demand equations through their correlation with the random effect.  If the N demand 
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equations are partitioned into a subset 1N  containing the uncensored equations, and a 

subset 2N  containing censored equations, then the system of demands in 1N  can be 

estimated consistently via equation-by-equation OLS.   

The demands in 2N  are specified as 

  
⎩
⎨
⎧ >+′++′+′+

=
otherwise

0RHS if   
0

...2211 njtnTjTnjnjnjt
njt

uxxx
s

πππα
,                (6) 

and estimated efficiently as a system of correlated Tobit equations.  Since joint estimation 

requires the evaluation of TN2  dimension normal integrals, which is infeasible for large 

TN2 , a consistent approach is adopted to obtain the reduced form parameters using 

equation-by-equation Tobit estimation.  Without accounting for the heteroscedasticity in 

ntu , however, these parameter estimates will be biased and inconsistent (e.g., Pudney, 

p.148), so a modification to the conventional Tobit is necessary.  A fairly general way of 

modeling the heteroscedasticity is to specify 2222 )exp()()( ntjtntntnjt wwuE ζσσ ′== , where 

jtw  is a vector of length R of exogenous variables responsible for unequal dispersion of 

the individual error terms, ntζ  is a R-vector of estimable parameters, and 2
ntσ  is an 

estimable common parameter in the covariance matrix. 

 Stacking the equations in (5) and (6) over time sequentially by good defines a 

system of NT continuous/censored demand equations with correlated disturbances and the 

TRNLNT )3( +++× reduced form coefficient matrix:  

 
⎥
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where 

     nnnTnTnNTntnLtnnLnn σλδα ||  ||}{}{|| 11 21
ζIIIdiagdiagηΠ ′+= βγγηη LL ,     (8) 
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nα  is a 1×T  vector of intercepts, 
1nLη is a 1LT ×  matrix of coefficients on the 1L  time 

invariant observable demographic variables, }{ nltηdiag  are TT ×  matrices corresponding 

to the coefficients on the 2L  time varying observable demographic variables, TI  is a 

TT ×  identity matrix, nδ  is a 1×T  vector of parameters multiplying the household 

specific effect, and ),...,,,...,,...,( 33
1

22
11

1
,

1
11 TNTLTλ λλλλλλ=′  is a TNL )1(1 ++×  vector of 

parameters from the correlated random effect specification, nζ  is a RT ×  matrix of 

parameters in the heteroscedastic error specification, and nσ  is a 1×T  vector variance 

parameters.TP

4
PT  While (8) represents the hypothesized structure of the underlying system, 

other specifications are possible and will be tested against this one is the next section.  

Finally, note that the δ  parameters are only identified up to a scale factor, requiring the 

following normalization in the first time period:  nn ∀=   11δ . 

One advantage of the GMM estimator developed below is that it allows the 

dimensions of the estimation problem to be reduced by focusing on a subset of 

parameters while leaving the others unrestricted (Chamberlain, 1984).  Since the primary 

objective of this study is to calculate price and expenditure elasticities for the censored 

and uncensored commodities, we need only identify the coefficients of prices and total 

expenditure and the univariat variance parameters for the censored equations.  Therefore, 

let ∗Π  be the TRNNT )2( ++×  reduced from coefficient matrix that excludes the 

columns containing the demographic coefficients and intercepts, and transform it into 

vector of length NTK  as )( ∗′= Πvecπ , where 21 1 +⎟
⎠
⎞

⎜
⎝
⎛ −+=

N
NRNK  and the zeros in 

the ζ  parameter sub-matrix have been removed from the π  vector. 

Generalized Method of Moments Estimation Framework          

It is possible to derive a consistent asymptotically normal efficient estimator 

based on the marginal distributions of the data in cases where the joint likelihood 
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function can be written down in theory, but not calculated directly.  This approach, 

developed by White and generalized by Jakubson (1998), called quasi-maximum 

likelihood estimation (QMLE) relies on a method of moments framework to approximate 

joint ML.TP

5
PT  QMLE can be broken down into two stages, with the first involving 

consistent estimation of the reduced form parameters using OLS on the non-censored 

equations and heteroscedastic Tobit estimation on the censored equations.  The second 

stage entails using minimum distance techniques (Malinvaud) to impose restrictions on 

the reduced form parameter estimates, including those necessary to identify the structural 

parameters and correlated random effect, and demand theory restrictions such as 

homogeneity and symmetry.TP

6
PT 

A critical piece of the minimum distance estimator is the metric used to measure 

the distance between the sample and population moments.  It is widely agreed the proper 

norm is the inverse covariance matrix of ∗Π̂  (Jakubson, 1986), however, this matrix must 

be calculated taking into account the fact that ∗Π̂  is estimated from the marginal 

distributions of the time period and good-specific demand equations and not through the 

joint likelihood function.  A detailed derivation of this NTKNTK × covariance matrix is 

given in Meyerhoefer (2002), where it is shown to take the form 1
12

1
1

−−= DDDΩ .  If 

),...,( 11 ′′′= NjTjj SSS  denotes the vector of univariate scores for all NT equations, and njtH  

the univariate hessian for demand equation n in time period t, then 

})(,...,)({ 11
11

1
1

−−− = NjTj EE HHdiagD and )(2 jj SSE ′=D .  A consistent estimator of Ω  is 

obtained by replacing the population moments by their sample counterparts.  The 

minimum distance estimator can then be constructed as  

   )](ˆ[ˆ])(ˆ[)(min 1 ψhπψhπψ −′−= −ΩD ,                      (9) 

where ψ  is a Q-vector of structural parameters (Q< NTK ) and )(⋅h  is a non-linear 

function mapping ψ  into π .  This function is used to impose the demand theory 
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restrictions of symmetry and homogeneity on the reduced form and identify the 

parameterized random effect.  It’s Jacobian ψ
ψ

′∂
∂ )(h  has full column rank equal to Q.   

Under the null hypothesis that the restrictions imposed by )(⋅h  are correct, )ˆ(ψJD  is a 

chi-squared distributed random variable with df = QNTK − .  This Wald statistic can be 

used to formulate tests (nested and non-nested) of the underlying specification of 

structural parameters. 

Data and Results           

Data used in the estimation of the joint continuous/censored demand system are 

drawn from the nationally and regionally representative 1994-96 Romanian Integrated 

Household Survey (RIHS).  The RIHS contains three individual cross sections composed 

of 24,523 households in 1994, 31,558 households in 1995, and 32,013 households in 

1996, as well as an embedded panel data set of 6,940 households.  Although we estimate 

the censored demand system only on the panel of households, the entire cross sections are 

used to compute cluster prices.  Monthly market prices are approximated in each of the 

survey’s forty-seven ‘judets’ (counties) by the median unit value calculated from the 

sample of purchasing households, and deflated using a composite food, nonfood, and 

services CPI.  In rare cases where no households in a given judet purchase a commodity 

in the specified month, the median unit value is computed across a larger region and/or 

longer time period.TP

7
PT   

When unit values are used to approximate market prices they are susceptible to 

endogeneity bias due to measurement error and quality effects, a deficiency that has been 

addressed by several studies in the context of uncensored equation systems (Deaton; 

Crawford, Laisney, and Preston).  Our use of median unit values computed at the judet 

level to approximate prices has the potential to reduce measurement error, provided the 



number of households in each county is sufficiently large (Deaton, p. 294).  Indeed, Kedir 

has found evidence using a much smaller urban data sample from Ethiopia that the 

difference between uncorrected and measurement error corrected own-price elasticity 

estimates seems to diminish, while the quality correction becomes relatively more 

important, as cluster size increases.  However, the fact that the medians are computed 

over the sample of purchasing households leads to the possibility of selection bias, which 

we do not correct.8  One advantage of our model over cross sectional estimators is that it 

provides a reasonable way to control for the endogeneity of unit values due to quality 

effects through their correlation with the random effect.  

Total consumption expenditure is computed by aggregating information on food, 

nonfood goods and services, collected over a one-month period, or a retrospective one-

year time frame in the case of durables.  For many households, especially in rural areas, a 

significant share of food consumption is derived from own production, in-kind payments, 

and gifts.  These are valued at household specific open market price if the household 

purchases some of the own-consumed product in the market, and the regional market 

price if the household makes no market purchases of the product.  Monetized home 

consumption is then added to purchased food, nonfood goods, services, and the flow of 

services from durable goods (based on a constant ten-year depreciation schedule) to 

create the total consumption expenditure variable.   

The RIHS contains a wealth of demographic information that is exploited to 

control for heterogeneity across households.  These include eight regional locators, four 

seasonal indicators, and the following household composition variables:  The number of 

young children in the household between the ages of zero and four, the number age five 

through seventeen, and the number of adults eighteen years of age or older.  In addition, 

characteristics of the household head are used as household level preference controls, 

 11



including the head’s age, an indicator of whether the head is female, and four dummy 

variables denoting educational attainment at either the primary level, lower secondary or 

technical school, upper secondary, or university/college level. 

Table 1 lists the average budget shares and percentage of zero expenditures for 

each commodity group in the demand system.  The grouping of goods in the model is 

primarily policy driven, as commodities subject to differential value added (VAT) or 

excise tax rates during Romania’s transition are all treated separately.  Nevertheless, 

every attempt was made to place goods that are close substitutes in the same group 

whenever possible, in accordance with the composite commodity theorem.  The fact that 

the budget shares of each commodity vary little from 1994 through 1996 lends credence 

to our assertion that the structure of commodity demand in Romania was stable during 

this period.9

The degree of censoring is naturally much higher for the individual commodities 

(with the exception of bread) than larger commodity groups, which are also generally 

composed of necessities and staple foods.  As noted by Perali and Chavas as well as 

Pudney, instances of zero expenditure levels due to non-consumption are more likely in 

developing countries than wealthier societies.  The same is true of transition countries, 

such as Romania, where many households live below the poverty line and the removal of 

communist-era price subsidies has lead to large real price increases during the transition 

period.10  In addition, the survey period of the RIHS is long enough to make the 

possibility of systematic IFP errors in the data remote, so most of the observed zero 

expenditure levels are attributable to economic non-consumption. 
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Specification Tests 

Although the theoretical derivation of the censored demand equations from a 

random utility function implies the error terms of the estimating equations are 

heteroscedastic, it is advisable to confirm the implications of the theory empirically 

before corrective action is taken.  Following the approach detailed in Greene (p.914), we 

construct a Lagrange multiplier (LM) statistic under the assumption that the unequal 

dispersion of error terms is related to household size and the log of total expenditures.  

The tests indicate the regression disturbances are heteroscedastic in all of the equations 

expect that of gasoline and diesel fuel, so a conventional rather than heteroscedastic Tobit 

model is specified for this commodity group.  

 It is also possible to test whether the data generating process is consistent with 

more parsimonious specifications of the random effect.  For example, fixed effect models 

typically make the implicit assumption that tnnt ,  1 ∀=δ , while most nonlinear 

applications of the random effects approach impose the additional restriction that all the 

λ  parameters are equal to zero.  These nested specifications are tested by subtracting the 

distance function of the incrementally restricted model (A) from that of the less restricted 

model (B).  The resulting test statistic )ˆ()ˆ( AB ψψ JDJD −  follows a chi-squared 

distribution with df = dfBB B - dfBAB. 

 Restricting the impact of the random effect to be constant over time leads to the 

test statistic 11212
)24( =χ , which is considerably larger than the critical value 36 at the 5% 

level of significance.  Likewise, the restriction that the random effect is orthogonal to the 

regressors in the model is also soundly rejected at the 5% level of significance.  In that 

case the test statistic is 13792
)63( =χ  and critical value 83.TP

11
PT  Therefore, both of the 

incremental restrictions on the model commonly assumed to hold in other studies are 

rejected using our data sample. 
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Elasticity Estimates 

 Expenditure elasticities for the correlated random effects (CRE) model are 

reported in Table 2 along with their standard errors.TP

12
PT  We also report estimates from the 

CRE model with the δ parameters restricted to unity, and the estimates from a cross 

sectional (CS) model where the three years of panel data are pooled and the demand 

system estimated without a random effect.  The percentage change in the magnitude of 

expenditure elasticities between full CRE and restricted CRE are reported to demonstrate 

the potential bias associated with more restrictive estimators that do not allow the impact 

of the household specific effect to vary over time, such as the conventional fixed effects 

specification.  Likewise, differences between the CS and CRE model can be primarily 

attributed to biases induced by an inability to control for household heterogeneity in 

preferences (omitted variable bias).  Since this is not a Monte Carlo study the observed 

biases are not generalizable, rather, the results provide an indication of the expected 

difference in elasticities estimated using a typical household panel. 

In general, the CRE expenditure elasticities are consistent with prior expectations 

and show the staple foods bread and grain are fairly unresponsive to income changes, 

while luxuries such as gasoline, diesel fuel, and other nonfood goods are highly 

responsive.  Restricting the impact of the random effect to be time invariant leads, for the 

most part, to elasticities that under-estimate those of the more flexible specification, by 

nearly 5 percent on average.TP

13
PT  In contrast, most of the CS estimates exceed those from 

the CRE model, with the magnitude of the divergence surpassing 20 percent in the case 

of bread, fruits and vegetables, coffee, and the meat, dairy, oils, and fats groups.  In fact, 

the average differential between CRE and CS elasticities is over three times that of the 

restricted CRE model at 16 percent. 



Most of the own-price elasticities associated with the three models reported in 

Table 3 are also within the expected magnitudes.  However, we were surprised to find the 

grains elasticity above unity, and the own-price responsiveness of beer is higher in 

Romania than has been documented for other countries.  Nonetheless, the other alcohol 

elasticities are similar to those found elsewhere in the commodity demand literature 

(Leung and Phelps; Smith).  The tobacco elasticity is larger than estimates for the U.S. 

and U.K., but falls within the -0.6 to -0.8 range reported for less developed countries 

(Chaloupka and Jha). 

We find clear differences in own-price elasticities between the CRE model and 

both the restricted CRE and CS models, although there is no clear pattern of over- or 

under-estimation in this case.  The restricted CRE estimates deviate from the more 

flexible specification by 7 percent, due in part to the large over-estimation of the own-

price responsiveness of tobacco.  The deviation in CS own-price elasticities from the 

CRE model, at approximately 12 percent, is somewhat less than observed for the 

expenditure elasticities.  The largest differential occurs for wine, which is over-estimated 

by the CS model by 29 percent.        

When the CS cross-price elasticities are compared to those generated by the CRE 

model, it is also changes in the price of wine that lead to the greatest elasticity 

differentials.  The CRE and CS estimates for all of the commodity groups are reported in 

Table 4 with their standard errors.  While the overall median differential between the two 

estimators is 140 percent, changes in the wine price generate demand responses in the CS 

model that differ by 389 percent from the CRE model.  Since some of the cross-price 

elasticities are imprecisely estimated, differences in degrees of freedom between the 

estimators and sample variability play a greater role in the comparison of specifications 
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than they do for expenditure and own-price elasticities.  However, there are a variety of 

sizable differences in the cross-price effects even for statistically significant elasticities.    

Summary and Conclusions           

This study develops a framework to exploit the rich information content of 

longitudinal data in the estimation of large, disaggregated demand systems.  Censoring of 

the dependent variables makes maximum likelihood estimation of these systems difficult 

with cross sectional data and infeasible for panels with even a small number of time 

periods.  Therefore, a consistent and asymptotically efficient GMM estimator is used to 

identify the parameters of an empirical specification consistent with the random utility 

hypothesis and flexible enough to nest a variety of different models of household 

heterogeneity.  First, estimates of reduced form parameters are obtained from linear 

regressions and non-linear heteroscedastic Tobit models.  The minimum distance 

estimator is then used to identify the underlying structural parameters, impose economic 

restriction on the model, and test for more restrictive specifications of the household 

specific effect.  The most appropriate model allows the impact of the household specific 

random effect to vary over time, a generalization rarely tested for in the applied literature. 

When the resulting elasticity estimates are compared to those from a more 

restrictive correlated random effects model where the household specific effect is 

assumed to be time invariant, average differences in the expenditure and own-price 

elasticities are found to be 5 and 7 percent.  This suggests the bias associated with 

specifications that allow the random/fixed effect to be freely correlated with the 

regressors, but do not allow for time dependency, may not be substantial.  However, 

when the more flexible specification is compared to a cross sectional model estimated on 

pooled data, average differences in expenditure and own-price elasticities are between 12 
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and 16 percent.  In addition, substantial differences in cross-price elasticities are found, 

suggesting that the inability to control for heterogeneous preferences and unit-value 

endogeneity in cross sectional data can lead to more serious parameter bias. 
 
Notes 
 

TP

1
PT Further, assume that )  ( ⋅U  is strongly separable over time, monotonic, and strictly quasi-concave in q .  

TP

2
PTTo avoid confusion in the notation, total expenditures will always be referred to in logarithmic form as 

jtxlog , while the vector tx ′  is as defined above. 

TP

3
PT Chavas and Segerson have shown heteroscedasticity in share equation disturbances to be a general 

property of all specifications derived from a random objective function. 

TP

4
PT Note that for the uncensored equations .0=ζ  

TP

5
PT The term “quasi-maximum likelihood” has become more general since its use in the White reference.  

While our QLME approach falls into the class of GMM estimators, Yen, Lin, and Smallwood’s  QMLE 

does not.  The consistency of this class of estimators was established by Hansen.      

TP

6
PT Although the observed budget shares add up, the latent shares need not, so we do not impose the adding-

up on the system.  This should have little impact on the price coefficients since they sum to zero across 

equations by default once symmetry and homogeneity have been imposed. 

TP

7
PT The only commodity whose price cannot be computed from survey data is tobacco.  Therefore, we use the 

monthly national tobacco CPI derived by the Romanian National Institute for Statistics. 

TP

8
PT Dong, Shonkwiler, and Capps have developed a method to deal with this issue when unit values are used 

in lieu of prices.  Nonetheless, incorporating their methodology into our model would be technical 

challenging, and is left as an area of future research. 

TP

9
PT The only exception is the large drop in the gasoline and diesel fuel budget share in 1995, which coincides 

with one of Romania’s coldest winters for a century and the strong possibility of fuel rationing.  
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TP

10
PT Headcount estimates from Meyerhoefer (2001) put the percentage of the population living in poverty in 

1994-96 between 25 and 30 percent, depending on the method used to compute the poverty line.  

TP

11
PT Although these tests were conducted conditional on the joint imposition of symmetry and homogeneity, 

the demand theory restrictions (taken together) are rejected by the data.  Conducting the tests without the 

prior imposition of symmetry and homogeneity produces test statistics of 1159 and 1383, respectively, 

which also lead to rejection. 

TP

12
PT All of the reported standard errors were computed using the delta method, which was solved analytically 

or numerically by means of a finite differences method. 

TP

13
PT Imposing equality on the time period specific disturbance variances from the gasoline and diesel fuel 

equations leads to estimation problems in the CREP

δ=1
P model.  Therefore, we estimated the model while 

restricting the disturbance variance to the arithmetic average of the time period specific estimates.  As a 

result, the gasoline and diesel fuel elasticities for CRE and CREP

δ=1
P are not directly comparable. 
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Table 1. Average Budget Shares and Degree of Censoring

Commodity 94 95 96 94 95 96
Bread 7.2 6.8 7.0 2.4 0.6 0.6

Grains 3.3 2.8 3.2 1.9 0.7 1.2

Fruits, Vegetables 12.6 15.7 14.7 0.2 0.1 0.1

Meat, Dairy, Oils, Fats 26.0 27.0 27.3 0.1 0.0 0.0

Other foods 7.8 8.3 8.4 0.2 0.0 0.0

Coffee 1.2 1.3 1.2 50.8 45.3 44.0

Beer 0.6 0.7 0.6 73.4 69.8 72.6

Wine 1.8 2.0 2.2 56.8 56.0 57.1

Liqueur 1.1 1.1 1.1 57.8 51.9 53.4

Tobacco products 1.4 1.3 1.5 62.9 64.1 66.3

Gasoline, Diesel fuel 0.1 0.04 0.1 86.1 85.6 85.0

Nonfoods 36.4 32.9 32.1 1.1 1.1 1.0

Average Budget Share % of Zero Budget Shares

 

 

 21



 22

Table 2. Expenditure Elasticities  (Standard Errors in Parenthesis)

Commodity n CRE CREδ=1 CS %∆ CREδ=1 %∆ CS
from CRE from CRE

Bread 0.339 0.315 0.465 -7.1 37.2
(0.009) (0.009) (0.011)

Grains 0.441 0.404 0.453 -8.4 2.7
(0.013) (0.013) (0.016)

Fruits, Vegetables 0.633 0.621 0.771 -1.9 21.8
(0.007) (0.006) (0.006)

Meat, Dairy, Oils, 0.653 0.655 0.807 0.3 23.6
Fats (0.007) (0.005) (0.006)
Other Foods 0.759 0.757 0.880 -0.3 15.9

(0.010) (0.009) (0.011)
Coffee 0.753 0.732 0.926 -2.8 23.0

(0.023) (0.022) (0.026)
Beer 0.851 0.824 0.976 -3.2 14.7

(0.041) (0.038) (0.033)
Wine 0.877 0.820 0.891 -6.5 1.6

(0.035) (0.035) (0.033)
Liqueur 0.804 0.736 0.760 -8.5 -5.5

(0.029) (0.029) (0.028)
Tobacco Products 0.939 0.840 0.822 -10.5 -12.5

(0.031) (0.029) (0.028)
Gasoline, Diesel 1.811 2.291 2.048 26.5 13.1
Fuel (0.073) (0.018) (0.069)
Nonfoods 1.670 1.666 1.436 -0.2 -14.0

(0.006) (0.006) (0.006)
*Excludes Gasoline and Diesel Fuel Average 4.5* 15.5  
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Table 3. Own-Price Elasticities  (Standard Errors in Parenthesis)

Commodity n CRE CREδ=1 CS %∆ |CREδ=1| %∆ |CS|
from |CRE| from |CRE|

Bread -0.482 -0.489 -0.481 1.5 -0.2
(0.023) (0.023) (0.030)

Grains -1.039 -1.000 -1.190 -3.8 14.5
(0.044) (0.045) (0.058)

Fruits, Vegetables -0.922 -0.901 -0.718 -2.3 -22.1
(0.021) (0.020) (0.021)

Meat, Dairy, Oils, -0.717 -0.660 -0.606 -7.9 -15.5
Fats (0.028) (0.028) (0.026)
Other Foods -0.964 -0.915 -1.031 -5.1 7.0

(0.032) (0.032) (0.038)
Coffee -0.955 -0.998 -1.083 4.5 13.4

(0.034) (0.034) (0.030)
Beer -1.246 -1.207 -1.297 -3.1 4.1

(0.101) (0.099) (0.081)
Wine -1.195 -1.100 -1.536 -7.9 28.5

(0.053) (0.053) (0.046)
Liqueur -1.140 -1.151 -1.137 1.0 -0.3

(0.053) (0.055) (0.053)
Tobacco Products -0.666 -0.900 -0.569 35.1 -14.6

(0.146) (0.145) (0.082)
Gasoline, Diesel -0.812 -0.732 -0.768 -9.9 -5.4
Fuel (0.043) (0.026) (0.036)
Nonfoods -0.994 -0.953 -0.837 -4.1 -15.8

(0.008) (0.007) (0.007)
*Excludes Gasoline and Diesel Fuel Average* 6.9 11.8

 



Table 4. Price Elasticity Matrices (Standard Errors in Parenthesis)

CRE CS CRE CS CRE CS CRE CS
Bread -0.482 -0.481 0.079 0.166 0.011 0.117 0.018 -0.385

(0.023) (0.030) (0.013) (0.017) (0.021) (0.023) (0.037) (0.040)
Grains 0.171 0.373 -1.039 -1.190 0.161 0.277 -0.023 -0.627

(0.029) (0.038) (0.044) (0.058) (0.035) (0.039) (0.067) (0.074)
Fruits, Vegetables -0.015 0.036 0.029 0.050 -0.922 -0.718 0.121 -0.087

(0.010) (0.011) (0.008) (0.008) (0.021) (0.021) (0.024) (0.022)
Meat, Dairy, Oils, -0.017 -0.125 -0.009 -0.084 0.062 -0.052 -0.717 -0.606
Fats (0.010) (0.011) (0.008) (0.009) (0.013) (0.012) (0.028) (0.026)
Other Foods 0.006 0.064 0.032 0.030 0.194 0.162 0.060 0.161

(0.018) (0.023) (0.015) (0.019) (0.024) (0.027) (0.040) (0.043)
Coffee -0.107 -0.165 0.111 0.084 -0.082 -0.034 0.120 -0.095

(0.038) (0.037) (0.023) (0.024) (0.053) (0.047) (0.079) (0.070)
Beer -0.066 -0.174 -0.334 0.107 -0.355 0.035 0.533 0.327

(0.075) (0.065) (0.060) (0.056) (0.095) (0.073) (0.153) (0.116)
Wine -0.077 0.121 -0.028 -0.065 -0.144 0.086 -0.156 0.016

(0.029) (0.023) (0.018) (0.015) (0.045) (0.033) (0.061) (0.045)
Liqueur 0.018 -0.204 -0.040 -0.068 -0.036 -0.268 -0.101 0.405

(0.047) (0.048) (0.036) (0.039) (0.066) (0.056) (0.100) (0.091)
Tobacco Products -0.122 0.225 0.356 0.504 -0.110 -0.531 -0.607 -0.176

(0.060) (0.045) (0.049) (0.036) (0.078) (0.056) (0.134) (0.085)
Gasoline, Diesel -0.051 -0.071 -0.057 -0.029 0.099 -0.087 -0.373 -0.313
Fuel (0.024) (0.021) (0.015) (0.014) (0.036) (0.031) (0.054) (0.047)
Nonfoods -0.087 -0.089 -0.043 -0.038 -0.131 -0.120 -0.269 -0.072

(0.002) (0.002) (0.001) (0.002) (0.004) (0.004) (0.006) (0.003)
Median %∆

Bread Grains Fruits, Vegetables Meat, Dairy, Oils, Fats

257.1 70.0 159.7 168.3



Table 4. Continued

CRE CS CRE CS CRE CS CRE CS
Bread 0.041 0.108 -0.019 -0.039 -0.001 -0.036 -0.006 0.105

(0.021) (0.026) (0.009) (0.010) (0.017) (0.019) (0.012) (0.014)
Grains 0.110 0.113 0.072 0.067 -0.158 0.083 -0.002 -0.066

(0.038) (0.050) (0.013) (0.015) (0.030) (0.037) (0.017) (0.021)
Fruits, Vegetables 0.120 0.101 -0.005 0.001 -0.028 0.017 -0.009 0.048

(0.014) (0.006) (0.006) (0.006) (0.010) (0.011) (0.009) (0.010)
Meat, Dairy, Oils, 0.027 0.055 0.013 -0.002 0.044 0.037 0.004 0.023
Fats (0.012) (0.013) (0.005) (0.005) (0.009) (0.009) (0.006) (0.007)
Other Foods -0.964 -1.031 -0.001 -0.013 -0.044 -0.048 0.062 0.072

(0.032) (0.038) (0.011) (0.012) (0.017) (0.019) (0.013) (0.016)
Coffee -0.020 -0.070 -0.955 -1.083 0.002 0.031 0.055 0.269

(0.050) (0.048) (0.034) (0.030) (0.038) (0.036) (0.033) (0.033)
Beer -0.279 -0.241 -0.006 0.027 -1.246 -1.297 0.212 0.087

(0.091) (0.076) (0.042) (0.034) (0.101) (0.081) (0.061) (0.050)
Wine 0.114 0.097 -0.156 0.122 0.114 0.041 -1.195 -1.536

(0.037) (0.031) (0.020) (0.016) (0.033) (0.025) (0.053) (0.046)
Liqueur 0.060 -0.205 -0.006 -0.021 0.229 0.148 -0.007 0.100

(0.063) (0.062) (0.027) (0.025) (0.048) (0.045) (0.038) (0.036)
Tobacco Products -0.045 -0.234 -0.002 -0.011 -0.180 -0.233 0.193 0.157

(0.077) (0.057) (0.035) (0.025) (0.063) (0.045) (0.047) (0.041)
Gasoline, Diesel -0.228 -0.116 -0.050 -0.043 0.105 0.030 -0.128 -0.227
Fuel (0.027) (0.025) (0.015) (0.013) (0.025) (0.021) (0.033) (0.034)
Nonfoods -0.093 -0.228 -0.013 -0.003 -0.002 -0.002 -0.019 -0.035

(0.003) (0.006) (0.002) (0.002) (0.002) (0.002) (0.003) (0.004)
Median %∆

Other Foods Coffee Beer Wine

103.7 120.0 64.0 389.1



Table 4. Continued

CRE CS CRE CS CRE CS CRE CS
Bread 0.020 -0.056 -0.034 0.132 0.005 0.004 0.030 -0.099

(0.012) (0.016) (0.025) (0.024) (0.008) (0.007) (0.010) (0.010)
Grains -0.012 -0.039 0.352 0.625 -0.021 0.005 -0.052 -0.074

(0.022) (0.029) (0.045) (0.042) (0.011) (0.010) (0.015) (0.016)
Fruits, Vegetables 0.007 -0.035 -0.010 -0.137 0.037 0.011 0.041 -0.059

(0.009) (0.009) (0.016) (0.014) (0.005) (0.005) (0.009) (0.008)
Meat, Dairy, Oils, 0.004 0.045 -0.054 -0.021 -0.012 -0.002 0.004 -0.075
Fats (0.007) (0.008) (0.015) (0.012) (0.004) (0.004) (0.007) (0.006)
Other Foods 0.025 -0.052 -0.005 -0.106 -0.046 -0.008 -0.078 -0.112

(0.015) (0.018) (0.028) (0.026) (0.007) (0.007) (0.012) (0.011)
Coffee -0.001 -0.021 0.002 -0.022 -0.052 -0.034 -0.094 -0.024

(0.030) (0.029) (0.060) (0.048) (0.020) (0.015) (0.029) (0.025)
Beer 0.278 0.170 -0.339 -0.449 0.160 0.039 -0.165 -0.166

(0.058) (0.049) (0.118) (0.080) (0.036) (0.022) (0.051) (0.036)
Wine 0.027 0.051 0.115 0.128 -0.004 -0.109 0.185 -0.317

(0.025) (0.020) (0.048) (0.036) (0.026) (0.018) (0.040) (0.031)
Liqueur -1.140 -1.137 -0.036 0.023 -0.105 -0.001 -0.228 -0.051

(0.053) (0.053) (0.074) (0.059) (0.025) (0.017) (0.036) (0.027)
Tobacco Products -0.023 0.017 -0.666 -0.569 0.005 -0.088 -0.057 -0.099

(0.047) (0.036) (0.146) (0.082) (0.026) (0.020) (0.037) (0.031)
Gasoline, Diesel -0.094 -0.011 -0.004 -0.157 -0.812 -0.768 -0.218 -0.255
Fuel (0.021) (0.018) (0.032) (0.034) (0.043) (0.036) (0.058) (0.052)
Nonfoods -0.013 -0.002 -0.007 -0.016 0.001 0.005 -0.994 -0.837

(0.002) (0.002) (0.003) (0.004) (0.004) (0.003) (0.008) (0.007)
Median %∆

Gasoline, Diesel Fuel NonfoodsLiqueur Tobacco Products

225.0 163.9 83.3 74.5  
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