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Abstract: This paper reports tests of aggregation over consumer food products and estimates of 

aggregate food demand elasticities. Evidence that food demand variables follow unit root 

processes leads us to build on and simplify tests of the Generalized Composite Commodity 

Theorem found in the literature. We compute food demand elasticities using cointegration 

applied to a convenient but nonlinear functional form. Estimates are based on consumer reported 

expenditure data rather than commercial disappearance data.   
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The Generalized Composite Commodity Theorem and Demand System Estimation 
 

Appropriately specified models of consumer demand are central to market analysis. It has been 

established that a valid equilibrium for markets characterized by diverse firms or diverse 

consumer products depends on downward-sloping composite demand curves (Heiner, Braulke, 

Wohlgenant) or on valid indirect utility functions (Chavas and Cox). Given the large number of 

consumer food products, food demand and price analysis must be implemented at some level of 

product aggregation. Improper aggregation can lead to biased estimates of welfare loss 

associated with public policies, biased estimates of consumer and derived demand elasticities, 

and misleading tests of market power. Testing for consistent aggregation over food products and 

estimating aggregate consumer food demand elasticities are the subjects of this paper.  

By far the most common justification for aggregation has been separable preferences. 

One reason for its popularity has been the lack of a viable alternative. Tests of the Composite 

Commodity Theorem (Hicks, Leontief, Lewbel) are always rejected because it restricts relative 

prices within a group to remain fixed over time. On the other hand aggregation based on weak 

separability is often rejected (Diewert and Wales, Eales and Unnevehr).  

The Generalized Composite Commodity Theorem (GCCT) justifies aggregation under 

milder conditions (Lewbel). It relaxes the restriction of constant relative prices within groups by 

strengthening the requirement that independence holds across all groups. Furthermore, the GCCT 

simplifies tests for weakly separable preferences.   

This paper tests for valid aggregation of consumer food products and reports estimates of 

food demand elasticities. As in previous studies we find evidence that food demand variables 

contain unit roots, so tests for valid aggregates involve tests for spurious regressions. By building 

on the methodology found in previous studies we simplify tests for valid aggregation. In addition 
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we present estimates of food demand elasticities and tests for weak separability based on recent 

developments in the theory of nonlinear nonstationary regressions.   

 

Theory  

The GCCT is a stochastic theory of aggregation over diverse consumer products. It maintains 

that n-elementary share equations are functions of logged elementary prices, r, and logged 

income, z. Following Lewbel let wi (i=1,. . . ,n) denote the ith elementary budget share and let E 

denote the mathematical expectations operator. Then gi:(r,z) → wi (i = 1,...,n) such that  

(1) wi = gi (r, z) + ei      where   E(ei |r, z) = 0  ⇒   E(wi |r, z) = gi (r, z). 

Since the gi form a valid elementary demand system, they satisfy adding-up (∑gi = 1), 

homogeneity (gi (r-k, z-k) = gi (r, z) for all i), and Slutsky symmetry (i.e., (∂ gk /∂ rj) + (∂ gk/∂ z)gj 

= (∂ gj /∂ rk) + (∂ gj /∂ z) gk). The compensated demands satisfy negative semi-definiteness.  

The theory also maintains the existence of a system of stochastic composite share 

equations. The M (< n) composite shares WI ≡∑i∈I wi (I = 1,. . .,M)  are functions of logged 

income z and logged composite prices R, or GI: (R, z) → WI (I = 1,2,... M). In particular, 

(2) WI = GI (R, z) + uI,  where E (uI |R, z) = 0  ⇒ GI (R, z) = E(WI |R, z). 

The orthogonality of the model errors of (1) and (2) ensure that gi (r, z) and GI (R, z) are optimal 

predictors of elementary and composite shares, respectively. 

 These model errors are related. Following Lewbel, let GI
*(r, z) denote the sum of the 

conditional means of the elementary demands for group I, so that GI
*(r, z) ≡ ∑i∈I gi(r, z). Also 

define ρi ≡ ri – RI as the ith relative price so the vector of all relative prices is ρ=r–R* where R* 

denotes the n-vector of group prices with RI in row i and in every row i∈I.  This implies   
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(3)    uI = ∑ ei +  GI

*
 (ρ+R*, z) - GI (R, z)  

               i∈I                                 

which shows the composite model errors are correlated with relative elementary prices.  

 Lewbel shows that valid aggregation obtains when the vector of all relative prices is 

distributed independently of the vector of composite prices and income. This implies  

(4)    GI(R, z) = ∫ GI
*(R*+ρ, z) dF(ρ) 

which states the conditional expectation of the Ith composite share equals an unconditional 

expectation of sums of the elementary demand functions in the Ith composite. Lewbel uses (4) to 

obtain three results that relate directly to demand system estimation. First, GI(R, z) (I = 1,2,... M) 

is a valid system of composite demand equations because this system inherits the adding up, 

homogeneity, and nearly (or in some cases exactly) inherits Slutsky symmetry from the 

elementary demands. Second, the demand elasticities of GI(R, z) are best, unbiased estimates of 

within-group sums of elementary demand elasticities. Third, (3) and (4) implies (GI
*- GI ) is a 

bias term that arises from aggregation and this term is a function of ρ. Because uI contains this 

bias the errors of a composite demand system justified by the GCCT will be correlated with 

relative prices. If instead the demand system is based on weakly separable preferences, GI
*

 = GI 

so uI = ∑i∈I eI and composite demand errors will not be correlated with relative prices.  

In time series theory the restriction that ρt is distributed independently of qt ≡ [Rt’, zt]’ 

imposes restrictions on the correlation of an infinite number of random variables. For example, if 

ρt and qt are in-deterministic stationary processes they would satisfy   

           ∞               ∞
ρt = ∑  CsVt-s   and qt = ∑  DsVt-s  
         s=0              s=0
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where ∑s=o
∞ |Cs| < ∞, ∑s=o

∞ |Ds| < ∞, and (Vt Ut) are iid normal with mean zero. In this case 

independence requires E(VtUs) = 0 for all (t, s). An implication of vector independence is E(ρt|qt) 

= E(ρt) or that qt provides no information about ρt. These restrictions may be difficult or 

impossible to test.  

This may be why tests of the GCCT have focused on tests for linear relationships. If P 

denotes the linear projection operator, valid aggregation means P(ρt|qt) is not a linear function of 

qt and failure to reject such tests is taken as support for valid aggregation (Lewbel, Davis, Davis, 

Lin, and Shumway, Asche, Bremmes and Wessells). Because evidence has suggested ρt and qt 

are often unit root processes, aggregation tests have been based on tests of spurious regressions.  

Phillips shows that a simple linear regression constructed from two independently 

distributed and integrated time series behaves like a model constructed from two non-

cointegrated series. That is, Phillips shows correlation between the stationary components of the 

two series will not affect the asymptotic behavior of the regression. It is significant for our work 

that Phillips extends this result to multiple regression models, so that if ρit = P(ρit|qt) + vit is a 

spurious regression, the model behaves as though ρi is distributed independently of qt. This 

suggests tests of the GCCT that have been based on a large number of simple regression models 

can be simplified by basing them instead on multiple regression models.  

In particular, if qt is an integrated vector we can, in a straightforward manner, compute a 

test of the aggregation scheme. An approach is to compute Engle-Granger tests of no 

cointegration for each of the individual ρi multiple regressions for which ρi is an integrated 

variable, and then follow Davis, Lin, and Shumway. That is, based on the individual tests use the 

Holm procedure to test the family-wise hypothesis that each integrated element of ρ is jointly 

spuriously related to q. This approach differs from the ‘grand test’ proposed by Davis because it 
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represents a test of the null of valid aggregation. Moreover, our reading of Huang leads us to 

conclude that the power problems associated Engle-Granger tests are no more severe for 

regressions with a large number of regressors than they are for a small number of regressors.  

A finding of valid aggregation means a composite demand system is associated with this 

aggregation scheme. Moreover, if demand variables follow unit root processes, we expect the 

demand equations to be cointegrated (Karagiannis and Mergos). Because of the interest in 

demand elasticities, and because a number of useful functional forms used in empirical demand 

work are nonlinear, it is desirable to apply cointegration methods to nonlinear demand systems. 

   

Cointegration and Nonlinear Share Equation Systems  

We maintain that composite shares of a valid demand system are adequately described by the 

semi-flexible almost ideal (SAI) demand system (Moschini). The SAI demand system is a re-

parameterization of the Almost Ideal (AI) demand system (Deaton and Muellbauer). Thus, it 

describes nonlinear Engle curves, defines community income and exact nonlinear aggregation 

over consumers, and defines budget shares and income elasticities for income inelastic goods 

such as food that decline as incomes rise (Moschini). Moreover the SAI demand system saves 

degrees of freedom while maintaining curvature at a point in the data. In this section we show 

that a version of the nonlinear SAI demand system can be estimated using cointegration methods. 

Recall that WI denotes the Ith composite consumer budget share, z the log of income, and 

RJ the log of the Jth composite price. If we let ei denote the Ith model error, the AI model is    

         M  

(5) WI = αI + ∑  γ 
IJ RJ + βI (z - logP) + eI  (I = 1, . . . , M) 

      J=1   

             M  

(6) logP = αo + ∑  αI RJ +  ½ ∑I=1 
M  ∑ J=1

M  RI  RJ     
        I=1 
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with Slutsky-substitution terms 

(7) SIJ = [x/(pI pJ)][γIJ + WI WJ - δIJ wI + βI βJ (z - logP)]  

where δIJ=1 for I=J and δIJ = 0 for I≠J. Moschini notes that if αo = 0 and price and income 

variables are deflated by their sample means, then at the sample mean pI=x=1, αI is the Ith 

budget share, εIJ = (1/αI)(γIJ  - βIαI) - δIJ is a cross-price elasticity of demand, ηI = (βI /αI) + 1 is 

the income elasticity of demand, and the Slutsky substitution terms are   

(8)    θIJ = γIJ + αI αJ - δIJ αI.  

The SAI model can be used to estimate demand elasticities conditioned on curvature imposed at 

the mean (or any other point) of the data. By setting Ө = [θIJ] = -T’T where T =[τIJ] is upper 

triangular and Ө is less than full rank, Moschini restricts the rank of Ө by setting the last number 

of rows equal to zero. For example if Ө is a 5-by-5 matrix, setting the last two rows of T to zero 

restricts Ө to a matrix of rank three. Such restrictions allow the parameters of  

           M                    I          M-1                              
(9)      WI =αI + αI RI - αI ∑  αJ RJ - ∑ τsI ∑ τsJ (RJ - R M) + βI z - βI logP + eI       (I=1, . . ., M-1) 
                 J=1               s=1      J=s           

  M                               M                        M   M-1   M-1                                              

(10) logP = ∑ αJ RJ  – ½ [∑  αJ RJ] 2 + ½ ∑  αJ (RJ)2 - ½∑  [∑τsJ (RJ - R M)]2 
     J=1             J=1  J=1                  s=1  J=s 

 

identify the parameters of (5) and (6). Equations (9) and (10) represent the SAI demand model.  

  The task is to estimate this nonlinear system assuming each share equation is an 

integrated regression with stationary model errors. The estimator developed by Chang, Park, and 

Phillips applies to a class of nonlinear, single equation cointegrated models. To describe this 

class in detail let (9) be represented as   

(11)    Wt = α + q(xt ,β) + et      
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where xt’ = [x1t , x2t  ,…, xkt] is a k-vector of integrated stochastic regressors. Chang, Park, and 

Phillips show their estimator applies to nonlinear models such as (11) when model errors are 

serially uncorrelated (i.e., et is a martingale difference series) and q(xt ,β) satisfies additive 

separability. They show that if q(xt ,β) consists of k additive terms for β = [β1’,β2’,…, βk’], 

additive separability requires  

          k 

q(xt ,β) = ∑ qi (xit , βi).     
       i=1    

Thus, additive separability permits only one integrated regressor per additive term. 

 For an SAI demand equation, it is seen that if logP could be treated as one integrated 

regressor, (9) would satisfy additive separability. The problem lies with logP.  With the 

exception of the first term, every term in (10) involves two integrated variables, so (9) and (10) 

violate additive separability. However, the approximation (Deaton and Muellbauer)   

        M 

 (10’)    log P ≈ ∑ WJ RJ
     J=1 

does treat logP as a single variable so (9) and (10’) satisfy additive separability. Moschini notes 

that (9) and (10’) represent a valid form of the SAI model, and demand system estimation in this 

study is based on (9) and (10’). 

For integrated regressions, cointegration does not ensure econometric exogeneity. The 

consequence for estimation of linear, single equation cointegrated regresssions is that OLS 

estimates are biased and even though cointegration means this bias disappears in large samples 

this bias injects nuisance parameters into the distributions of OLS estimates. The result is that 

standard t- and F-tests are misleading even in large samples. When econometric exogeneity is 

achieved, the bias and the nuisance parameters disappear so that OLS estimates are normally 
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distributed, and t- and F tests provide correct inference. The fully modified (FM) estimator 

transforms single equation linear models in such a way that the transformed model satisfies 

econometric exogeneity (Phillips and Hansen).  

Chang, Park, and Phillips show similar issues generally arise in nonlinear cointegrated 

regressions, and so derive an FM estimator for single nonlinear cointegrated regressions. To 

describe their estimator it is asssumed that model errors of (11) form a martingale difference 

series and the regression function, q, satisfies additive separability. Let ∆xt= vt and E(vt) = 0 so 

[et  vt] forms a linearly indeterministic stationary vector. The covariance generating function 

(evaluated at frequency 1) of this vector is   

⎡ Σ11       Σ12 ⎤       ⎡E(et  et-k’) E(et  vt-k’) ⎤ 
                         ∞ 

             =       ∑      
                                     k=-∞ 

⎣ Σ21       Σ22 ⎦   ⎣E(vt et-k’) E(vt  vt-k’) ⎦   . 
 

Since vt is a stationary, serially correlated series it satisfies vt =∑i=0
∞ πi εt-j where εt is a serially 

uncorrelated iid vector process with ∑i=0
∞|πi| < ∞. If the model errors are also stationary and 

serially correlated they satisfy et = ∑i=0
∞ φi ζt-i with ∑i=0

∞|φi| < ∞ (where ζt may be 

contemporaneously but not serially correlated with εt).  In this case  

                 ∞                   ∞         ∞                 ∞   

∑12 =∑ E(et vt-k’ ) = ∑ E (∑ φi ζt-i) ( ∑ πj εt-j-k)  ≠ 0 
             k=-∞            k=-∞     i=0              j=0  

means exogeneity is violated. However, for serially uncorrelated errors φi =0 for i > 0, and 

  ∞  ∞          ∞ 

∑12 = ∑  E(etj vt-k’) = ∑  E(φo ζt) (∑ πj εt-j-k) =  E(φoπ(1) ζt εt ) = E(etj vt) ≡∑12
0

               k=-∞               k=-∞       j=0  
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where π(1) = ∑j=0
∞ πj. Hence violations of econometric exogeneity arise in models with serially 

uncorrelated errors only because of the presence of contemporaneous correlation between et and 

vt. Define Σ22
0 = E(vt vt)’ so that subtracting ∑12

0(Σ22
0)-1 vt from both sides of (11) gives 

(11’)    Wt
* = α + q(xt ,β ) + et

*    

where Wt
* = Wt -∑12

0(Σ22
0)-1 vt, et

* =  et  -∑12
0(Σ22

0)-1 vt so that   
 
    ∞       

∑ E(et
* vt-k’) =  E(et vt’ ) -∑12

0(Σ22
0)-1 E(vt vt’)   = Σ12

0 -  Σ12
0  = 0  

k=-∞ 

 

and econometric exogeneity is obtained. This means nonlinear least squares (NLS) estimates of 

(11’) are consistent, efficient, and normally distributed. Furthermore, consistent estimates of ∑12
0 

and Σ22
0 obtain by applying NLS to (11) in the first stage. Chang, Park, and Phillips refer to this 

estimator as the efficient non-stationary nonlinear least squares (EN-NLS) estimator.  

To estimate demand elasticities of an SAI demand model using the EN-NLS estimator, it 

must be expanded to a systems estimator. It should be recognized that when estimating systems 

of cointegrated regressions a violation of econometric exogeneity means SUR or nonlinear SUR 

(NSUR) yield inconsistent estimates.1 The implication for FM system estimation is that single-

equation estimators such as OLS, NLS, or EN-NLS rather than multivariate estimators such as 

SUR or NSUR must be used in estimating the model in the first stage. The SUR or NSUR 

estimator is then applied to the transformed model in the second stage. 

More specifically, represent the M-1 SAI composite demand equations as   

(12)    WJt = αJ + qJ (xt ,βJ ) + eJt   (J = 1,2,…M-1)   

                                                 
1 The reason is for a system of cointegrated regressions with correlation across the model errors and non-zero 
correlation with the regressors, information on unit root variables in the system is transmitted to the equations across 
the system and the SUR estimator does not weight that information properly. The result is a bias term associated 
with a SUR or NSUR estimator that may not disappear asymptotically (Park and Ogaki). 
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where WJt is the Jth composite budget share in time t, xt is a vector of integrated prices and 

income, qJ is additively separable, eJt is the Jth  element of the M-1 vector et which is drawn 

from a martingale difference series. Let vt = ∆xt, denote the vector of first differences of non-

redundant regressors in the system with E(∆xt) = 0. Since vt is a stationary vector series, it 

satisfies vt=∑i=0
∞πiεt-j and in general et satisfies et =∑ i=0

∞Pi ζt-j. But because E(et| et-1, et-2, . . .) = 

0, Var(e) =PoΛPo’ where Λ = E(ζt ζt’) so et = Poζt where ζt is a serially uncorrelated iid vector 

process that can be contemporaneously but not serially correlated with εt. Then  

∑12 =∑k=-∞
∞ E(et vt-k’) = ∑k=-∞

∞ E(Poζt) (∑j=0
∞πj εt-j-k) =  E(Poζt π(1) εt) = E(et vt) ≡ ∑12

0 

and violation of strict econometric exogeneity in a system of cointegrated regressions  

derives only from the presence of contemporaneous correlation between et and vt when model 

errors are serially uncorrelated. Define Σ22
0 = E(vt vt)’ and let ω120

(J) represent the Jth row of ∑12
0 

so that subtracting ω120
(J)(Σ22

0)-1vt from (12) gives   

(12’)    WJt
* = αJ + qJ (xt , βJ) + eJt

*   (J = 1,2,. . . , M-1)   

where WJt
* = WJt - ω12 

(J)(Σ22
0)-1vt and eJt

* =  eJt  -ω120 
(J)(Σ22)-1 vt. This means   

     ∞ 

 ∑  E(eJt
*vt’) =  E(eJt vt’) - ω120 

(J)(Σ22
0)-1 E(vt vt’) = ω120 

(J) - ω120 
(J)  = 0  

k=-∞ 

and econometric exogeneity is achieved. This means that given consistent estimates of ∑12
0 

NSUR estimates of β from (12’) are consistent and normally distributed. It should be noted this 

nonlinear estimator takes the same form as the FM estimator for linear systems (Moon).  

 There are two more points worth mentioning. First, it is well known that because 

∑J=1
MWJt=1, the error covariance matrix is singular and the model is estimated using M-1 

equations (Berndt and Savin). When cross-equation restrictions are imposed in the first stage of a 

mean distance estimator (e.g., SUR) as they are for the SAI model, the estimates will not be 

invariant to the omitted equation unless one uses a first-stage weight matrix that treats equations 
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symmetrically (see Chavas and Sergerson). The problem is these matrices contain non-zero off 

diagonal elements and this leads to inconsistent estimates of cointegrated systems for the same 

reasons SUR or NSUR yields inconsistent estimates (see footnote 1). In this study we use the 

identity as the first-stage-weight matrix, and recognize the estimates are consistent but not 

invariant to the equation omitted.   

Second, Chavas and Sergerson note that if the model errors are included in the 

specification of share equations, as they are in (12), they also enter the indirect utility function 

and so can lead to heteroskedastic errors. They recommend applying a GLS transformation that 

accounts for heteroskedasticity prior to estimation. However, cointegration theory is based on a 

data-generating process in which partial sums are distributed like continuous time Brownian 

motion variables (Phillips and Durlauf). This automatically allows for heteroskedastic errors, so 

the only transformations that are necessary are those ensuring econometric exogeneity.  

 

Empirical Results 

This section reports a test of valid aggregation of 19 elementary at-home food products, 

estimates of composite food demand elasticities, and tests for weakly separable preferences.  

We propose the 19 food products be aggregated into the following five at-home food 

composites. The cereal and bakery composite includes all cereal and bakery products. The meat 

composite includes beef, pork, other meat, poultry, and fish and seafood. The dairy composite 

includes fluid milk, butter, cheese, and ice cream. The fruit and vegetable composite includes 

fresh fruit, fresh vegetables, and processed fruit and vegetables. The other food-at-home 

composite includes sugar and sweets, fats and oils, non-alcoholic beverages, eggs, and 

miscellaneous foods. Food-away from home and non-food are treated as valid composites.   
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Estimates of U.S. quarterly budget shares, after-tax income, and community income are 

computed from 1982.1 to 2000.4 using weighted sums of household expenditures reported in the 

diary section of the Consumer Expenditure Survey (CES) (U.S. Dept. of Labor), with weights 

supplied by the CES. Quarterly after-tax income is constructed as the U.S. annual estimate 

divided by four, and nonfood expenditure is the difference between the quarterly after-tax 

income and the sum of away-from-home and at-home food expenditures. The quarterly budget 

share for the Ith composite, wI, is computed as the ratio of the expenditure for the ith good-to-

after tax income. If xh denotes the (weighted) total expenditures for household h and kh denotes 

the number of members in household h, then community income (per capita) associated with 

PIGLOG preferences (Muellbauer) is xo= exp[∑h xh log(xh /kh) /∑h xh]. If mx denotes the sample 

mean of xo, z ≡ log (xo /mx) is used in estimation.  

Quarterly Laspeyres price indices (1982-84= 1.0), PJ, J = 1, . . . , 5 are constructed for 

the five at-home categories using the 19 elementary prices, pj, with expenditure weights 

constructed from the expenditure data. Logs of mean-deflated prices are used in testing and 

estimation. Specifically if MJ denotes the sample mean of PJ and mj denotes the sample mean of 

pj, then the Jth log mean-deflated composite price is log (PJ /MJ) ≡ RJ and the jth relative 

elementary price is log (pj/mj) – RJ ≡ ρj for every j є J.  

Table 1 reports unit root tests on relative prices, composite prices, and community 

income. They indicate that at the α = 0.10 level of significance most of the 27 elements of ρ, R 

and z follow unit root processes. Both the Dickey-Fuller and the Kwaitkowski, Phillips, Schmidt 

and Shin tests suggest that community income, six of the seven composite prices, and 9 relative 

prices follow unit root rather than trend stationary processes. Both tests also suggest the relative 

price of beef is trend-stationary. The tests conflict for the dairy price index and the remaining 9 
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relative prices. A test of the Joint Confirmation Hypothesis (JCH) of a unit root (Silvestre, 

Rossello, and Ortuno) confirmed the presence of a unit root in the dairy price index and in 6 of 

those remaining 9 relative prices. A unit root could not be confirmed for the relative prices of 

butter, fresh vegetables, and eggs and so these series are considered trend stationary. The results 

in Table 1 suggest unit root processes generate all composite prices, community income, and 15 

of the 19 relative prices. 

Table 2 reports the Engle-Granger test statistics (Tk) for each of the 15 integrated relative 

price regressions. Each is specified as a function of an intercept, a time trend, community 

income, the five food-at-home, the away-from home, and the nonfood price indices. With the 

exception of processed fruits and vegetables, the each individual test failed to reject the null of 

spurious regression. Following Davis, Lin, and Shumway the family-wise test statistic of no 

cointegration is max |Tk| = 5.989. For a 10-percent family-wise significance level, the (.10/15) 

critical point of the distribution of this statistic under the null of no cointegration for each of the 

tests and for 76 observations is T* = 6.952 (MacKinnon). Since max |Tk| < T* the tests fail to 

reject the aggregation scheme. This suggests composite demand elasticities for this scheme 

accurately reflect the elasticities for the products that consumers actually purchase (Lewbel).   

The system estimates are computed in three steps. First, compute estimates of ∑12
0 and 

Σ22
0 by applying the NSUR estimator to the system using the M-1 identity matrix as the weight 

matrix in the first stage. Specifically, denote the first-stage residuals as rt = [r1t ,. . . ,  rM-1,t], and 

the vector of first differences of non-redundant regressors (with drift removed) as vt. From these 

compute the contemporaneous covariance matrix, S22
0 = (1/T)∑vt*vt*’, where vt*= vt – c vt -1 

where c = (∑vt -1 vt -1’) -1(∑vt -1 vt’), and the cross-covariance matrix, S12
0 = (1/T)∑(rt vt*’). 
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Second, construct the transformed model as WJt
* = WJt – s120(J) (S22

0) -1vt ’ where s120(J) denotes 

the Jth row of S12
0. Third, apply NSUR to the transformed system of cointegrated regressions.  

Table 3 presents estimates of composite consumer demand elasticities. They are based on 

a rank three Ө matrix. The results yield relatively large estimates of income elasticities, although 

such results may be attributed to the very broad definitions of the composites. The results suggest 

the fruits and vegetable composite is the most price elastic and meat is the least price elastic. 

Except for the meat composite, the results suggest the food-away-from-home composite is a 

gross substitute for the at-home food groups, and nonfood is a gross complement for all at-home 

food groups.  

At this point we note that the above estimates are based on consumer-reported 

expenditure data rather than USDA’s computed farm-based commercial disappearance data (e.g., 

Eales and Unevehr). The problem with using the commercial disappearance data in consumer 

demand analysis is these data provide information only on the physical amount of farm 

components in food. By ignoring the value that consumers place on the mix of food products, 

commercial disappearance ignores the fact that the mix of food products purchased has changed 

over time.  Nelson shows that the CCT permits composite demand to be decomposed into a 

physical component and a quality component, where quality is a value measure of the mix of 

products purchased and where variations in quality reflect changes in the mix of products 

purchased over time. Reed, Levedahl and Clark show this same decomposition follows from the 

GCCT, and provides evidence that consumers respond to changes in prices and income mostly 

by adjusting the mix of products purchased. Hence using commercial disappearance data as a 

proxy for food demand omits this important aspect of consumer demand for food.  
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Finally, there is interest in checking for weak separability. Under weak separability, the 

model errors of a composite demand system are not correlated with relative prices. Because the 

model errors are presumed to be stationary, a test for weak separability reduces to a test that the 

model errors are uncorrelated with stationary elements of ρ. Table 1 suggests the relative prices 

for beef (ρb ), butter (ρbu), fresh vegetables (ρv), and eggs (ρe) are stationary. If uk denotes the 

residual of kth composite demand equation, we estimate  

(13)  ukt  = πko + πk1 ρbt + πk2 ρbut  + πk3  ρvt + πk4 ρe t,+ πk5 (ρbt
 ρbut) + π k6 (ρvt ρe t ) + ξktj .  

for k = 1,. . ., M-1 and test the null πk1 = πk2 = πk3 = πk4 = πk5 = πk6 = 0. The results presented in 

Table 4 suggest this aggregation scheme cannot be based on weakly separable preferences.     

 

Conclusions 

One part of Lewbel’s message is that the Generalized Composite Commodity Theorem may 

support a number of different aggregation schemes. Another part suggests this theorem could 

lead to improved estimates of consumer demand elasticities. This paper represents an attempt to 

address both of these points.   

Our results agree with previous studies that suggest data used in food demand analysis 

are generated from unit root processes so that tests for valid aggregation may reduce to tests for 

spurious regressions. We build on these studies by applying multi-comparison procedures to 

multiple rather than simple regression models.  This simplifies testing and leads to a 

straightforward test of the aggregation scheme. Moreover, we choose a popular form to describe 

this composite food demand system, and show it can be treated as an estimable nonlinear system 

of cointegrated regressions. The demand elasticities for six broadly defined food categories 

appear to be reasonable, and tests reject weak separability. 
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Other results not reported here suggest the elementary food products chosen for this study 

could have been aggregated differently.  While this may be symptomatic of the low power of 

residual tests for spurious regression, they may also reflect the notion that the stochastic nature of 

the GCCT may support numerous aggregation schemes. This would suggest, for example, that 

demand and market analysis applied to nutrition-based aggregates such as USDA’s food pyramid 

applies equally well to analysis based on the more traditional farm-based aggregates. 
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Table 1.  Unit Root Tests of Income and Group and Relative Prices 
____________________________________________________________________________ 
    Null hypotheses:       I(1)         I(0)         | I(1) or I(0)?  
____________________________________________________________________________ 
                    ττ         ητ  
R (Cereal and Bakery)  -1.611 (8)  0.237 (6)* I(1)          
  ρ (cereal)  -1.428 (8)  0.261 (6)* I(1)   
   ρ (bakery)  -1.487 (8)   0.260 (6)* I(1) 
R (Meat)    -0.967 (5)  0.205 (6)* I(1) 
   ρ (beef)   -3.246 (8)*  0.116 (6)  I(0)  

ρ (pork)   -3.014 (6)  0.102 (5) I(1) (JCH) 
   ρ (other meat)  -2.206 (5)  0.185 (6)* I(1)  
   ρ (poultry)  -2.519 (6)  0.089 (5) I(1) (JCH)  
   ρ (fish and seafood)) -2.152 (6)  0.136 (6)* I(1) 
R (Dairy)   -2.217 (6)  0.077 (6)  I(1)  (JCH)  
   ρ (fluid)   -2.575 (3)  0.112 (6) I(1)  (JCH)  
   ρ (butter)  -4.639 (8)*  0.201 (6)* I(0)  (JCH)  
   ρ (cheese)  -1.186 (2)  0.208 (6)* I(1)   
   ρ (ice cream)  -2.678 (3)  0.111 (6) I(1)  (JCH)  
R (Fruits and Vegetables)  -1.751 (5)  0.152 (6)* I(1) 
   ρ (fresh fruit)  -1.914 (6)  0.190 (4)* I(1) 
   ρ (fresh vegetables)  -3.159 (8)  0.068 (1) I(0) (JCH) 
   ρ (proc. Fruit&Veg) -3.104 (8)  0.118 (1)* I(1) 
R (Other Food at Home)  -1.636 (7)  0.124 (6)* I(1)   
   ρ (sugar and sweets) -2.266 (6)  0.118 (6) I(1) (JCH)  
   ρ (fats and oils)   -3.389 (5)*   0.146 (6)* I(1) (JCH)  
   ρ (non alcoholic bev) -2.153 (2)  0.164 (6)* I(1)   
   ρ (eggs)   -2.562 (6)  0.054 (5) I(0)  (JCH) 
  ρ (miscellaneous foods) -2.160 (8)  0.180 (6)* I(1) 
R (Food Away from Home) -1.847 (5)  0.290 (6)* I(1)   
R (Nonfood)   -0.928 (3)  0.239 (6)* I(1) 
z (income)    -1.551 (8)  0.194 (4)* I(1)   
            
10 percent critical values:  ττ* = -3.167  ητ* = 0.119 (ττ, ητ)* = (-3.601,0.073) 
_____________________________________________________________________________________________ 
Notes: Asterisk (‘*’) denotes rejection of the null at the 0.10 level of significance. The test statistics of the null 
hypothesis of I(1) (ττ) are the augmented Dickey-Fuller (1979) (ADF)  t-values of the coefficient on the lagged level 
variable in the regression of the first-differences on a constant, a time trend, the lagged level and lagged-differences 
of variables appended to the regression. The number of lags of first differences is reported in parentheses and 
determined by SHAZAAM 7.0. The second column (ητ) reports test statistics developed by Kwaitkowsi, Phillips, 
Schmidt, and Shin (KPSS). They are sums of squared partial sums of residuals divided by an error variance 
estimator. The residuals are computed from a model in which the series is regressed on a constant and a time trend, 
and the error variance estimator is a Bartlett kernel weighted-sum of auto-covariances, with the automatic (Newey-
West) bandwidth parameter reported in parenthesis. The third column reports inference based on the Joint 
Confirmation of a Unit Root, and is used when the tests in the first and second columns conflict (Silvestre, Rossello, 
and Ortuno). The joint critical values (-3.601,0.073) represent the mid-point of critical values for 50 and 100 
observations for the ADF and the KPSS (with Bartlett kernel) tests with trend. They are interpreted as follows. If the 
value of the ADF statistic (column 2) is less (greater) than –3.601and the value of the KPSS statistic (column 3) is 
less (greater) than 0.073 then the series is considered  (at the 0.90 level) stationary (integrated).  Otherwise the series 
cannot be confirmed to be a unit root and is therefore considered to be stationary.  
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Table 2.  Individual and Joint Tests of Spurious Regressions   
_________________________________________ 
Relative Price         
Regression         Tk  
_________________________________________ 
 1. cereal    -4.491 (8)  
 2. bakery    -4.415 (8)   
 
 3. beef         NC  
 4. pork    -3.544 (8)    
 5. other meat    -3.318 (5)      
 6. poultry    -3.561 (7)     
 7. fish and seafood   -2.436 (8) 
 
 8. fluid    -3.471 (3)  
 9. butter        NC      
10. cheese     -2.390 (7) 
11. ice cream    -4.658 (2) 
12. fresh fruit    -4.935 (4)    
 
13. fresh vegetables        NC 
14. processed fruits and vegetables -5.989 (8)    
 
15. sugar and sweets    -4.600 (8)    
16. fats and oils   -4.771 (5) 
17. nonalcoholic beverages   -3.273 (6) 
18. eggs       NC      
19. miscellaneous foods  -3.473 (8)   
 
10 percent critical values:    

  T*  = -5.7381 (Individual tests) 
    T*  = 6.9521 (Family-wise test)   
_______________________________________________________________________ 
Notes: The entries (Tk) are Engle-Granger tests of the null that the kth relative price and the vector of composite 
group prices and income are not cointegrated. The entries are augmented Dickey-Fuller tests of I(1) residuals formed 
from regressing the kth relative price on each of the seven integrated group price indices (see Table 1), income, a 
constant, and a time trend. The number of lagged first difference residuals included (in the residual regression) is 
reported in parentheses, and is determined by SHAZAM 7.0. The 0.10 critical values reported for the individual tests 
are based on 76 observations and 8 integrated explanatory variables, so that k = 9 in MacKinnon. The 0.10 family 
wise critical value of 6.952 is based on 76 observations, k = 9, and the (0.10/15) critical point. 
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Table 3. Composite Demand Elasticities  

  Cereal      Fruits&   Other     
   & Bak  Meats   Dairy Vegs    Food Away   NonFood  Income 
     (R1)    (R2)    (R3)  (R4)    (R5)  (R6)      (z) 
  
 
Cereal & Bakery  -0.606   0.036  -0.396   0.399   -0.673  0.182   -0.293  1.351 

 
Meat     0.014  -0.605   0.257  -0.072   0.180 -0.736  -0.849  1.810 

 
Dairy   -0.547   0.589  -0.861  -0.143  -1.260  1.321  -1.346  2.246 

 
Fruits & Vegetables  0.357  -0.108  -0.089 -0.979  -0.237  0.497  -1.042  1.601 

 
Other Food (home)  -0.337   0.176  -0.461 -0.125  -0.741  0.656  -0.207  1.038 

 
Food Away    0.049  -0.337  -0.276  0.154   0.344 -0.692   1.173  1.379 
 
Nonfood    0.001  -0.002  -0.002  -0.008  -0.003 -0.045   -0.864  0.924 
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Table 4. Weak Separability Tests  
 
_____________________________________________   
 

  Groups      W         P (W > χ2)  
_____________________________________________ 
 
  1. Cereal and Bakery   59.37        <0.0001     
 
2. Meat     51.73        <0.0001     
 
3. Dairy    36.65        <0.0001         
 
4. Fruit and Vegetables  26.62        <0.0001         
 
5. Other Food at Home  66.59        <0.0001         
 
6. Food Away              13.52         0.036     
__________________________________________________________ 
Notes: The entries (W) are Wald statistics associated with the null that relative prices are not related to the composite 
model errors. Each statistic is based on equation (13) in the text, and therefore each is distributed chi-square with 6 
degrees of freedom. The third column reports probabilities of observing the reported level of W under the null of 
weak separability.   
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