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Abstract 
 

 
There is significant policy interest in liquid biofuels with appealing prospects for energy 
security, farm security, poverty alleviation, and climate change. Large-scale commercial biofuel 
production could have far reaching implications for regional and global markets – particularly 
those related to energy and land use. As such, large-scale biofuels growth is likely to have 
significant impacts on global greenhouse gas (GHG) emissions. This paper utilizes a CGE 
model with explicit biofuel, land, and energy markets. The model is able to estimate the effects 
on the broad range of input and output markets potentially affected globally by biofuels 
policies. One of the most controversial issues within the biofuels debate is potential indirect 
changes in land use and, in particular, the resulting changes in forest carbon stocks. To uncover 
consequences of biofuel policies for forest carbon, we link our CGE model with a dynamic 
forward looking model of the forest sector.  Within this framework, we evaluate the potential 
effects of US and multinational biofuels growth on changes in land use and emissions from 
changes in forest carbon stocks. 



Introduction 
 
There is significant policy interest in liquid biofuels with appealing prospects for energy 

security, farm security, poverty alleviation, and climate change. Large-scale commercial biofuel 

production could have far reaching implications for regional and global markets – particularly 

those related to energy and land use. As such, the growth in biofuels is likely to have significant 

impacts on global greenhouse gas (GHG) emissions. The objective of this paper is to inform 

understanding of the potential environmental consequences of historic and projected growth in 

biofuels supply. 

 Most of the attention devoted to GHG emissions associated with biofuels production has 

focused on the direct impacts – emissions associated with growing corn for biofuel, transporting 

it to market, milling it, and distributing the ethanol, as well as the emissions associated with the 

immediate conversion of the land for the corn production (Fargione et al., 2008). However, 

there is increasing interest in the potential market-mediated effects of biofuel programs 

(Kammen et al., 2008). Because biofuels have potentially large impact on agricultural and 

energy markets, they could induce price changes and these price changes could induce changes 

in other activities that give rise to additional changes in GHG emissions. Furthermore, it is 

suggested that biofuel subsidies could lower energy prices worldwide, and may in fact boost 

aggregate energy consumption sufficiently to offset any gains in displaced petroleum.  

In addition, there is a concern about the potential global indirect land use impacts of 

biofuels (Searchinger et al., 2008). It is argued that the resulting increased supply of biofuels 

has stimulated the demand for cropland, worldwide, and led to the conversion of grazing and 

forest lands and increased global GHG emissions. Indeed, Searchinger et al. (2008) argue that a 

US corn-based ethanol program would double the associated GHG emissions worldwide. 



However, this work has not considered the international competition for land and the changing 

opportunity costs of alternative land-uses, or the potential for the intensification of land-based 

production. Using a tool that explicitly models land-use market responses domestically and 

internationally across different land types and uses (food crops, energy crops, pasture, and 

forests), we investigate a particularly challenging and concerning aspect of the indirect land use 

change due to the growth in biofuels – the potential effects on global forests and the resulting 

GHG emissions from changes in forest carbon stocks.  

We build on the existing work of Birur et al. (2008), Taheripour et al. (2007), Hertel et 

al. (2008) and Taheripour et al. (2008). Birur et al. (2008) develop a biofuels extension of the 

GTAP-E model (see Burniaux and Truong (2002) and McDougall and Golub (2008)). They 

capitalize on the new GTAP-biofuels data base developed by Taheripour et al. (2007), which 

disaggregates three new commodities: 1) ethanol from coarse grains (mainly corn), 2) ethanol 

from sugarcane, 3) and biodiesel from oilseeds, all within the global GTAP framework. The 

model is validated over the 2001-2006 period (Birur et al., 2008). Hertel et al. (2008) use this 

model to examine the impacts of increased biofuel demand in the US and EU on the pattern of 

global agricultural production, land use and international trade. They conclude that these 

mandates are likely to have significant impacts on global land use. Taheripour et al. (2008) 

explicitly introduce biofuel by-products (BYPs) – Dried Distillers’  Grains with Solubles 

(DDGS) and oilseed meals, major BYPs of grain based ethanol and biodiesel – into the GTAP 

data base and the Hertel et al. (2008) model to analyze the economic and environmental impacts 

of the US-EU biofuel growth. They show that incorporation of BYPs into the model 

significantly changes the land use consequences. All these studies, however, do not estimate the 

implications of the biofuel market developments for global GHG emissions.  



 

Methods 

To investigate the GHG emissions from forest land-use change due to growth in biofuels, we 

begin with a model of Hertel et al. (2008), add BYPs as it is described in Taheripur et al. 

(2008), and then link resulted CGE model with forward looking forestry model of Sohngen and 

Mendelsohn (2007). The key feature of the CGE model for purpose of analyzing changes in 

land use is described below, while for other details a reader is referred to Birur et al. (2008) and 

Hertel et al. (2008). A feature unique to this work and central for this paper – the link with the 

Global Timber Model – is presented in detail. To better capture interactions between land-using 

sectors, primary and secondary commodity markets, and regions, we have added more sectoral 

details to the aggregation used in Hertel et al. (2008). The number of regions used in this work 

is 18 – same as in Hertel et al. (2008). However, the grouping is different. While Hertel et al. 

(2008) break out net energy exporters, our aggregation allows to focus on regions where 

forestry is economically important. Our model has 18 regions and 34 production sectors, three 

of which are ethanol from corn, ethanol from sugarcane and biodiesel (see Appendix Table A1), 

and 36 produced goods which include DDGS and oilseed meals, by-products of corn based 

ethanol and biodiesel, respectively.  

 

Heterogeneous land 

Following earlier work on land-use modeling within GTAP framework (see, for example, 

Darwin et al. (1995), Lee et al. (2008), and Golub et al. (2008)) we introduce Agro-Ecological 

Zones. This facilitates analysis of the competition for land within and across regions and the 

potential for changes in land use driven by biofuel policies. The importance of this explicit 



treatment of global land use competition and different land types should not be understated. 

Corn, for example, competes with different crops in different AEZs. The expansion of corn in 

the US for ethanol use has had a much larger impact on soybeans than on other crops. This, in 

turn, has had an impact on the incentive to grow soybeans in particular AEZ in other regions 

(e.g., Brazil), which can lead to shifts in land use (e.g., livestock and forestry) in other AEZs 

within the same region or other regions.  Disaggregating the global land endowments by AEZ in 

an economy-wide global economic modeling framework allows us to take account of this 

stream of effects and feedbacks.   

We distinguish 18 AEZs, which differ along two dimensions: growing period (6 

categories x 60 day intervals), and climatic zones (3 categories: tropical, temperate and boreal). 

Following the work of the FAO and IIASA (2000), the length of growing period depends on 

temperature, precipitation, soil characteristics and topography. The suitability of each AEZ for 

production of alternative crops and livestock is based on currently observed practices, so that 

the competition for land within a given AEZ across uses is constrained to include activities that 

have been observed to take place in that AEZ.  

 As in the standard GTAP model (Hertel, 1997), there is a single, national production 

function for each commodity. However, unlike the standard GTAP model, which treats land as 

a homogenous endowment, in our model the heterogeneous AEZs are inputs to the national 

production function. With a sufficiently high elasticity of substitution between AEZs, we are 

assured that the return to land across AEZs, but within a given use (or sector), will move closely 

together, as would be the case if we had modeled production of a given homogeneous 

commodity on each AEZ separately. 



Land does not move freely between alternative uses within an AEZ. It is constrained by 

a Constant Elasticity of Transformation (CET) frontier. Thus, within an AEZ, the returns to land 

in different uses are allowed to differ. With this structure, we can calibrate the partial 

equilibrium land supply response to remain in line with the econometric literature. The absolute 

value of the CET parameter represents the upper bound (the case of an infinitesimal share for 

that use) on the elasticity of supply to a given use of land in response to a change in its rental 

rate. The more dominant a given use in total land revenue, the smaller its own-price elasticity of 

acreage supply. The lower bound on this supply elasticity is zero (the case of a unitary rental 

share – whereby all land is already devoted to that activity). Therefore, the actual supply 

elasticity is dependent on the relative importance of a given sector in the overall market for land 

and is therefore endogenous.  

We implement a nested CET structure of land supply whereby the land owner first 

decides on the allocation of land among three land cover types, i.e. forest, cropland and grazing 

land, based on relative returns to land.  The land owner then decides on the allocation of land 

between various crops, again based on relative returns in crop sectors. To set the CET parameter 

among three land cover types and among crops, we follow the recommendations in Ahmed, 

Hertel and Lubowski (2008). In our analysis, there are two policy simulation periods: historical 

2001-2006 and policy 2006 - 2015. We set the CET parameter among three land cover types to  

-0.11 in historical simulation; and, for the policy simulation, we set the parameter to  

-0.2.  In policy simulation the absolute magnitude of the parameter is higher to reflect the 

additional adjustment time. 

 

 



Link to the Global Timber Model: Estimating the Change in Forest Carbon 

One of the most challenging aspects of assessing the GHG emissions consequences of land use 

and land use change – particularly in an economy-wide context – is presented by the forestry 

sector. Any decision regarding forestry production is a forward looking decision. Unlike crops 

and, to some extent, livestock, growing a tree takes a very long period of time, and optimal 

decisions regarding the timing of forestry harvesting and management are best modeled in a 

forward looking framework.   

To improve the representation of the forestry sector in a static model, we link our CGE 

model with the dynamic forward looking Global Timber Model (GTM) described in Sohngen 

and Mendelsohn (2007).  Since GTM will have something different to say about the forestry 

sector in general, and land rents in particular, one could consider iterating between the models 

until they (hopefully) converge. However, since the main shock is in the non-forest sector, and 

since GTM is forward looking and hence fundamentally different from static GTAP, it seems 

that there is little to be gained from this. For this reason, we employ a “soft-link”  between our 

CGE and GTM, wherein the GTAP model is used to generate the once-for-all-time, biofuel 

policy shock, while the GTM is used to compute the change in forest carbon stocks over time by 

species and age class within regions and AEZs, taking into account intertemporal, optimizing 

behavior.  

Even though we do not iterate between the two models, it will be important to have a 

compatible treatment of land markets in the two models in order to facilitate accurate 

communication of results from GTAP to GTM.  For this, the structure of the land market of the 

GTM has also been modified to conform with that in the CGE model so that the same Agro-

Ecological Zones are referenced, both models uses the notion of a Constant Elasticity of 



Transformation (CET) function which transforms land from one use (agriculture) to another 

(forestry), and the same CET parameters are used to model land supply. Thus, the two models 

are consistent in their representation of land markets.  

Our approach for linking the two models draws on the paper by Horridge and Zhai 

(2006), written for the trade/poverty analysis.  We can think in two dimensions (P, Q) space, 

viewing the iso-elastic supply function as follows: 

[ / ]Q B P σ=          (1) 

where  < 0 is the elasticity of transformation between uses, B is a shifter reflecting the impact 

of returns to competing land uses on supply, and P and Q, are the price (rental) and quantity of 

land within a given AEZ that is supplied to forestry. Since both models utilize this same CET 

function, we may proceed as follows. First, set the value of  to be the same in both models, 

then take the solution values for P and Q from GTAP and use them to compute the implied shift 

in this land supply function in GTM. In this way, we preserve the fundamental structure of 

GTM, while ensuring maximum consistency between the two models. 

 Solving (1) for the vertical shift in supply of land to forestry in a given AEZ, we obtain: 

1/B PQ σ=           (2) 

Since we often like to communicate results in a unit-free manner (i.e., in percentage change 

terms), it is useful to linearize (1) and manipulate that to see how this works in terms of 

percentage changes in price and quantity. Here, lower case denotes the percentage change in an 

upper case variable. So, totally differentiating (1) we get the following form of acreage supply 

response: 

[ ]q p bσ= − −          (3) 



So it is clear that the own-price elasticity of supply in this simplified formulation is just the 

negative of the CET parameter. And rearranging, we get the required shock to the shifter: 

( / )b p q σ= +          (4) 

If the elasticity of supply is infinite, then the vertical shift is just determined by the change in 

the rental price of land in forestry from GTAP. Otherwise, this is modified by the scaled 

quantity change (recall that the CET parameter is negative, so if quantity rises, this will amount 

to a reduction in b). Since (3) is just a linear approximation to the true shift, we can write the 

true percentage change required in B as follows: 

100( 1)b α= −          (5) 

where  is given by: 

1/[1 (0.01 )][1 (0.01 )]p q σα = + +       (6)  

 In summary, first, the CGE model is solved for a new equilibrium in the context of 

projected growth in liquid biofuels, from which we obtain a vertical shift in the land supply 

schedule for forestry, in each of the AEZs in each of the model regions, as well as changes in 

average land rents across uses (crops, livestock and forestry). The latter reflects changes in 

overall condition in land markets. The shifts and the changes in average across uses land rents 

are taken as exogenous inputs to the GTM, which is subsequently solved intertemporally in 

order to develop projections of the new path of forest carbon in light of the growth in biofuels. 

The deviations of these carbon stocks from baseline give an estimate of regional and global net 

forest-based carbon emissions attributable to the additional growth in biofuels consumption. 

 

Scenarios 

Biofuels Growth in the US: US biofuels development dates back to the Energy Policy Act of 



1978 and have been largely driven by an interest in energy security, as well as the presence of a 

strong farm lobby. Ethanol production received a boost from the 1990 Clean Air Act which 

required vendors of gasoline to have a minimum oxygen percentage in their product.  Adding 

oxygen enables the fuel to burn cleaner, so a cleaner environment became another important 

justification for ethanol subsidies. With the ban of its major competitor (MTBE) due to 

groundwater contamination, there was a strong demand for ethanol use as a source of added 

oxygen. As a result, ethanol prices peaked at $3.58/gallon in June, 2006, shortly after the MTBE 

ban was complete.  Since that time, the price of ethanol has been falling, as the demand for 

ethanol as an additive has become satiated, and ethanol is increasingly being priced for its 

energy content – which is only about 70% of that provided by an equivalent volume of gasoline. 

By the end of 2006, the US was consuming nearly 5 billion gallons of ethanol. The Energy 

Policy Act of 2007 stipulates that ethanol consumption should rise to 15 billion gallons by 2015 

– implying roughly a tripling of 2006 production. Given current investments in ethanol plants, 

this target should be achieved well in advance of that date.  

Biofuels Growth in the EU: The overall level of biofuels in the European Union is established 

in terms of share of biofuels on liquid fuels market. According to European Union Biofuels 

Directive, the share should achieve 10% by 2020 (European Commission (2007)). We follow 

Hertel et al. (2008) to set 6.25% share of biofuels in liquid fuels in 2015. 

We begin with version 6 of the GTAP data base representing global economy in 2001 

and update it to 2006. It is important to understand how we update the data base and what 

exogenous variables are shocked. To update the data base, we choose approach outlined in 

Hertel et al. (2008). Instead of shocking all the exogenous variables in the economy, we shock 

only those that are important in determining structure of biofuel economy. Under this approach, 



the information requirements for both historical 2001-2006 and policy 2006-2015 experiments 

is greatly reduced.  In historical simulation, we focus only on those elements of the history 

(presented in Table 1) that are critical in shaping structure of biofuel economy from 2001 to 

2006: rise in petroleum prices, the replacement of MTBE by ethanol as gasoline additive, and 

the subsidies to the ethanol and biodiesel industries in the US and EU. In US, we also target 

0.0021 share of sugarcane ethanol in total liquid fuel consumption to reflect importance of 

Brazilian exports of ethanol to US.1 Because we do not model other exogenous variables 

(population, labor, trade policies, technological change and/or income growth) we update 2001 

data base to 2006 in terms of shares of renewable fuels in total liquid fuel consumption. Thus in 

our historical simulation we do not target quantity of biofuels in 2006, but shares. Specifically, 

we target 0.0182 share of biofuels in total liquid fuels for transport in US and 0.0123 share of 

biofuels in total liquid fuels for transport in EU. We target these shares by changing elasticity of 

substitution between gasoline and biofuels within household demand for liquid fuels (see Birur 

et al. (2008) for detailed description of the approach to historical simulation). And because our 

model includes BYPs, the resulted elasticities are slightly smaller than those reported in Birur et 

al. (2008) and consistent with elasticities used in Taheripur et al. (2008). 

Starting from the updated data base representing 2006 biofuel economy, we run two 

policy simulations: US only biofuel growth and US plus EU biofuels growth. In these 

experiments we model policy, again, in terms of changes in share of renewable fuels in total 

liquid fuel consumption. We specify the 2015 target as a renewable fuel share of projected 2015 

total liquid transportation fuel consumption, which is projected to rise from 0.0182 to 0.0509 in 

US and from 0.0123 to 0.0625 in EU over this period (Hertel et al., 2008). This change in the 

                                                   
1 The size of the shock to share of ethanol from sugarcane in total liquid fuel consumption in US is likely to be 
revised in the future versions of the paper as better data become available. 



composition of the US and EU energy consumption profile forms the basis for our experiments 

and subsequently will be referred to as the “US+EU biofuels growth” . In US, we implement the 

growth in biofuels through budget-neutral subsidy on consumption of 1) domestically produced 

corn ethanol and biodiesel, and 2) imported ethanol from sugarcane. The cost of subsidy is 

offset by consumption tax on fuel mix that includes all components of liquid transportation fuel, 

domestic and imported: refined fuels, ethanol derived from corn, ethanol derived from 

sugarcane and biodiesel. As a result, consumer price of petroleum products increases in US, 

which leads to reduction in US consumption and reduction in global price of petroleum 

products. The later induces increase in consumption of petroleum products in the rest of the 

world. In EU, the policy is budget neutral as well with consumption subsidy on imported and 

domestic biodiesel and ethanol from corn. 

 It is important to note that we are estimating the potential GHG effects of an increase in 

total biofuel volumes from 2006 levels. The Energy Policy Act of 2007 has a stated goal of 15 

billion gallons in 2015. Most of this goal is likely to be obtained simply through baseline forces, 

in particular, higher oil prices. As a result, the Energy Policy Act itself will only be called upon 

to produce an incremental increase. 

  

Results 

Table 3a reports the output changes (percentage increase or decrease) in the biofuel and land 

using sectors for the US biofuels growth scenario. In the US, production of corn ethanol 

(ethanol1) and biodiesel rise by more than 170%, while demand for ethanol from sugarcane is 

satisfied by imports from Brazil, where production is rising by 57%. Grain production rises in 

all regions, except Brazil, and by more than 9% in US in order to meet the increased demand for 



biofuel feedstocks. Similarly, to satisfy demand for biodiesel feedstock, oilseeds production 

rises in all regions, except Brazil and also US which specialized in sugarcane and corn, 

respectively. In Brazil sugarcane within our “other crops”  grouping rise by more than 6% to 

satisfy increased US demand for sugarcane ethanol (ethanol2). The largest percentage 

reductions in US output come from paddy rice, wheat and other crops, followed by forestry and 

then beef and dairy industries. Output in livestock and forestry sectors also falls in some regions 

due to competition for land between crops for biofuels and other agricultural use. Table 3b 

reports the output changes in the biofuel and land using sectors for the US+EU biofuel growth 

scenario. In addition to expanded biofuel production in US, now EU production of biodiesel and 

corn ethanol rises by more than 400%. When US and EU policy are modeled together, oilseeds 

production rises in all regions of the world, including US and Brazil whereas under the US only 

scenario production of oilseeds falls.2 Comparing to Table 3a, we see more decline in paddy 

rice and livestock sectors output in EU, Brazil, Canada and US.  

 Table 4a shows the global revenue share weighted changes in land use predicted by the 

CGE model, for all regions under the US biofuel growth scenario. Grains production rises 

worldwide in order to meet the increased demand for biofuels in the US (Table 3a). This rise in 

demand boosts the average return to cropland and, as a result, additional land is drawn into 

crops from forestry and grazing. These increases in crop land cover come from pastureland and 

commercial forest land. Note that, we are currently not modeling the potential for agricultural 

expansion into natural forests, nor are we considering the potential for idle lands to enter 

production. Not surprisingly, the percentage declines in forest and pasture land cover are largest 

in those regions where the rise in crop land is highest. And, in general, there is a larger 

                                                   
2 The finding that addition of the EU biofuel program turns production of oilseeds in US from declining to rising is 
similar to result reported in Hertel et al. (2008). 



proportional reduction in pastureland. Introduction of EU biofuel growth along with US growth 

has a huge effect on land use worldwide (Table 4b). Within crop sector, land in oil seeds 

expands in all regions at expense of paddy rice and, in some regions, wheat, and outside crops at 

expense of livestock and forest sectors. The exceptions are Rest of Europe, Former Soviet 

Union and most of regions in Asia where forestry expands to meet demand for forestry 

products, and expands even more when EU biofuel policy is brought into picture. 

 As noted, these changes in land cover arise due to differential changes in land rents. 

Changes in average land rents (across AEZs), by region and land cover type are reported in 

Tables 5a and 5b. Due to the imperfect mobility of land across uses, there are sizable 

discrepancies in the land rent changes across crops, forestry and pastureland. Due to the 

relatively inelastic supply of crop land, the associated rents rise sharply in most countries 

around the world. This rise draws land out of forestry and grazing, thereby bidding up those 

land rents as well. 

 In order to deduce the impact of the resulting changes in forest land area on GHG 

emissions, we turn to the Global Timber Model. While the global CGE model used up to this 

point includes a forestry sector, it does not differentiate forests by type of trees, management 

intensity, or vintage. Furthermore, as a comparative static model, it does not capture the long 

run investment nature of forestry management decisions, and thereby is not well-suited to 

looking at the long-run impact on forest carbon stocks (Sohngen et al., 2008).  Since the two 

models use the same land supply function and the same definitions of AEZs, communication of 

the CGE results to the timber model is quite straightforward. Given the predicted by the CGE 

model changes in the quantity and rental rate on forest lands, by AEZ and region, as well as 

average land rental rate changes in AEZ, we compute the shift in forest land supply function 



implied by the biofuels growth. In Global Timber Model, this induces changes in forest stocks 

as well as optimal management regimes, which, in turn, lead to changes in carbon stocks.  

Changes in carbon stock are reported in Tables 6a and 6b for the US biofuel growth and 

US+EU biofuel growth scenarios, respectively. We have calculated the annual equivalent 

amount (AEA) of the 50 year stream of carbon changes resulting from implementation of the 

model, assuming a discount rate of 5%. It is important to note that these changes in carbon 

reflect only above the ground changes and changes in forest product stocks.  Changes in soil 

carbon due to conversion of forest land into agricultural use are not taken into account in the 

results.  Changes in carbon stock in aboveground biomass include trees that are harvested and 

some of the future effects of the harvests today (due to the 50 year time period captured). For 

carbon stored in harvested trees, we assume that 30% of the carbon is immediately emitted. 

With exception of Russia and Oceania, forest area generally declines under the US 

biofuel scenario resulting in global forests reduction of 2.56 million hectares per year on 

average (Table 6a). Almost half of this average annual loss is in Brazil (1.018 million ha). As a 

result, carbon emissions from land use change in forestry rise.  Globally, US biofuel policy 

leads to additional average annual equivalent of 5.85 MMTCE emissions per year due to 

changes in land use in forestry (annualized using a discount rate of 5%). Fairly large additional 

carbon emissions from forests occur in EU, Brazil and US, due to increased deforestation in 

those regions. Forest area expands in Russia providing additional sequestration of 1.25 MMTCE 

annually.  

.   US and EU biofuel growth lead to an 8.3 million hectare decline in global forest area on 

average annually and to an additional 13.45 MMTCE/year global emissions from forests. 

Largest emissions, as well as deforestation rates, are predicted in EU, Brazil, US and Canada. It 



is important to note, however, that we have not modeled changes at the inaccessible margin.  To 

the extent that new forests are accessed to enhance crop production, emissions could increase.  

Globally, US biofuels growth leads to 0.27% annual decline in forest area relative to 

baseline. US plus EU growth leads to 0.88% annual decline in global forests. Consequences for 

US are 1.12 and 2.06 annual % decline in forest area relative to baseline for US only and 

US+EU biofuel growth, respectively. Is this a rapid decline?  Table A2 in the Appendix reports 

forest land area in 1000 acres in US from 1630 to 2002 as well as annual percent change 

(source: Smith et al., 2003).  The annual rate of change between 1987 and 2002 (not reported) is 

0.1%. Assuming this tendency will continue in the baseline, -1.12% change from baseline due 

to US biofuels growth will reverse the recent trend. 

 We can convert the forest carbon emissions to emissions per gallon of biofuel produced. 

In order to get to the actual amount of biofuel produced, we need to do some side-calculations 

for initial and ending biofuel production. The calculations are presented in Tables 7a and 7b for 

US only and US+EU scenarios, respectively. Comparison of quantity of ethanol projected to be 

used for transportation in 2015 reported in Table 2 is different from the simulated quantity of 

ethanol to be used for transportation in 2015 reported in Tables 7a and 7b. This is because we 

have specified the target in terms of a renewable fuel share, not an absolute level. In US biofuel 

scenario, 12.02 billions of gallons of renewable fuels used for transport (Table 7a) result in 5.85 

MMTC of carbon emissions from changes in aboveground forest carbon stocks (Table 6a), or 

6g of carbon per 1000 Btu (0.49 kg of carbon per gallon). For the US and EU biofuels scenario, 

carbon emissions from changes in aboveground forest carbon stocks are 7 g of carbon per 1000 

Btu (0.71 kg of carbon per gallon). For comparison, gasoline emits 19 g of carbon per 1000 Btu 

(2.4 kg of carbon per gallon). However, before drawing conclusions regarding the 



environmental impacts of biofuels, we need to consider all other emissions related to biofuel 

production (conversion of unmanaged forests and other types of land cover, soil carbon, 

emissions from producing biofuel crops and biofuel itself etc.) and effect of changes in prices of 

other sources of energy due to the growth in biofuels. 

 

Conclusion 

There are many potential sources of GHG emissions stemming from land use. However, land 

use change is a significant individual source (IPCC, 2007). This paper provides a new 

perspective on the potential forest carbon sequestration implications of additional biofuels. We 

have developed an economic model that endogenously accounts for input and output market 

interactions and feedbacks, and sequestration implications of the resulting changes to the global 

economy. The model includes biofuels co-products that reduce the demand for grain for 

livestock feed and captures changes in realized yields that reflect input substitution and price 

changes. With this framework, we find a complex set of global reactions to a simulated increase 

in share of renewable fuels in total liquid fuels for transport in US and EU.  We find increases in 

cropland for grains, oil seeds and sugarcane with decreases in grazing lands, forest lands, and 

other croplands.   

 Through the link with Global Timber Model, we find that growth in US biofuels leads 

to additional 5.85 MMTCE emissions per year from changes in aboveground forest carbon 

stocks. When considered together, US and EU biofuels growth adds 13.45 MMTCE annually. 

Globally, forests are a net source of carbon, to the tune of somewhere between 700 and 2000 

MMTC per year. However, the losses are largely driven by deforestation in tropical countries.  

The US , Russia, Europe, and maybe Canada have been sinks.  The US sink is around 200-220 



MMTC per year.  In this context the effects are miniscule. But in terms of the policy, they need 

to be counted in the net and compared with the other lifecycle estimates of carbon change 

resulting from the policy. 

From the experiment with CGE model and subsequent link with GTM, we conclude that 

if we change 2006 world economy from one with 0.0183 to 0.0509 share of renewable fuels in 

total transportation fuels in US, these renewable fuels carbon emissions are on average 

6g/1000Btu (0.49kg of carbon emissions per gallon) for the next 50 years when taking into 

account only changes in aboveground forest carbon and ignoring all other emissions. When we 

consider US and EU biofuel growth together, we find 7g of carbon emissions per 1000Btu (0.71 

kg of carbon emissions per gallon) of renewable fuel. Our estimates do not capture changes in 

soil carbon and GHG emissions related to changes in crop and livestock production, and in the 

economy as a whole, and we are not yet modeling the potential for increased deforestation of 

natural forests.  

In the future, we will be exploring interactions between biofuels and climate policies by 

assessing the effects of the biofuels growth on regional and global GHG emissions mitigation 

potential. To investigate the GHG emissions from land-use change consequences of biofuels 

growth, we draw on the framework of Golub et al. (2008) who analyze the role of global land-

use in determining potential GHG mitigation by land-based activities in agriculture and forestry. 

These authors augment the GTAP model with a new non-CO2 emissions data base (Rose and 

Lee, 2008), linked to underlying economic activity. They also include new engineering GHG 

mitigation costs estimates (USEPA, 2006), as well as an explicit model of forestry 

intensification and extensification to capture changes in forest carbon stocks.  For full GHG 

accounting, we include CO2 emissions from fossil fuel combustion (Lee, 2007) linked to 



underlying economic activity. This permits us to provide a comprehensive analysis of the 

consequences of expanded biofuels production for GHG emissions. 

An important question is whether biofuels growth could facilitate or constrain mitigation 

opportunities? For instance, Golub et al. (2008) estimate substantial GHG mitigation potential 

in non-US forests. Furthermore, those authors find that a carbon tax could lead to input 

substitution away from land and fertilizer. Both results run counter to the changes in land-use 

estimated by Hertel et al. (2008). Understanding interactions between potential biofuels and 

climate policies is important. There are regional comparative advantages in biofuels production 

(as well as food crops and timber production). There are also regional comparative advantages 

in land-based GHG mitigation. By modeling biofuels and climate policies simultaneously, we 

can assess the implications for land-use, production, and global competitiveness. This extension 

will include calibration of the model to the mitigation costs for non-CO2 GHGs from USEPA 

(2006) and for forest carbon sequestration from Sohngen and Mendelsohn (2007). It will then 

evaluate the CGE GHG mitigation responses to a range of carbon equivalent taxes with and 

without biofuels growth. We can then investigate the interactions between the policies at the 

global, regional and sectoral levels. 
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Table 1. Description of 2001-2006 Historical Simulation 

 
  Change 2001-2006 

  US EU 

Average crude oil price 136 
 
Increase in ethanol additive demand 
(incorporated by imposing negative shock to the 
factor augmenting technical change) -49 − 
 
Ad valorem equivalent of subsidy (US) or tax credit (EU)  

Ethanol -10.9 50.77 

Biodiesel -7 81.18 

Change in share of ethanol from sugarcane  0.0021  
 
Source: Birur, Hertel and Tyner (2008) 
 
 

Table 2. Historical and Projected Shares of Biofuels in Liquid Fuels for Transport in US and EU 

 
  2001 2006 2015 

  Quad Btu Share  Quad Btu Share  Quad Btu Share  

 US 

Ethanol 0.1485 0.00572 0.471 0.0171 1.341 0.0453 

Biodiesel 0.0011 0.00004 0.032 0.0012 0.167 0.0056 

Gasoline 25.81 0.99424 27.067 0.9818 28.122 0.9491 

Total 25.96 1 27.57 1 29.630 1 

       

Share of biofuels in total 
liquid fuels for transport  0.0058  0.0182  0.0509 
              

  EU 

Ethanol 0 0 0.035 0.0019 0.183 0.0099 

Biodiesel 0.037 0.0020 0.189 0.0104 0.973 0.0526 

Gasoline 18.163 0.9980 17.976 0.9877 17.344 0.9375 

Total 18.20 1 18.20 1 18.50 1 

       

Share of biofuels in total 
liquid fuels for transport   0.0020   0.0123   0.0625 
 
Source: Hertel, Tyner and Birur (2008). 



Table 3a. Change in Output in Biofuel and Agriculture Sectors due to US Biofuel Growth, % 
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Ethanol1 -0.82 -0.76 -0.51 -1.09 -0.73 -0.99 -1.20 7.46 178.09 -1.30 -0.35 -1.24 -1.59 -0.34 -0.66 -0.10 -1.63 -1.12 

Ethanol2 -0.87 -0.20 -0.12 0.02 -1.04 -0.29 -0.96 1.52 -12.78 -3.42 57.48 -2.86 2.03 -0.46 -0.23 -0.32 -0.75 -1.13 

Biodiesel -2.31 -1.37 -1.62 -3.73 -3.78 -3.13 -3.17 -2.13 177.47 -3.54 -1.54 -3.49 -2.50 -2.30 -2.47 -1.09 -2.40 -2.74 

Paddy Rice 0.32 0.01 0.07 0.01 -0.06 0.05 0.06 -1.33 -2.22 0.61 -2.81 0.99 1.03 1.10 0.41 0.03 -0.17 -0.29 

Wheat -0.20 0.19 0.84 0.36 -0.09 0.12 0.24 0.25 -3.07 0.26 -7.27 -0.01 0.10 0.19 0.26 0.13 0.92 0.89 
Other 
Grains 1.51 0.54 2.42 1.45 0.19 0.04 0.08 0.88 9.61 1.12 -3.12 0.86 0.42 0.57 0.27 0.22 0.08 1.07 
Vegetables, 
Fruits and 
Nuts 0.12 0.03 0.04 0.05 0.03 0.08 0.04 0.60 -1.34 0.22 -3.79 0.09 0.02 -0.05 -0.06 -0.01 0.16 -0.10 

Oilseeds 1.88 0.87 0.95 1.18 0.57 0.14 0.21 3.14 -1.15 1.41 -4.35 1.51 0.98 2.25 1.31 0.78 0.96 0.92 
Other 
Crops 0.71 0.77 0.44 0.67 0.74 0.23 0.33 0.53 -1.79 0.41 6.02 0.90 0.74 0.87 0.43 0.53 1.09 2.03 

Beef 0.35 0.00 -0.19 -0.01 -0.02 0.09 0.07 0.16 -0.53 0.12 -2.94 -0.01 0.30 0.15 -0.13 0.11 -0.19 0.09 

Dairy -0.01 -0.02 -0.05 0.02 0.03 0.08 0.05 -0.07 -0.32 -0.09 -0.32 0.00 0.01 0.05 -0.17 0.10 -0.20 0.03 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 3b. Change in Output in Biofuel and Agriculture Sectors due to US and EU Biofuel Growth, % 
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Ethanol1 -1.46 -1.52 -0.78 -2.28 -1.49 -2.10 -2.48 4.62 178.58 -2.70 -0.38 -2.92 443.59 -0.74 -1.41 -0.36 -2.94 -2.38 

Ethanol2 -1.24 -0.32 -0.17 0.05 -1.60 -0.47 -1.35 2.52 -13.70 -5.85 56.67 -4.11 1.29 -0.63 -0.34 -0.78 -1.10 -1.64 

Biodiesel -3.60 -3.19 -4.54 -8.55 164.83 -6.02 -7.44 -4.09 177.96 -8.18 -3.37 -7.37 454.71 -7.25 -6.47 -2.02 -5.26 -5.67 

Paddy Rice 0.48 -0.02 0.16 -0.01 -0.23 0.26 0.22 -6.35 -3.07 0.75 -4.41 1.22 -6.22 2.46 0.33 -0.23 -1.53 -0.67 

Wheat 0.47 0.74 4.12 1.39 1.34 0.82 1.08 2.27 -1.93 2.20 -9.03 -0.07 -9.39 1.51 1.70 1.21 3.55 3.62 

Other Grains 2.37 1.02 3.99 2.62 0.26 0.04 0.08 1.66 11.07 1.40 -4.16 1.29 -4.36 0.78 0.69 0.57 0.03 2.26 
Vegetables, 
Fruits and 
Nuts 1.22 0.11 0.15 0.15 0.19 0.42 0.22 1.44 -1.10 1.58 -3.80 1.15 -6.40 1.66 -0.08 0.49 2.81 0.23 

Oilseeds 15.87 6.09 5.04 5.23 4.00 1.21 2.02 17.76 8.08 8.22 15.08 10.67 56.15 15.15 17.30 12.27 10.23 6.61 

Other Crops 2.04 3.06 1.55 2.66 3.01 1.09 1.73 -0.32 -1.75 1.85 4.25 2.33 -6.80 4.48 1.14 2.06 4.72 7.21 

Beef 1.34 -0.03 0.00 0.03 -0.13 0.37 0.20 -0.85 -0.54 0.18 -3.55 -0.25 -1.28 0.31 -0.33 0.31 -0.32 0.17 

Dairy 0.46 -0.15 -0.07 0.09 0.41 -0.04 -0.06 -0.19 -0.49 -0.22 -0.04 -0.17 -1.01 0.17 -0.40 0.20 -0.30 0.09 



Table 4a.  Revenue Share Weighted Changes in Land Use due to US Biofuel Growth, (%) 
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  Land cover change 

Forest  -0.07 0.00 -0.09 0.06 0.02 -0.01 0.00 -0.37 -1.25 -0.26 -2.16 -0.15 -0.40 -0.06 0.15 -0.03 -0.22 -0.11 

Cropland 0.15 0.01 0.05 0.00 0.00 0.00 0.01 0.57 0.34 0.11 1.02 0.16 0.18 0.26 -0.02 0.05 0.36 0.05 
Cattle, sheep, 
goat, horses -0.14 -0.09 -0.34 -0.13 -0.12 -0.01 -0.04 -0.67 -1.39 -0.26 -3.11 -0.34 -0.44 -0.22 -0.28 -0.21 -0.42 -0.15 

Milk Animals -0.31 -0.10 -0.27 -0.11 -0.08 -0.02 -0.05 -0.79 -1.28 -0.38 -1.80 -0.33 -0.57 -0.26 -0.29 -0.23 -0.42 -0.18 

         � � � � � � � � � �

  Cropland change 

Paddy Rice 0.09 -0.09 -0.06 -0.11 -0.22 -0.08 -0.05 -1.87 -2.97 0.23 -3.54 0.55 0.89 0.89 0.21 -0.09 -0.31 -0.34 

Wheat -0.42 0.13 0.65 0.22 -0.22 0.02 0.10 -0.02 -3.58 -0.03 -7.47 -0.28 -0.11 -0.03 0.14 0.04 0.76 0.80 

Other Grain 1.11 0.42 2.11 1.14 -0.01 -0.07 -0.06 0.54 7.29 0.65 -3.73 0.48 0.19 0.26 0.12 0.15 -0.08 0.93 
Vegetables, 
fruits and 

nuts -0.09 -0.08 -0.09 -0.07 -0.16 -0.04 -0.09 0.27 -2.12 -0.14 -4.32 -0.23 -0.22 -0.31 -0.17 -0.16 -0.01 -0.18 

Oil Seeds 1.44 0.69 0.74 0.81 0.31 0.01 0.06 2.76 -2.06 0.95 -4.74 1.08 0.69 1.92 1.03 0.64 0.73 0.82 

Other Crops 0.41 0.57 0.28 0.40 0.36 0.07 0.15 0.06 -2.69 0.01 4.27 0.45 0.48 0.61 0.27 0.45 0.90 1.89 
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  Land cover change 

Forest  -0.37 0.28 -0.25 0.50 0.26 0.00 -0.10 -2.01 -2.02 -0.92 -4.09 -0.13 -7.49 0.61 0.82 0.06 -1.10 -0.66 

Cropland 0.70 -0.01 0.15 -0.01 -0.03 0.06 0.07 2.67 0.58 0.39 1.90 0.69 2.37 1.37 -0.11 0.35 1.76 0.36 
Cattle, sheep, 
goat, horses -0.83 -0.49 -0.94 -0.34 -0.56 -0.08 -0.29 -3.57 -2.64 -1.10 -6.21 -1.62 -9.09 -1.72 -1.58 -1.93 -2.47 -1.26 

Milk Animals -1.25 -0.56 -0.98 -0.30 -0.18 -0.34 -0.45 -3.25 -2.62 -1.32 -4.48 -1.59 -8.94 -1.76 -1.60 -2.01 -2.45 -1.32 

         � � � � � � � � � �

  Cropland change 

Paddy Rice -0.54 -0.47 -0.34 -0.44 -0.98 -0.42 -0.33 -8.08 -4.72 -0.43 -6.43 -0.28 -7.46 1.47 -0.76 -1.16 -2.39 -1.13 

Wheat -0.69 0.44 3.33 0.90 0.28 0.29 0.41 1.02 -3.51 0.96 -9.95 -1.27 -11.52 0.08 0.87 0.56 2.61 3.11 

Other Grain 0.98 0.61 3.23 1.93 -0.54 -0.50 -0.54 0.34 7.50 0.11 -5.93 -0.10 -6.91 -0.78 -0.30 0.03 -0.94 1.59 
Vegetables, 
fruits and 

nuts 0.14 -0.39 -0.35 -0.27 -0.68 -0.22 -0.47 0.12 -2.87 0.11 -5.57 -0.38 -9.21 -0.22 -0.95 -0.78 1.52 -0.40 

Oil Seeds 12.90 4.95 4.13 3.64 2.52 0.45 1.05 15.75 4.86 6.11 12.14 8.19 47.31 12.91 13.92 10.70 8.39 5.84 

Other Crops 0.76 2.21 0.96 1.64 1.39 0.27 0.78 -2.04 -3.85 0.35 1.14 0.59 -9.23 2.94 0.15 1.54 3.55 6.52 
 
 
 
 
 
 
 
 
 



 
 
 
Table 5a. Changes in Land Rents due to US Biofuel Growth, (%) 
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 Land rents change 

Forest  2.81 1.09 2.06 1.28 1.51 0.94 1.01 5.34 7.83 2.21 9.43 2.86 2.94 2.67 3.06 2.88 1.47 0.76 

Cropland 4.80 1.14 2.82 0.95 1.38 1.02 1.04 10.79 18.16 4.17 29.22 4.66 6.75 4.37 1.22 3.23 4.84 1.77 
Cattle, sheep, 
goat, horses 2.50 0.53 0.72 0.10 0.79 0.87 0.79 4.18 5.19 2.15 3.47 1.71 3.39 1.78 0.10 1.71 0.89 0.45 

Milk Animals 1.49 0.47 1.07 0.33 0.97 0.84 0.72 3.56 5.78 1.57 10.66 1.76 2.72 1.56 0.05 1.64 0.83 0.31 
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 Land rents change 

Forest  15.03 7.49 8.60 6.18 8.27 4.85 4.60 21.22 20.72 8.57 30.07 18.03 44.67 26.18 23.38 26.71 16.29 9.85 

Cropland 25.51 5.58 10.83 3.30 6.51 5.30 5.66 56.57 39.59 16.18 82.08 23.89 178.02 31.26 12.35 28.21 36.75 16.79 
Cattle, sheep, 
goat, horses 11.85 2.73 4.62 1.21 3.73 3.61 3.46 14.81 13.18 7.57 18.39 8.33 48.59 11.57 5.34 12.57 10.86 5.85 

Milk Animals 8.97 2.38 4.42 1.62 5.69 2.27 2.60 16.71 13.30 6.45 29.74 8.62 50.61 11.33 5.24 12.09 10.80 5.74 
 
 



 
 
Table 6a.  Emissions from Changes in Forest Land Area due to US Biofuel Growth, MMTCE/yr  
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Annual 
Emissions 

(AEA, 50 yrs) 1.7 0.37 1.72 -1.2 -1.25 2.99 0.9 -0.01 0.02 0.23 0.09 0.03 -0.02 0 0 0.28 5.85 

  Forest  area 

Baseline area  

(million ha) 77.522 97.904 80.638 107.92 133.12 121.736 28.938 39.674 10.26 47.798 58.152 63.39 34.552 17.53 12.002 9.344 940.48 

Biofuels policy 
area (million ha) 76.654 97.888 79.62 107.606 133.3 121.44 28.936 39.668 10.226 47.704 58.032 63.362 34.618 17.52 12.002 9.344 937.92 

Area Change 

 (million ha) -0.868 -0.016 -1.018 -0.314 0.18 -0.296 -0.002 -0.006 -0.034 -0.094 -0.12 -0.028 0.066 -0.01 0 0 -2.56 
% change from 

baseline -1.12 -0.02 -1.26 -0.29 0.14 -0.24 -0.01 -0.02 -0.33 -0.20 -0.21 -0.04 0.19 -0.06 0.00 0.00 -0.27 
 
Note: Annual equivalent amount (AEA) over 50 years at r=0.05. Positive numbers indicate additional emissions as a result of the policy, 

while negative numbers indicate sequestration. Baseline land area and policy land area are simple average over 50 years. 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 6b. Emissions from Changes in Forest Land Area due to US and EU Biofuel Growth, MMTCE/yr  
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Annual 
Emissions 

(AEA,  
50 yrs) 1.82 0.15 2.76 1.92 -1.19 6.41 0.31 0.01 0.06 0.41 0.49 0.11 -0.08 0.02 0 0.25 13.45 

  Forest area 

Baseline area  

(million ha) 77.522 97.904 80.638 107.92 133.12 121.736 28.938 39.674 10.26 47.798 58.152 63.39 34.552 17.53 12.002 9.344 940.48 
Biofuels 

policy area 
(million ha) 75.922 98.022 78.93 106.492 133.796 118.254 28.968 39.646 10.14 47.494 57.52 63.288 34.882 17.502 11.994 9.346 932.196 

Area Change 

 (million ha) -1.6 0.118 -1.708 -1.428 0.676 -3.482 0.03 -0.028 -0.12 -0.304 -0.632 -0.102 0.33 -0.028 -0.008 0.002 -8.284 
% change 

from baseline -2.06 0.12 -2.12 -1.32 0.51 -2.86 0.10 -0.07 -1.17 -0.64 -1.09 -0.16 0.96 -0.16 -0.07 0.02 -0.88 
 
Note: Annual equivalent amount (AEA) over 50 years at r=0.05. Positive numbers indicate additional emissions as a result of the policy, 

while negative numbers indicate sequestration. Baseline land area and policy land area are simple average over 50 years.



Table 7a. Emissions from Changes in Forest Land Area due to US Biofuels Growth, per Gallon of Biofuel 
for Transport 
�

� � � � � � � �

  2015 (CGE simulation result) 

 Quad btu Share  
Billions 

of 
gallons 

Emissions, 
MMTC 
(GTM 

simulation 
result) 

Biofuel 
emissions, 
g of C per 
1000 Btu  

Gasoline 
emissions, 
g of C per 
1000 Btu 

Average 
liquid fuel for 

transport 
emissions, g 

of C per 
1000 Btu 

1 2 3 4 5 6 7 8 
  US biofuels 

Ethanol 1.0043 0.0503 11.92     

Biodiesel 0.0131 0.0007 0.10     

Gasoline 18.9680 0.9491 151.66     

Total liquid fuels for transport 19.9854 1 163.68     

Total biofuels 1.0174 0.0509 12.02 5.85 6 19 18.34 

        

        

        
Table 7b. Emissions from Changes in Forest Land Area due to US and EU Biofuels Growth, per Gallon of 
Biofuel for Transport 

 

        

  2015 (CGE simulation result) 

  Quad btu Share  
Billions 

of 
gallons 

Emissions, 
MMTC 
(GTM 

simulation 
result) 

Biofuel 
emissions, 
g of C  per 
1000 Btu 

Gasoline 
emissions, 
g of  C per 
1000 Btu 

Average 
liquid fuel for 

transport 
emissions, g 

of C per 
1000 Btu 

1 2 3 4 5 6 7 8 
  US and EU biofuels 
 US 

Ethanol 1.0061 0.0503 11.94     

Biodiesel 0.0131 0.0007 0.10   � �

Gasoline 19.0015 0.9491 151.93   � �

Total liquid fuels for transport 20.0207 1 163.97   � �

Total biofuels 1.0192 0.0509 12.04   � �

� EU 

Ethanol 0.0160 0.0011 0.19     

Biodiesel 0.8674 0.0613 6.75     

Gasoline 13.2568 0.9375 105.99     

Total liquid fuels for transport 14.1402 1 112.93     

Total biofuels 0.8834 0.0509 6.94     
Total biofuels in US and EU     18.98 13.45 7 19 18.18 



 
Appendix 
 
Table A1. Production Sectors and Regions of the CGE Model 
 
Sectors 1 Paddy rice 

2 Wheat 
3 Other grain 
4 Vegetables, fruit, nuts 
5 Oilseeds 
6 Other Crops 
7 Cattle, sheep, goat, horses 
8 Raw milk 
9 Non-ruminant livestock 
10 Forest 
11 Ethanol  from corn (produce ethanol 1 
and DDGS)  
 12 Ethanol from sugarcane (produce 
ethanol2 and BDBP) 
13 Biodiesel  
14 Coal 
15 Oil 
16 Gas 
17 Petroleum and coal products 
18 Electricity 
19 Gas distribution 
20 Beef, mutton, horse meat 
21 Dairy products 
22 Other meat products 
23 Processed rice 
24 Other food processing 
25 Wood processing 
26 Chemical, rubber, plastic prods 
27 Energy intensive manufacture 
28 Wholesale and Retail Trade 
29 Private Services 
30 Ground Transport 
31  Other Transport 
32 Textiles, Apparel, Footwear 
33  Other manufacture 
34  Housing and Govt Services    
 

Regions  Oceania 
 China 
 Japan 
 East Asia 
 South East Asia 
 India 
 Rest of South Asia 
 Canada 
 United States 
 Central and Caribbean Americas 
 Brazil 
 South and other Americas 
 European Union-25 countries 
 Other Europe 
 Russia 
 Other CEE and CIS countries 
 Sub-Saharan Africa 
 North Africa and Middle East 

 
   
 
 
 
 
 
 
 
 
 



 
Table A2. Forest land area in the United States�
 

Year US 

 1000 acres Annual % change 
 

1630 1,045,435 -0.115 

1907 759,140 0.003 

1938 759,814 -0.032 

1953 756,167 0.076 

1963 761,936 -0.174 

1977 743,633 -0.079 

1987 737,750 0.124 

1997 746,958 0.053 

2002 748,923  
 
Source: Smith et al. (2003) 
 
 
 
 
 
 
 


