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Empirical Performance of Alternative Option Pricing Models for

Commodity Futures Options

Abstract

The central part of pricing agricultural commodity futures options is to find appro-
priate stochastic process of the underlying assets. The Black’s (1976) futures option
pricing model laid the foundation for a new era of futures option valuation theory. The
geometric Brownian motion assumption girding the Black’s model, however, has been
regarded as unrealistic in numerous empirical studies. Option pricing models incor-
porating discrete jumps and stochastic volatility have been studied extensively in the
literature. This study tests the performance of major alternative option pricing models
and attempts to find the appropriate model for pricing commodity futures options.

Keywords: futures options, jump-diffusion, option pricing, stochastic volatility, sea-
sonality



Introduction

Proper model for pricing agricultural commodity futures options is crucial to estimating

implied volatility and effectively hedging in agricultural financial markets. The central

part of pricing agricultural commodity futures options is to find appropriate stochastic

process of the underlying assets. The Black-Scholes (1973) option pricing model laid the

foundation for a new era of option valuation theory. The geometric Brownian motion

(GBM) assumption girding the Black-Scholes model, however, has been regarded as

unsatisfactory by many researchers. Empirical evidence clearly indicates that many

underlying return series display negative skewness and excess kurtosis features (see a

review in Bates, 1996b) that are not captured by Black-Scholes. In addition, while

volatility of the underlying process is assumed to be constant in the Black-Scholes

model, implied volatilities from the Black-Scholes model often vary with the strike

price and maturity of the options (e.g. Rubinstein, 1985, 1994).

Impacts of new information may cause discrete jumps in the underlying process.

Merton (1976) derives an option pricing formula for a general case when the underlying

asset process is generated by a mixture of both continuous and jump stochastic pro-

cesses. But the jump risk is assumed diversifiable and therefore nonsystematic. Bates

(1991) provides an option pricing model on a jump-diffusion process with systematic

jump risk to show that the Crash of ’87 was predictable.

The stochastic volatility processes have been widely studied in the literature. Hull

and White (1987) give a closed-form solution for the price of a European option based

on the assumption of zero-correlation between stochastic volatility and stock price.

They find that Black-Scholes model frequently overprices options and the degree of

overpricing increases with the time to maturity. Heston (1993) derives a closed-form
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solution for the price of a European call based on Fourier inversion methods. But

his model allows any degree of correlation between stochastic volatility and spot asset

returns. He finds that correlation between volatility and the spot price is important for

explaining return skewness and strike-price biases in the Black-Scholes model.

Bates (1996a) further extends Bates’ (1991) and Heston’s (1993) models to price

options on combined stochastic volatility/jump-diffusion (SVJD) processes under sys-

tematic jump and volatility risk. He finds that stochastic volatility alone cannot explain

the “volatility smile” of implied excess kurtosis except under implausible parameters

of stochastic volatility, but jump fears can explain the smile. Bates (2000) refines

Bates (1996a) model by incorporating multifactor specification in stochastic volatili-

ties and time-varying jump risk to explain the negative skewness in post- ’87 S&P 500

future option prices. Bakshi, Cao and Chen (1997) develop a closed-form European

option pricing model that admits stochastic volatility, stochastic interest rates, and

jump-diffusion process. They find that incorporating stochastic interest rates does not

significantly improve the performance of the SVJD model. More general and compli-

cated models that incorporate jumps both in volatility and in the underlying have also

been developed, such as those in Duffie, Pan and Singleton (2000) and Eraker, Johannes

and Polson (2003).

As for pricing options on commodity futures, Hilliard and Reis (1999) use transac-

tion data of soybean futures and options on futures to test out-of-sample performance of

Black’s (1976) and Bates’ (1991) jump-diffusion models. Their results show that Bates’

model outperforms Black’s model. Richter and Sørensen (2002) set up a stochastic

volatility model with the inclusion of the seasonality and convenience yield. Koeke-

bakker and Lien (2004) extend Bates’ (1991) model by including seasonal and maturity

effects in a deterministic volatility specification. None of these studies incorporate both
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jump component and stochastic volatility. This void is filled in the present study.

The objective of this study is to test the performance of the most widely used

option pricing models and to investigate the appropriate model for pricing commodity

futures options. The option pricing models include Black’s (1976) model, Bates (1991)

Jump model, Heston’s (1993) stochastic volatility (SV) model, and stochastic volatility

jump diffusion (SVJD) model. The data used are three years of intradaily corn futures

and options on futures data. The next section provides an introduction to several

major option pricing models. The third section discusses the data sample and the

estimation method. The fourth section presents the empirical results, while the fifth

section concludes.

Option Pricing Models

Two assumptions are maintained in the following option pricing models:

1. Continuously compounded risk-free rate, r, is assumed constant.1

2. Markets are frictionless: there are no transaction costs or taxes, trading is con-
tinuous, all securities are divisible, and there are no restrictions on short selling
or borrowing.

Black’s Model

In Black’s (1976) model, the price movement of commodity futures follows a geometric
Brownian motion:

(1)
dF

F
= µdt + σdZ

1Empirical findings suggest that option pricing is not sensitive to the assumption of a constant
interest rate. For example, Bakshi, Cao and Chen (1997) find that incorporating stochastic interest
rates does not significantly improve the performance of the model with constant interest rates.
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where F is futures price; Z is a standard Brownian motion with dZ ∼ N(0, dt); µ is
the expected rate of return on futures; and σ is the annualized volatility of the futures
price, which is assumed to be constant.

The closed-form formulae for call option price (C) and put option price (P ) are:

C = e−rτ [FtN(d1)−XN(d2)](2)

P = e−rτ [XN(−d2)− FtN(−d1)](3)

where

d1 =
ln(Ft/X) + σ2τ/2

σ
√

τ

d2 = d1 − σ
√

τ

and Ft is the futures price at current time t, X is strike price, τ is the time to maturity
of the option, and N(·) is cumulative probability distribution function for a standard
normal distribution.

Bates’ Jump Model

In Bates (1991) jump-diffusion model, the stochastic differential equation with possibly
asymmetric, random jumps is given by:

(4)
dF

F
= (µ− λk̄)dt + σdZ + kdq

where:

µ is the rate of return of the futures price;

σ is the constant volatility of the futures price;

Z is a standard Brownian motion;

λ is the annual frequency of jumps;

k is the random percentage of price change conditional on a jump occurring that is log-
normally, identically, and independently distributed over time, with unconditional
mean k̄ and ln(1 + k) ∼ N(ln(1 + k̄)− 1

2
δ2, δ2);

q is a Poisson counter with intensity of λ so that Prob(dq = 1) = λdt, Prob(dq = 0) =
1− λdt.
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The risk neutralized stochastic process is:

(5)
dF

F
= −λ∗k̄∗dt + σdZ + k∗dq∗

where

λ∗ is risk-adjusted frequency of jumps;

k∗ is the risk-adjusted random percentage of price change conditional on a jump oc-
curring with E(k∗) = k̄∗ and ln(1 + k∗) ∼ N(ln(1 + k̄∗)− 1

2
δ2, δ2);

q∗ is a Poisson counter with intensity λ∗;

σ and δ are the same as in the actual process.

A European call futures option (C) is priced at its discounted expected value:

C = e−rτ

∞∑
n=0

Prob∗(n jumps)E∗
t [max(Ft+τ −X, 0)|n jumps](6)

= e−rτ

∞∑
n=0

[e−λ∗τ (λ∗τ)n/n!][Fte
b(n)τN(d1n)−XN(d2n)],

where
b(n) = −λ∗k̄∗ + n ln(1 + k̄∗)/τ,

d1n = [ln(Ft/X) + b(n)τ +
1

2
(σ2τ + nδ2)]/(σ2τ + nδ2)

1
2 ,

and
d2n = d1n − (σ2τ + nδ2)

1
2 .

A European put futures option has an analogous formula:

P = e−rτ

∞∑
n=0

Prob∗(n jumps)E∗
t [max(X − Ft+τ , 0)|n jumps](7)

= e−rτ

∞∑
n=0

[e−λ∗τ (λ∗τ)n/n!][XN(−d2n)− Fte
b(n)τN(−d1n)].
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Heston’s Stochastic Volatility Model

Heston’s (1993) stochastic volatility (SV) model assumes that the futures price and
volatility of the futures price obey the stochastic processes:

dF

F
= µdt +

√
V dZ(8)

dV = (α− βV )dt + σv

√
V dZv

cov(dZ, dZv) = ρdt

where:

µ is the rate of return of the futures price;

V is the variance term;

σv is the volatility of volatility;

ρ is the correlation of the two standard Brownian motions, i.e. cov(dZ, dZv) = ρdt.

The risk neutralized stochastic processes are:

dF

F
= bdt +

√
V dZ∗(9)

dV = (α− β∗V )dt + σv

√
V dZ∗

v

cov(dZ∗, dZ∗
v ) = ρdt

where b is cost-of-carry (r for non-dividend stock options, 0 for futures options); β∗

and α/β∗ are the speed of adjustment, and long-run mean of the variance; and the
parameters α, σv, and ρ in the risk-neutral processes are the same as in the actual
processes.

Closed-form solutions for valuing a European call option and a European put option
are given as:

C = e−rτ [FtP1 −XP2](10)

P = e−rτ [X(1− P2)− Ft(1− P1)](11)

where P1 and P2 are probabilities analogous to the cumulative normal probabilities
under Black’s model and derived from their characteristic functions by using Fourier
inversion methods. The probabilities P1 and P2 are a special case of their counterparts
in the stochastic volatility jump diffusion model below.
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Stochastic Volatility Jump Diffusion Model

The stochastic volatility jump diffusion (SVJD) processes increase flexibility as com-
pared to the above three models by incorporating both jumps and movement of volatil-
ity:

dF

F
= (µ− λk̄)dt +

√
V dZ + kdq(12)

dV = (α− βV )dt + σv

√
V dZv

cov(dZ, dZv) = ρdt

prob(dq = 1) = λdt, ln(1 + k) ∼ N(ln(1 + k̄)− 1

2
δ2, δ2)

where:

µ is the rate of return of the futures price;

λ is the annual frequency of jumps;

k is the random percentage of price change conditional on a jump occurring that is log-
normally, identically, and independently distributed over time, with unconditional
mean k̄;

q is a Poisson counter with intensity of λ;

V is the variance term conditional on no jump occurring;

σv is the volatility of volatility;

ρ is the correlation of the two standard Brownian motions, i.e. cov(dZ, dZv) = ρdt;

q and k are uncorrelated with each other or with Z and Zv.

In a representative agent production economy, risk neutral processes of futures price
are given by

dF

F
= −λ∗k̄∗dt +

√
V dZ∗ + k∗dq∗(13)

dV = (α− β∗V )dt + σv

√
V dZ∗

v

cov(dZ∗, dZ∗
v ) = ρdt

prob(dq∗ = 1) = λ∗dt, ln(1 + k∗) ∼ N(ln(1 + k̄∗)− 1

2
δ2, δ2)

where β∗ and α/β∗ are the speed of adjustment, and long-run mean of the variance;
and the parameters α, σv, δ, and ρ in the risk-neutral processes are the same as in the
actual processes.
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Bates (1996a) shows that European options, with an exercise price of X and time
to maturity of τ , are priced as the expected value of their terminal payoffs under the
risk neutral probability measure:

C = e−rτ [FtP1 −XP2](14)

P = e−rτ [X(1− P2)− Ft(1− P1)].(15)

The probabilities, P1 and P2 can be obtained using the Fourier inversion formulae:

(16) Pj =
1

2
+

1

π

∫ ∞

0

Re

[
ϕj(iΦ)e−iΦx

iΦ

]
dΦ (j = 1, 2)

where x = ln(X/Ft), Re denotes the real part. ϕj are the characteristic functions for
P1 and P2 with the exact expressiones as:

ϕj(Φ|Θ, τ) = exp{Cj(τ ; Φ) + Dj(τ ; Φ)V + λ∗τ(1 + k̄∗)µj+
1
2(17)

×[(1 + k̄∗)Φeδ2(µjΦ+Φ2

2
) − 1]} (j = 1, 2)

where

Cj(τ ; Φ) = −λ∗k̄∗Φτ − ατ

σ2
v

(ρσvΦ− βj − γj)(18)

−2α

σ2
v

ln

[
1 +

1

2
(ρσvΦ− βj − γj)

1− eγjτ

γj

]
,

(19) Dj(τ ; Φ) = −2
µjΦ + 1

2
Φ2

ρσvΦ− βj + γj
1+eγjτ

1−eγjτ

,

(20) γj =

√
(ρσjΦ− βj)2 − 2σ2

v(µjΦ +
1

2
Φ2) ,

(21) µ1 = +
1

2
, µ2 = −1

2
, β1 = β∗ = ρσv, and β2 = β∗.

Note that if the jump parameters (λ∗, k̄∗, and δ) are set zero, this model becomes
stochastic volatility model. Therefore, the SVJD model nests the SV model as a special
case. The integral in equation (16) is solved using numerical integration methods.
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Data and Estimation Method

Three years of intradaily transactions data for corn futures and corn futures call options2

traded on the Chicago Board of Trade (CBOT) were used. The data consist of the
time and price of every transaction for the period of January 2001 to December 2003.
The CBOT corn futures contracts are available for March, May, July, September, and
December expiration dates. American-type options are traded on all the contracts. The
total sample consists of 18 corn futures contracts.

Several filters are applied to construct the synchronous futures and futures options
prices. First, weekly data rather than daily data are used in order to reduce computa-
tional burden and to avoid the microstructure issues such as the day-of-the-week effect
and limits of daily price change. Wednesday (or Tuesday if Wednesday is not avail-
able) is selected as having the fewest trading holidays. Second, options transactions are
matched with the nearest underlying futures within 4 seconds. If no matching futures
price is obtained within 4 seconds, this option observation is discarded. Third, the
options with time-to-maturity less than 10 trading days are deleted to avoid maturity
effects. Fourth, corn options with price less than 2.5 cents are deleted. Fifth, options
with price lower than their intrinsic value (i.e. Call<[Futures-Strike]) are deleted to
eliminate the observations with arbitrage opportunity. The resulting data set includes
8,995 Wednesday observations. The average daily number of options matched is 59.2.

The exogenous variables in the sample data are observed transaction option price,
C, strike price, X, futures price, F , time to maturity of options, τ , and instantaneous
interest rate, r. Wednesday 3-month Eurodollar deposits rates are used for the risk-free
discount rate.

Besides the exogenous variables obtained from the data set, the above option pricing
models require different parameters as inputs. For Black’s option pricing model, the
only unobservable input is the volatility term, σ; for Bates91 model, the unobservable
inputs include volatility, σ, and structural parameters Θ=(λ∗, k̄∗, and δ); for SV model,
they are volatility

√
V and structural parameters Θ=(α, β∗, σv, and ρ); for SVJD model,

besides the volatility, inputs also include seven structural parameters Θ=(λ∗, k̄∗, δ, α,
β∗, σv, and ρ).

In principle, econometric methods can be applied to estimate the parameters since
the stochastic processes are known. However, the requirement of a very long time series
of futures prices makes this approach inconvenient. Alternatively, a very practical
approach is to calculate the implied parameters using the market option prices and
observable inputs in the option pricing formulae. Specifically, the implied parameters
in the option pricing formulae are obtained by minimizing the sum of squared pricing

2Call options are selected because they are more liquid than put options and therefore can represent
the very liquid contracts.
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errors of all options for each day in the sample data set.

(22) (v̂, Θ̂) = arg min
v,Θ

Nt∑
j=1

[Ctj − Ĉtj(v, Θ)]2

where Nt is the number of options used for date t; Ctj is the j-th observed market option

price on date t; Ĉtj is the model determined option price with observed exogenous
inputs; v is instantaneous volatility for date t (i.e., σ for Black’s and Jump models, and√

V for SV and SVJD models); Θ is the vector of structural parameters for Jump, SV,
and SVJD models. For Black’s model there are no structural parameters. Then, the
volatility term and structural parameters can be obtained by non-linear least square
estimation.

This procedure can result in an estimate of implied volatility and structural param-
eters for each day. As discussed in Bates (1991), it is potentially inconsistent with the
assumption of constant parameters when deriving option pricing models, because the
implied parameters are not constrained to be constant over time; but a chronology of
parameter estimates and some stylized facts for future specification of more complicated
dynamic models could thereby be generated through this estimation procedure. The
objective function in equation (22) for implied parameter estimation has been used by
several others including Bates(1991), Bakshi, Cao and Chen (1997), Hilliard and Reis
(1999), and Koekebakker and Lien (2004).

Results

In-Sample Pricing Fitness

These four option pricing models are estimated: Black’s (1976) model, Bates’ (1991)
jump-diffusion model, Heston’s (1993) stochastic volatility (SV) model, and stochastic
volatility jump diffusion (SVJD) model. Table 1 reports the Wednesday average and
standard error of each estimated volatility/parameter as well as the Wednesday average
root mean squared errors. First, the in-sample root mean square errors of Bates91, SV,
and SVJD are considerably lower than those of Black76 model. SVJD yields lowest
RMSEs, while Bates91 gives lower RMSEs than SV.

Second, the structural parameter estimates for the SVJD model indicate that the
jumps and mean-reverting stochastic volatility are both important. Though the mean
level of jump size (k̄∗) is quite low, the jump frequency (λ∗) is significant. This may be
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due to the relative brevity of the sample period, which makes it hard to detect a salient
jump pattern. The average annual jump frequency in Bates91 (1.29 times per year) is
higher than that in SVJD (0.63 times per year), possibly because Bates91 relies more on
jump parameters to explain the futures price movement, while SVJD model also allows
volatility to change over time. This also can be an explanation that the jump magnitude
of Bates91 is bigger than that of SVJD. The speed of volatility adjustment, β∗ is 0.97 in
SV and 2.06 in SVJD , which compares with values of 1.15 and 2.03 in Bakshi, Cao and
Chen (1997) for S&P 500 call options. The long run means of mean-reverting volatility
process, which are measured by

√
α/β∗, are 0.26 and 0.24 in SV and SVJD, respectively.

Note that in addition to the variance term (V ), both the variation of mean jump size
and jump frequency (i.e. δ and λ) affect the variation of the continuously compounded
rate of return. In fact, δ2λ∗ is the instantaneous conditional return variance per year
attributable to jumps in the risk-neutral processes. The implied volatility from SVJD
is
√

V + δ2λ∗ rather than
√

V alone so that the average value of implied volatility in
SVJD is 0.2397. The consistently negative estimates of ρ in SV and SVJD indicate
that implied volatility and rate of return of futures price are negatively correlated.
This means that the implied distribution of the rate of return of the underlying asset
perceived by option traders is negatively skewed.

Third, the implied volatilities from Black76, Heston93 and SVJD (with average
values of 0.2419, 0.2507, and 0.2397) are very close. This finding is consistent with
Bakshi, Cao and Chen (1997). They explain that option prices are sensitive to the
volatility input and thus even small differences in volatility can result in significantly
different pricing results. The implied volatilities from Bates91 are considerably lower.
This finding is consistent with Koekebakker and Lien (2004) for soybean futures call
options. One explanation is that the estimates of jump frequency and size are both
quite high in Bates91. So Bates91 may treat the variation of volatility as jumps, which
further decreases the average level of estimates for implied volatility.

Out-of-Sample Pricing Performance

One may argue that there might be an overfit problem because the number of pa-
rameters increases along these four models. Therefore, out-of-sample testing is per-
formed. Specifically, the previous day’s (Tuesday’s) data are used to estimate the
volatility/parameters, and then Tuesday’s estimates and Wednesday’s data are used
to predict Wednesday’s option prices based on the two models, separately. Then we
subtract the model-determined price from its observed counterpart to compute the pric-
ing error. This procedure is repeated for every call and each day in the data sample,
to obtain the average root mean squared pricing errors and their associated standard
deviations.

Note that this procedure does not constitute a true out-of-sample test in the usual
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sense, since Wednesday’s volatility and structural parameters are assumed to be un-
changed from Tuesday’s. However, the out-of-sample testing here is pricing out-of-
sample options rather than forecasting options prices. The latter involves not only an
estimate for the volatility and structural parameters but a forecast for the exogenous
variables such as price of the underlying asset and instantaneous interest rate. There-
fore, the testing is equivalent to testing the stability of parameters. This procedure is
consistent with previous approaches in the literature (e.g. Bakshi, Cao and Chen, 1997;
Hilliard and Reis, 1999).

Bates91, SV, and SVJD yield lower RMSEs than Black76 in 137, 93, and 121
Wednesdays respectively out of 150 Wednesdays in our data sample. The means of
RMSEs are shown in Table 2. Tuesday parameter estimates are not reported because
they are similar to their Wednesday’s counterparts. Bates91 yields roughly as low out-
of-sample RMSEs as SVJD, though one may expect the opposite to hold because of the
large number of additional structural parameters in SVJD.

Conclusion

This study investigates the improvement over the Black’s model from allowing for dis-
crete jump and stochastic volatility in pricing futures options. Although there are
several studies that have examined the performance of Bates91, SV, and SVJD models
on different asset classes, little research has compared the performance of these major
option pricing models for agricultural commodity futures options. This study fills this
void by testing the in-sample and out-of-sample performance of Black76, Bates96, SV,
and SVJD models using CBOT intradaily corn futures and options on these futures.
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Table 1: Parameter Estimates for Alternative Models

Parameters Black76 Bates91 Heston93 SVJD

v 0.2419 0.1369 0.2507 0.2289
(0.0720) (0.0379) (0.0462) (0.0585)

λ∗ 1.2930 0.6261
(0.5764) (0.0988)

k̄∗ 0.1152 -0.0237
(0.0743) (0.0623)

δ 0.1042 0.0775
(0.1207) (0.0293)

α 0.0663 0.1207
(0.0267) (0.0727)

β∗ 0.9719 2.0554
(0.0524) (0.1015)

σv 0.4131 0.3837
(0.0584) (0.0489)

ρ -0.5612 -0.5787
(0.0352) (0.0624)

RMSE 1.0859 0.7284 0.8904 0.7123

Note: Four models are estimated: Black’s (1976), Bates (1991) jump-diffusion model, Heston’s (1993) stochastic volatility
(SV), and stochastic volatility jump diffusion (SVJD) models. v is instantaneous volatility (i.e., σ for Black’s and Jump
models, and

√
V for SV and SVJD models). The structural parameters, λ∗, k̄∗, δ, are the frequency, magnitude, and

variation coefficient of the magnitude of the jump component, respectively. The other structural parameters, β∗, α/β∗,
and σv , are the speed of adjustment, long-run mean, and the variation coefficient of the stochastic volatility term V.
And ρ is the correlation of the two standard Brownian motions in SV and SVJD models. Average root mean squared
errors RMSEs are reported for each model. The unit of the RMSEs is cent since corn futures option prices are in cents.
Standard deviations of the estimates are in parentheses.

Table 2: Out-of-sample Average Root Mean Squared Errors

Black76 Bates91 Heston93 SVJD

1.1604 0.8798 1.1365 0.8886

Note: The unit is cent.
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