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Groundwater Pumping by Heterogeneous Users 
 

Abstract 

Farm size is a significant determinant of both groundwater irrigated farm acreage and 

groundwater irrigation application rates per acre.  This paper analyzes the patterns of 

groundwater exploitation when resource users in the area overlying a common aquifer are 

heterogeneous.  In the presence of user heterogeneity, the common resource problem 

consists of inefficient dynamic and spatial allocation of groundwater because it impacts 

income distribution not only across periods but also across farmers.  Under competitive 

allocation, smaller farmers pump groundwater faster if farmers have a constant marginal 

periodic utility of income.  However, it is possible that larger farmers pump faster if the 

Arrow-Pratt coefficient of relative risk-aversion is sufficiently decreasing in wealth.  A 

greater farm-size inequality may either moderate or amplify income inequality among 

farmers.  Its effect on welfare depends on the curvature properties of the agricultural 

output function and the farmer utility of income.  Also, it is shown that a flat-rate quota 

policy that limits the quantity of groundwater extraction per unit land may have 

unintended consequences for the income distribution among farmers. 

 

Keywords: common property resource, groundwater, majorization 
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Groundwater Pumping by Heterogeneous Users 
1. Introduction 

Theoretical models of groundwater extraction typically assume that the resource is non-

exclusive or that the resource users are identical.  This, along with the assumption of 

instantaneous interseasonal transmissivity, simplifies the analysis because there exists a 

representative user.  However, this approach does not take into account the spatial 

distribution of users, and the dependence of individual groundwater stocks on the history 

of past extractions (Brozovic et al 2003, Koundouri 2004).  As a result, the existing 

models have relatively little to say about the patterns of groundwater exploitation when 

resource users are heterogeneous.   

This is an important issue because irrigated agriculture, one of the major 

consumers of groundwater, and by far the largest consumer of fresh surface water, is 

comprised of farms of different sizes (Schaible 2004).  Farm size is a significant 

determinant of both groundwater irrigated farm acreage and groundwater irrigation 

application rates per acre (see Table 1).1  On average, larger farms tend to be the more 

intensive and extensive-margin irrigation operations.  But in some states the relationships 

are either non-monotone or inversely monotone.  For example, in Nevada and Oregon, 

smaller farms using groundwater have, on average, higher application rates per acre.     

 It is well known that, to the extent that groundwater is a common property 

resource, private decisions lead to inefficient allocation.2  However, it is not clear 

whether user heterogeneity alleviates or exacerbates the so-called curse of the commons.  

Furthermore, the effects of water management policies on irrigation efficiency and farm 

incomes likely depend on farmland ownership structure.  Specifically, we ask the 

following questions.  What are the determinants of the relationship between farm size and 

groundwater use intensity?  How does the distribution of farm sizes in the area influence 

the efficiency of groundwater allocation?  What are the distributional impacts of farmland 

ownership structure and water management policies? 

                                                 
1 A farm is categorized as small, medium, large, and very large, based on total annual farm sales, 
respectively, less than $100,000, between $100,000 and $250,000, between $250,000 and $500,000, and in 
excess of $500,000.  For example, in 1998 the distribution of irrigated farms in the western states consisted 
of 65 percent small, 15.6 percent medium, 9.7 percent large, and 9.5 percent very large farms (USDA). 
2 This result holds unless the aquifer is relatively large in comparison to total groundwater use, users can 
cooperate, or hydraulic conductivities are so small that the resource is effectively private (Feinerman and 
Knapp 1983). 
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Table 1. Average groundwater applied per acre (acre feet per acre) and 
groundwater irrigated acres, by farm size and state, for farms using groundwater in 
selected western states surveyed in 1998  
  Farm size class based on farm sales  
State Small Medium Large Very Large 
 Per acre Acres Per acre Acres Per acre Acres Per acre Acres 
Arizona  2.96 * 53 *** 3.93 * 255 * 3.79 * 378 ** 3.71 * 879 * 
California  1.63 * 38 *** 1.73 * 125 ** 2.08 * 343 * 2.51 * 628 * 
Colorado  1.68 * 98 ** 1.35 * 335 * 1.70 * 604 * 1.58 * 1,184 * 
Idaho  1.33 * 113 ** 1.96 * 347 ** 1.36 * 258 ** 1.64 * 1,548 * 
Kansas  0.88 * 342 ** 1.49 * 290 * 1.40 * 531 * 1.35 * 1,258 * 
Montana  1.61 * 10 ** 3.23 ** 269 * 1.09 * 432 ** 0.91 ** 781 ** 
Nebraska  0.64 * 183 * 0.76 * 325 * 0.87 * 686 * 0.93 * 895 * 
Nevada  3.51 * 129 ** 3.17 * 360 * 2.89 * 582 * 2.79 * 1,612 * 
New Mexico  1.79 * 53 ** 1.86 * 371 * 2.32 * 471 * 2.44 * 972 * 
Oklahoma  1.39 * 113 * 1.35 * 339 ** 1.47 * 702 * 1.48 * 1,247 * 
Oregon  1.84 * 30 ** 1.76 * 169 * 1.75 * 257 * 1.54 * 405 * 
Texas  1.30 * 154 ** 1.31 * 456 * 1.30 * 715 * 1.43 * 1,550 * 
Farm average:  1.30 * 85 * 1.26 * 304 * 1.33 * 552 * 1.71 * 932 * 
 

Note: * , **, and *** indicate the coefficient of variation (CV), respectively, between 0 to 25, 25 to 50, and 
50 to 100. CV values were computed as the [Standard Error of Estimate/Estimate] x 100. 
Source: Farm and Ranch Irrigation Survey (1998), National Agricultural Statistics Service, U.S. 
Department of Agriculture (1999). Data were summarized by the Economic Research Service, USDA. 
 

In a two-period framework, we show that the relationship between farm size and 

pumping rates depends on the farmers’ preferences over income.  If the periodic marginal 

utility of income is constant, smaller farmers pump groundwater faster.  However, the 

converse may hold, if the periodic marginal utility is concave and the Arrow-Pratt 

measure of relative risk aversion is decreasing in wealth.3  This reflects the trade-off 

between two effects.  On the one hand, a farmer operating on a smaller acreage 

effectively owns a smaller share of the aquifer, and perceives groundwater as a “more” 

common resource compared with a farmer with a larger acreage.  Therefore, smaller 

farmers tend to pump faster.  On the other hand, they may face a greater differential 

                                                 
3 Even though there is no uncertainty in the environment studied in the paper, it is convenient to formulate 
our results using measures of risk aversion and the intensity of the precautionary saving motive such as, 
respectively, the Arrow-Pratt coefficient of risk aversion and prudence (Gollier 2004).  In a non-stochastic 
framework, these coefficients measure the strengths of the inter-temporal income smoothing motive (i.e., 
the diminishing marginal utility of income).  Adding uncertainty will not change the qualitative nature of 
our results. There is an empirical literature on the relationship between farmers’ risk preferences and their 
dynamic use of groundwater (e.g., Antle (1983), Antle (1987), and Koundouri et al (forthcoming)) as well 
as on the effects of risk preferences on farmer’s reaction to water quota policies (e.g., Groom et al 
(forthcoming)). 

 4



between marginal utilities of present and future income, and therefore, have a greater 

incentive to save groundwater for future use. 

 Turning to the effects of greater inequality in farm sizes on welfare, we find that 

there are dynamic and spatial components.  The dynamic component refers to the effect 

of farm-size inequality on the average pumping rate, or the speed with which the aquifer 

is depleted.  The spatial component refers to the effect of farm-size inequality on the 

distribution of pumping rates and income across farmers in each irrigation season.  The 

conditions under which these effects can be signed require structure on farmers’ marginal 

utility of income, and the degree of concavity of output and marginal output functions.   

 The speed with which the aquifer is depleted can either increase or decrease with 

farm-size inequality.  The average pumping rate increases if the acreage is shifted 

towards farmers who pump faster than the average farmer.  The converse holds, if the 

acreage is shifted towards more efficient users.  Conditions under which the effect of any 

increase in acreage inequality on the average pumping rate is known, assure that farm 

size bears a monotone relationship with the pumping rate and order the sensitivities of the 

pumping rate to farm size for slow and fast users.  Suppose that farmers are risk-neutral 

and the small farms under the new land ownership distribution are not “too small”.   Then 

the conditions can be conveniently stated in terms of the curvature properties of the first 

derivative of the function that relates income to water use for a fixed stock of 

groundwater (i.e., the inverse of the agricultural output function with respect to demand 

for groundwater).  We find that the average pumping rate decreases (increases) with 

farm-size inequality depending on whether the marginal inverse output is log-concave 

(log-convex).   

Even if the average pumping rate does not change, social welfare can also either 

increase or decrease with farm-size inequality.  On the one hand, keeping the 

groundwater allocation fixed, a greater farm-size inequality implies a greater income 

inequality among farmers, and hence, a decline in social welfare.  On the other hand, a 

greater farm-size inequality may imply a lesser income inequality.  This is because 

smaller farmers gain a greater strategic advantage as they are able to poach more 

groundwater per unit land than their larger neighbors.   
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For methodological reasons, we differentiate between the cases when farmers’ 

marginal periodic utility of income is constant, and when it is decreasing.  In the former 

case, under constant returns to scale farming technology, farm-size heterogeneity does 

not contribute to welfare loss beyond that caused by the curse of the commons.  In the 

latter case, the analysis needs to disentangle the pure income redistribution effect of the 

land ownership structure, keeping the allocation of groundwater fixed, from its effects on 

the equilibrium average pumping rate and the spatial distribution of groundwater 

withdrawals across farmers.   

  Notably, this insight may contribute to the continuing debate on the magnitude of 

the welfare difference between optimal control rules and competitive outcomes (Gisser 

1983, Gisser and Sanchez 1980, Koundouri 2004).  Provencher and Burt (1993) identify 

three sources of inefficiency associated with groundwater use in agriculture: stock, 

pumping cost, and risk externalities.  In the presence of user heterogeneity, income 

distribution externality is added to this list.  The income distribution externality arises 

when the rates of groundwater extraction differ across farms overlying a common 

aquifer.  This externality can be both positive and negative, depending on whether 

smaller farms appropriate, on a per acre basis, a greater share of the common resource.  

Small and large farmers can be thought of as, respectively, low and high income groups.  

And so, a common resource such as groundwater may become a natural vehicle for 

wealth transfer, and can either neutralize or amplify income inequality caused by the 

inequality in farmland holdings. 

Taking a policy perspective, we find that policies that affect the farmland 

ownership and management structures may have unexpected repercussions on the 

efficiency of groundwater exploitation.  It turns out that, even within the simple 

framework analyzed in the paper, one needs a rather detailed knowledge of the farmers’ 

utility function and farming and irrigation technologies to make useful policy 

recommendations.  Using an example of a flat-rate quota policy, we show that policy-

induced gains and losses are unequally distributed across farmers. This heterogeneity, 

and the arising political economy considerations, may adversely influence the adoption of 

policies that lead to overall efficiency gains and raise the average farm income.  
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Literature Review 

Knapp and Vaux (1982) and Feinerman (1988) are among the few studies that consider 

equity and distributional effects of groundwater management schemes.  Knapp and Vaux 

(1982) consider groups of farmers differentiated by their derived demand for water, and 

present an empirical example that demonstrates that some users may suffer substantial 

losses from quota allocation policies even though the group as a whole benefits.  

Feinerman (1988) extends their analysis and considers a variety of management tools 

including pump taxes, quotas, subsidies, and markets for water rights.  Using simulations 

calibrated to Kern County, California, the author concludes that while the welfare 

distributional effects on user groups may be substantial, the negotiations between the 

policy-makers and the users are likely to be difficult because the attractiveness of policies 

varies across users and is sensitive to the parameters.  However, following Gisser and 

Sanchez (1980), these studies ignore the stock externality, and assume that under 

competition users behave myopically and base their decisions solely on the consideration 

of their immediate (periodic) profits.  Also, there is no investigation of the effect of the 

extent of user heterogeneity on the properties of competitive allocation. 

There is a rather thin literature in development economics that is concerned with 

the effect of inequality in land holdings on groundwater exploitation.  Motivated by the 

role of groundwater in sustaining the Green revolution and developing agrarian 

economies, Foster and Rosenzweig (2005) consider the patterns of groundwater 

extraction in rural India.  They develop a dynamic model of groundwater extraction that 

captures the relationships between growth in agricultural productivity, the distribution of 

land ownership, water table depth, and tubewell failure.  Using data on household 

irrigation assets including tubewell depth as a proxy for irrigation intensity, they find that 

large landowners are more likely to construct tubewells, but their tubewells tend to be 

less deep than those dug by smaller landowners. The authors conclude that this is 

indicative of a free-riding effect in the sense that large farmers are less able to effectively 

poach the water from neighboring farmers by lowering the water-table under their own 

lands.  They also find evidence of land consolidation as a way to improve efficiency of 

groundwater exploitation.   
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In the context of irrigated agriculture in developed economies, where farmers 

have better access to capital markets and modern irrigation technologies, we focus on the 

simpler irrigation application rate decision.  A two-period framework with a “quasi-

bathtub” aquifer is particularly well suited to fully work out the equilibrium effects of 

farm-size inequality on the welfare difference between the competitive and efficient 

allocations.  Given the seasonality of production in irrigated agriculture, we assume that a 

groundwater resource is quasi-bathtub as it acquires features of a common property 

resource over time. 4  This assumption is justified if all wells are spaced so that the 

localized cones of depression caused by pumping from neighboring wells do not overlap 

within each irrigation season.  However, the main insights and policy implications 

obtained in this framework carry on to more realistic settings. 

The rest of the paper is organized as follows.  In Section 2, we present a simple 

two-period model of groundwater extraction in the presence of farm-size heterogeneity.  

In Section 3, we consider the social planner’s solution.  In Section 4, we analyze 

equilibrium allocation and the effect of farm-size inequality on the pumping rates and 

farm income when farmers’ marginal periodic utility of income is constant.  In Section 5, 

we consider equilibrium allocation when farmers’ marginal periodic utility of income is 

decreasing.  In Section 6, we consider a flat-rate quota policy that illustrates political 

economy issues that arise in the presence of user heterogeneity. 

 

2. Model 

For simplicity, we focus on the stock, cost, and income distribution externalities.  We 

consider intensive-margin decisions taking the distribution of irrigated acres across 

farmers as exogenous.  With slight modifications, the model can be extended to include 

extensive-margin (the share of acreage allocated to irrigated crops) decisions.  Farmers 

                                                 
4 This happens when the time period during which groundwater is extracted is relatively short, and does not 
allow for seepage from one point in the aquifer (such as a well or a pool) to another.  However, the water 
level tends to be more uniform throughout the aquifer in the long run.  We refer to the latter as a “quasi-
bathtub” property: the resource at each extraction point is private within each period, but the aquifer 
becomes a “bathtub” across periods. This seems plausible whenever the irrigation season is considerably 
shorter than the time that elapses between the two seasons.  However, there is a large variation in local 
hydrologic properties such as the aquifer’s storativity and transmissivity values as well as well-spacing 
requirements that vary from 4 miles in parts of Kansas to less than 300 feet in Texas (e.g., Brozovic et al 
2003, Kaiser and Skiller 2001).  
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are identical except for the distribution of land ownership, and irrigation technology is 

constant returns to scale.  All profits are derived from agricultural outputs using 

groundwater for irrigation on a fixed land area, and farmers hold exclusive pumping 

rights on their land.  The individual groundwater stocks are private during each irrigation 

season because there is no intra-seasonal well interference.  However, the groundwater is 

an inter-seasonal common property resource based on the groundwater hydrology over a 

longer time interval.  The following assumptions are standard (e.g., Negri 1989): 

1. (Fixed land ownership) The distribution of farmland ownership does not change 

over time. 

2. (Constant returns to scale and homogenous land quality) The agricultural 

production function is constant returns to scale.  Land quality is identical across 

all farms.  Inputs other than groundwater including the choice of irrigation 

technology, fertilize, crops, etc., are optimized conditional on the rate of water 

extraction.  Output and input prices, including energy costs, are exogenous. 

3. (Pumping cost) The total cost of groundwater extraction per acre increases with 

the pumping rate and decreases with the level of the water table (or the stock of 

groundwater). 

4. (User location is irrelevant) The aquifer is confined, non-rechargeable, 

homogenous, and isotropic.  The groundwater basin has parallel sides with a flat 

bottom.          

5. (Quasi-bathtub) There are no intra-seasonal lateral flows of groundwater across 

farms.  However, inter-seasonal changes in groundwater level are transmitted 

instantaneously to all users (i.e., the groundwater has an infinite rate of 

transmissivity during the time elapsed from one irrigation season until next).5   

6. (Two periods) There are only two periods (irrigation seasons), and farmer 

preferences over income are additively separable across periods.   

Provencher and Burt (1994) also consider and provide justifications for a two-period 

framework.  The assumption that the aquifer is non-renewable is for expositional 

convenience, and a positive rate of recharge can be easily incorporated.  The groundwater 

                                                 
5 Brozovic et al (2003) provide a detailed discussion of the consequences of this assumption. 
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extractions are the gross quantity of water withdrawn if some fraction of the water 

percolates back to the stock.  Next we introduce the notation.  

 

Aquifer 

The total stock of groundwater stored in the aquifer in the beginning of period 1 is 

, where  is the height of the water table in period 1, and 11 Ahx = 1h A  is the size of the 

area measured in acres.  Let  denote the set of acres.  The hydraulic heads of 

the water table under each acre are the same in the beginning of each period,  

  and .  Let  denote the quantity of groundwater applied in period 

 on acre .  By the quasi-bathtub assumption, the per acre quantity of groundwater 

withdrawn in each period cannot exceed the per acre stock or  acre-feet: 

},...,1{ AL =

tjti hh ,, =

th= Lji ∈∀ , 2,1=t tiu ,

t i

th

  for all tti hu ≤, Li∈  and 2,1=t .        (1) 

Let  denote the average pumping in period 1.  Since there is no recharge, 

the stock of groundwater in the aquifer in period 2 is 

∑=
−=

A

i iuAu
1 1,

1
1

12 xx = 1Au− , and the level of the 

water table is  

 .         (2) 112 uhh −=

 
Land ownership 

There are  farmers (users of groundwater) who are located in the area overlying the 

aquifer and grow irrigated crops.  Farmer k  farms acres , and let   

denote the number of irrigable acres owned by farmer , where 

n

LLk ⊆ kA || kL=

k AAn

k k =∑ =1
.  We will 

refer to the set of acres  as “farm ” or “farmer k ”.  For concreteness, we hold that 

farm indices are ordered by farm size, 

kL k

nAAA ≤≤≤ ...21 .  In what follows, in the doubly 

subscripted variables, the first symbol identifies the acre, and the second identifies the 

period, .  Variables with one subscript typically refer to the aggregate values in the 

specified period, unless they are farm-specific and invariant across periods.  We will use 

letters 

2,1=t

ji,  to index acres, and letters  to index farmers. lk,
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Production technology 

The periodic per acre benefit of water consumption net of all costs including groundwater 

pumping cost is 

 ,          (3) ),( , tti hug

where g  is strictly increasing and concave.  While irrigation increases yield, a higher 

groundwater stock decreases the cost of pumping due to a decrease in pumping lift, and 

increases the efficiency of irrigation by permitting a more flexible application schedule.  

Agricultural production technology is constant returns to scale (farm size), and land 

quality is homogenous: ),,,( iAhug k ),,,( jAhug l= .  For simplicity, the rainfall and 

surface water supply are the same on all farms in both periods.  For example, (3) can take 

the following form: 

qzhuczhupyhug z −−= ),(),,(max),( , 

where  is the per unit price of the crop,  is yield, and  is the cost of pumping 

groundwater,  is the vector of other inputs, and  is the price vector of other inputs.    

For notational convenience, let  

p y c

z q

 )         (4) ,()( hhghf u= ),( hhgh+

denote the marginal per acre benefit of water consumption evaluated at the point of 

depletion of an individual groundwater stock.6  By concavity of , g 0)( <′ hf  

.),0( 1hh∈∀ 7

 Let v  denote the periodic utility of farm income, 0,0 ≤′′>′ vv .  Each farmer 

maximizes the sum of utilities of the whole-farm revenue in each period:  

  subject to (1) and (2).  (5) ∑ ∑= ∈∈
=

2,1 ,}{ )),((max
, t Li ttiuk

kkLiti
hugvπ

For simplicity, there is no discounting of future income. 

 

3. Social planner 

Before we turn to the analysis of the competitive allocation by non-cooperating users, we 

                                                 
6 The subscripts on functions denote differentiation with respect to the lettered arguments. 
7 All of our results continue to hold under weaker technical conditions: 0<uug , , and 0<hhg =′ )(hf  

, which are implied by concavity of ),( hhguu ),( hhghh+ 0),(2 <− hhguh g . 
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characterize the efficient allocation.  The social planner chooses  to maximize 

producer welfare conditional on the land ownership distribution: 

}{ ,
s
tiu

 ∑ ∑ ∑= = ∈
=

2,1 1 ,}{
)),((max

, t

n

k Li t
s
tiu

s

k
s

ti
hugvW  subject to (1) and (2).  (6) 

The following result shows that the efficient allocation of groundwater 

compensates for income inequality caused by the inequality in farm sizes.  The common 

resource may serve as a vehicle to decrease income inequality by redistributing income 

from larger farmers to smaller farmers.  This effect is absent if either farm sizes are 

identical, or farmers are risk-neutral (periodic utility is linear in income).  Note that 

optimal groundwater consumption in the final period exhausts the remaining stock on 

each farm, and hence, must be identical on all acres,  22,2, huu s
j

s
i == Lji ∈∀ , , because 

the income utility and water benefit functions are strictly increasing.  And so, the focus is 

solely on period 1 pumping.  All proofs that are not in the text are in the Appendix. 
 
Proposition 1.  (Efficient pumping) Efficient allocation of groundwater is  

a) invariant across acres,  s
j

s
i uu 1,1, = Lji ∈∀ , , and is determined by  

 ,       (7)  0)(),( 1,111, =−− s
i

s
iu uhfhug

if either farmers are risk-neutral, 0=′′v , or acreage is uniformly distributed across 

farmers,  for ; nAAk /= nk ,...,1=

(b) characterized by smaller farmers pumping groundwater faster, , for 

, , ,  if farmers are risk-averse (decreasing marginal utility of 

income), . 

≥s
ju 1,

s
iu 1,

kLj∈ lLi∈ lk <

0≤′′v

 

(7) is easiest to interpret for the special case when the water benefit depends only 

on water use, u.  In this case, it is efficient to equalize the marginal benefits of water use 

in the two periods: , which implies that  .  This 

is equivalent to the assertion that, in the absence of a pumping cost externality and 

inequality of income across farmers, the efficient solution distributes the available water 

equally across the two periods on each farm. 

)()( 1,11,
s
iu

s
iu uhgug −= 2/11, hus

i = Li∈∀
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 It is convenient to differentiate between the case when farmers’ per period 

marginal utility of income is (1) constant (i.e., farmers are risk-neutral), and (2) 

decreasing (i.e., farmers are risk-averse).  In the former case, from the social planner’s 

point of view, there is no inherent inefficiency of income distribution due to a non-

uniform distribution of acreage across farmers.  However, such inefficiency may still 

arise in competitive equilibrium.  In the latter case, as is demonstrated in Part (b) of 

Proposition 1, the social planner faces a trade-off between dynamic and distributional 

sources of inefficiencies.   

From a policy perspective, an important insight of the analysis to follow is that, in 

the presence of farmer heterogeneity, competitive allocations go beyond the curse of the 

commons, and affect income inequality as well.  The welfare difference between the 

optimal and competitive allocations may be particularly large, when, from the societal 

point of view, the income distribution matters.  This happens when the equilibrium 

distribution of pumping rates across heterogeneous farmers amplifies the income 

inequality caused by size inequality.  However, the competitive allocation may also 

moderate the inherent inequality in income distribution caused by the inequality in land 

ownership, or even change its sign, whereas total incomes over two periods earned by 

smaller farmers exceed that of larger ones (see footnote 10). 

 

4. Risk-neutral producers  

In this section, we consider the case of risk-neutral farmers, 0=′′v .  In Section 4.1, we 

characterize competitive equilibrium.  In Section 4.2, we analyze the effect of inequality 

in farm sizes on the groundwater stock and the distribution of income. 

 

4.1. Equilibrium 

Farmers are non-cooperative, and each farmer takes the quantity of water pumped by 

others in each period as given.  In period 2, all farmers exhaust the available stocks of 

groundwater on each acre, so that  for 2
*

2, hui = Li∈∀ .  By (5), in period 1 farmer ’s 

payoff is 

k

 =kπ ),(),(max 2211,}{ 1,
hhghug

kkLii Li iu +∑∈∈
 subject to (1) and (2).  (8) 
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Next we characterize competitive allocation.  Differentiating (8), the best response by 

farmer  on acre , , satisfies k kLi∈ *
1,iu

 , if −),( *
1, xug iu )( 2hfak 0= *

1,iu 1h≤ , and *
1,iu 1h= , if otherwise  (9) 

where  is the share of the aquifer that can be captured by farmer .  (9) can 

be written in a more compact form 

AAa kk /= k

 ,  *
1,iu ,min[ 1h= )]);(( 12

1 hhfag ku
−

kLi∈∀      (10) 

where  is the inverse of  obtained by treating  as a parameter.  Note 

that per acre pumping rates on each farm are identical  

)(.;1 hgu
− ),( hugu h

*
1,

*
1, ji uu = kLji ∈∀ , .  Summing 

pumping rates (10) over all  and nk ,...,1= kLi∈ , and substituting (2), yields 

 ,     (11) *
1u ∑ =
=

n

k k ha
1 1,min[ )]);(( 1

*
11

1 huhfag ku −−

where  is the equilibrium average pumping in period 1.  By concavity 

of 

∑=
=

A

i iuAu
1

*
1,

*
1 )/1(

g , (11) uniquely determines the aggregate pumping in period 1, .  Together (10) 

and (11) prove the existence and uniqueness of equilibrium. 

*
1u

 
Proposition 2.  (Competitive allocation) Suppose that farmers are risk-neutral.  

Competitive equilibrium exists, it is unique, and is given by (10) and (11).  The average 

pumping rate is higher than the socially efficient average  rate, . Also, smaller 

farmers pump faster than larger farmers, , for any 

suu 1
*
1 ≥

≥*
1,iu *

1,ju kLi∈ , lLj∈ , . lk <

 

Comparing the first-order conditions that characterize the efficient and competitive 

allocations, (7) and (9), respectively, shows that the discrepancy between them arises 

along both spatial and temporal dimensions.  That is the competitive allocation leads to 

an inefficiently high aggregate pumping in period 1, which entails an inefficient 

allocation of groundwater across periods.  Nonetheless, it is possible that individual 

farmers extract groundwater at a slower rate than the socially efficient average rate, i.e. 

 for some i  (see Section 4.2.4 and Figure 1b).  Also, unless all farmers are 

identical, the competitive allocation results in inefficient pumping rates across farmers in 

s
i uu 1
*
1, ≤
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period 1.  Recall that, by Proposition 1(a), efficiency requires that the per acre irrigation 

application rates be identical when farmers are risk-neutral. 

Under risk-neutrality, smaller farmers always deviate more from the socially efficient 

allocation.  However, it is not clear whether the non-uniformity of the distribution of land 

ownership, in and of itself, leads to a loss or gain of total farm income.  As we show next, 

the effects of the inequality in farm sizes on the groundwater stock and farm income 

depend on rather subtle properties of the agricultural production function. 

 

4.2. Inequality in farm sizes 

Next we introduce the measure of inequality that is used to model an increase in the 

concentration of land ownership (a smaller share of farmers owns a larger share of land).  

In Section 4.2.2, we analyze the effect of inequality in farm sizes on the remaining 

groundwater stock.  In Section 4.2.3, we analyze the effect of inequality in farm sizes on 

total income.  In Section 4.2.4, we present an example that illustrates our findings. 

 

4.2.1. Measuring inequality 

To model the effect of inequality in farm size on groundwater exploitation we use the 

majorization order.  A comprehensive treatment of majorization can be found in Marshall 

and Olkin (1979).  Let nBBB ≤≤≤ ...21  represent an alternative distribution of land 

ownership among farmers, where ABn

k k =∑ =1
.  

Definition.  Real vector A
r

 is majorized by B
r

, denoted BA m
rr

≤ , if ∑ =

l

k kA
1 ∑ =

≥
l

k kB
1

 

for , and ∑ . nl ,...,1=
=

n

k kA
1 ∑ =

=
n

k kB
1

 

Majorization is a tool to compare the dissimilarity within the components of 

vectors, and is ideally suited to compare the inequality of income distributions.  We will 

also need a related notion of Schur-convex and Schur-concave functions.  A real-valued 

function )(Ay
r

 is called Schur-convex if BA m
rr

≤  implies )(Ay
r

)(By
r

≤ , and )(Ay
r

 is 

Schur-concave, if  is Schur-convex.  In our analysis, we will appeal to the )(Ay
r

−
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following important property of Schur-convex functions.  Suppose that 

.  Then  is Schur-concave if and only if  is concave.   ∑ =
=

n

k kAzAy
1

)()(
r

)(Ay
r

z

 

4.2.2. Inequality of farm sizes and groundwater stock 

Let  denote the index of concavity of agricultural output 

function, and  denote the index of concavity of the marginal 

output function of a farmer with technology  in period 1.  Note that 

),(/),( 11 hughugR uuu−=

),(/),( 11 hughugP uuuuu−=

),( 1hug R  is the 

Arrow-Pratt coefficient of absolute risk aversion, and P  is the coefficient of absolute 

prudence, if  is interpreted as the utility of wealth measured in acre-feet of 

water.

),( 1hug
8

 
Proposition 3.  Suppose that farmers are risk-neutral.  Then under more unequal 

distribution of farm sizes, BA m
rr

≤ , the groundwater stock in period 2 

(a) increases, , if )()( *
2

*
2 BhAh

rr
≤ PR ≥2 ;   

(b) decreases, , if (i) )()( *
2

*
2 BhAh

rr
≥ 1b ))((/),( *

211 Ahfhhgu

r
≥ , i.e. the smallest farm 

under the new land ownership distribution is not “too small” and (ii) PR ≤2 .    

 

 The inequality in land ownership creates a trade-off in terms of its effect on the 

pumping decisions in period 1.  A heavier left tail of the acreage distribution implies that 

there are more farmers, who own a smaller share of the aquifer and tend to pump faster 

than the average farmer.  However, a heavier right tail implies the opposite.  Therefore, 

ascertaining the effect of any increase in acreage inequality on the competitive allocation 

requires structure on the farm-size sensitivity of the difference in pumping rates between 

small and large farmers, , where *
1,

*
1, ji uu − kLi∈ , lLj∈ , lk AA < .9   

                                                 
8 Comparative statics results for the portfolio selection problem, along with interesting intuition, that are 
stated in terms of the Arrow-Pratt coefficients of risk-aversion and prudence can be found in Gollier 
(2004).  
9 The farm-size sensitivity of the difference in pumping rates across farms is )(/)( kkk auaua ′′′ , where  

. If the pumping rate differential, u=)( kau 112
1 ));(( hhhfag ku <− ′ , is increasing (decreasing), the sensitivity 

is negative (positive). 
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Condition (a) states that, when the aquifer is full, the agricultural output, , 

is in a sense more concave than the marginal output, .  Then the perceived 

benefit from a more stable inter-seasonal groundwater use pattern increases with size at 

an accelerating rate, and a greater inequality stimulates, on average, a slower pumping 

rate.  Note that condition  is equivalent to log-concavity (log-convexity) of the 

first derivative of the demand for water with respect to output when the aquifer is full, 

, where  is the inverse of agricultural output 

function obtained by treating  the stock of groundwater, , as a parameter. 

)(., 1hg

)(., 1hgu

PR )(2 ≥≤

);( 1
1 hyg y

− )};(:{);( 11
1 hugyuhyg ==−

1h

To guarantee that the average pumping rate increases, we need an additional 

condition (i) in Part (b) because the aquifer is a quasi-bathtub (see constraint (1)).  This 

condition puts a limit on the increase in the size of large farms.  It implies that, under the 

new distribution of land ownership, the number of farmers, who grow irrigated crops is 

the same, , and that, under the initial distribution of land ownership, no farmer 

depleted her stock of groundwater in period 1, 

01 >B

1
*

1, )( hAui <
r

 for all 1Li∈ .  

 

4.2.3. Farm-size inequality and farm income 

Here we consider the effect of the inequality in farm acreage on total farm income 

attained by the competitive allocation.  In the case of risk-neutral farmers, (6) becomes  

 ∑ =
=

n

k k
c AW

1
)( π
r

∑ =
=

n

k k gA
1

({ ,min[ 1h )},())],);(( *
2

*
211

*
2

1 hhghhhfag ku +− ,    (12) 

where  is given by (11), and *
2h *

11 uh −= )(AW c
r

 symbolizes the dependence of total farm 

income (agricultural output) on the distribution of land ownership among farmers. 

 The farm-size inequality affects both the groundwater stock in period 2 (dynamic 

allocation) and the distribution of groundwater application rates across farms in period 1 

(spatial allocation).  Keeping everything else equal, a more stable inter-seasonal pattern 

of groundwater use increases total farm income.  The distributional effect of farm-size 

inequality on farm income is more difficult because a higher variability in farm sizes may 

or may not lead to a higher variability in the per acre pumping rates (see Proposition 3).     
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Proposition 4.  Suppose that farmers are risk-neutral.  Then under more unequal 

distribution of farm sizes, BA m
rr

≤ , total farm income 

(a) decreases, )()( BWAW cc
rr

≥ , if  (i)  and (ii) PR ≥3 )()( *
2

*
2 BhAh

rr
≥ ;   

(b) increases, )()( BWAW cc
rr

≤ , if (i) the smallest farm under the new land 

ownership distribution is not “too small”, 1b ))((/),( *
211 Ahfhhgu

r
≥ , (ii) , and 

(iii) .    

PR ≤3

)()( *
2

*
2 BhAh

rr
≤

 

Conditions in (a) guarantee that the unequal distribution of farm acreage 

aggravates both the distributional (a(i)) and dynamic (a(ii)) inefficiencies, that are 

associated with the competitive allocation.  Condition a(i) requires that the net benefit of 

irrigation when the aquifer is full, , is in a sense more concave than the marginal 

benefit, .  Then a greater inequality in farm sizes stimulates a greater variability 

in (acreage-weighted) pumping rates and lowers total output.  Observe that a(i) is less 

stringent than (a) in Proposition 3.  This is because the net benefit of irrigation, , 

is concave in , which adds additional curvature, and thus, on average, a smaller (or 

positive) farm-size sensitivity of the spatial pumping rate differential suffices to cause a 

total output loss. 

),( 1hug

),( 1hugu

),( 1hug

u

Part (b) has a similar interpretation.  Condition b(i) is the same as in Proposition 

3.  But now sufficient condition b(ii) is more stringent compared with b(ii) in Proposition 

3.  This is because a negative and “sufficiently” large (in absolute value) farm-size 

sensitivity of the spatial pumping rate differential is required in order to assuredly raise 

total output.  Note that condition PR )(3 ≥≤  is equivalent to concavity (convexity) of the 

first derivative of the inverse output function (i.e., demand for water as a function of 

output) when the aquifer is full, . );( 1
1 hyg y

−

Combining Propositions 3(b) and 4(a) yields 
 
Proposition 5.  Suppose that farmers are risk-neutral.  Then under more unequal 

distribution of farm sizes, BA m
rr

≤ , total farm income decreases, )()( BWAW cc
rr

≥ , if 

.   RPR 32 ≤≤
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Sufficient conditions under which more unequal distribution of farm sizes has an 

unambiguously positive effect on total farm income cannot be obtained in this way.  To 

guarantee a lesser inequality in pumping rates, the pumping rate spatial differential, 

, must be “sufficiently” decreasing (in absolute value) with farm size.  In contrast, 

to guarantee a more stable average pumping rate, the pumping rate spatial differential 

must be increasing or “slightly” decreasing (in absolute value) with farm size.   

)( kau′

 Furthermore, as clear from the proof of Proposition 4 (see (A1) in Appendix), the 

sign of kk A∂∂ /π  is ambiguous.  Therefore, it is possible that smaller farmers earn more 

total income than larger farmers, lk ππ ≥  for lk < .10  This may happen because smaller 

farmers are in a better strategic position to take advantage of the common property 

resource as they are able to steal more groundwater per unit of land than their larger 

neighbors.  The following example illustrates. 

 

4.2.4. Small and large farms: an example 

Let , γ)(),( zuhug += )1,0(∈γ , 15.0 hz −≥ , and 0=′′v .  By Proposition 1, the efficient 

allocation of groundwater across acres and seasons is invariant to the distribution of land 

ownership, and is given by  for 11, 5.0 hu s
i = Li∈ .  The maximal regional farm income is 

.   γ)5.0(2 1 zhAW s +=

For simplicity, all farms fall in one of the two categories: small and large.  The 

size of small farms is s  acres, sAk =  for mk ,...,1= , and the size of large farms is  

acres,  for , where 

l

lAk = nmk ,...,1+= ls ≤ .  The number of small farms is m , and the 

number of large farms is , where mn − Almnms =−+ )( .  By (10) and (11) equilibrium 

pumping in period 1 is 

)])(1()
1

)1(()(,min[ )1/(1
1

)1/(1
1

*
1,

−− −+
+

−+
−= γγ

A
sz

E
EzEh

A
shui  for kLi∈ , , mk ,...,1=

                                                 
10 Of course, larger farmers always have higher total revenues in period 2.  But smaller farmers have more 
intensive-margin operations and higher per acre revenues in period 1.  The differential in total revenues 
between small and large farmers in period 1 can be positive, and even, exceed the magnitude of the 
negative differential in total revenues in period 2. 
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AmnlAl

AlzAsmuh
u m

i /)()/(
)1))/((/

)1/(1

)1/(1*
1,1*

1, −+
−+−

= −

−

γ

γ

 for kLi∈  and nmk ,...,1+=  

where . )])/)(()/( )1/()1/( −− −+= γγγγ AlmnAsmE

For concreteness, we consider a special case of an increase in farm size inequality 

whereas small farms get uniformly smaller and large farms get uniformly larger.  Note 

that  for ))(,;())(,;( slmsAslmsA m ′′′′≤′′
rr

ss ′′>′ , where )/()()( snmsAsl −−= .  Clearly, a 

uniform shift of acreage from small farms to large farms, keeping the number of farms in 

each size category fixed, constitutes an increase in farm size inequality.  We consider the 

effect of increasing the gap between the acreage on small and large farms, , 

keeping the number of each type of farms, m , fixed.   

0≥−=Δ sl
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Figure 1.  Inequality in farm sizes, pumping rates, and income 

 

In Figure 1, parameters are: 8.0=γ , 3.0−=z , 100=n , 50=m , , and 

.  Then the maximal farm income per acre is .  At 

11 =h

000,100=A 8.12.010/ ×=AW s 0=Δ  
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(i.e., ), small and large farms are the same, and the distribution of land 

ownership is uniform across farmers. Next we analyze the effect of an increase in farm 

size inequality on the equilibrium groundwater stocks, pumping rates, and incomes. 

1000== ls

As shown in Figure 1(a), when the difference in farm sizes is relatively small, 

, the difference in the pumping rates increases until the small farmers deplete 

their wells in period 1,  for 

280≤Δ

11
*
1, == hui kLi∈  and 50,...,1=k .  This limits the ability of 

small farmers to “steal” groundwater from their neighbors, and therefore, establishes an 

upper bound on the difference in the pumping rates.  Curiously, the large farmers pump 

less than the efficient quantity,  for 5.05.0 1
*
1, =≤ hui kLi∈  and 100,...,51=k , when 

220, 400].  In this range, the gain in the dynamic efficiency for the large farmers 

outweighs the loss associated with letting the small farmers steal their groundwater.  

However, as the size of each large farm, and hence the total share of the aquifer farmed 

by large farms, increases, large farmers are able to more effectively “push” the aggregate 

groundwater use towards the efficient allocation.  Even though the incentive to pump 

groundwater efficiently for each individual large farmer declines, the aggregate 

groundwater usage in period 1 decreases.  This is because the distribution of total acreage 

is skewed more (less) heavily towards large (small) farmers, who pump slowly (who 

deplete their wells in period 1). 

[∈Δ

Figure 1(b) illustrates the non-monotone relationship between the stock of 

groundwater in period 2 and farm-size inequality.  As explained earlier, when the gap 

between small and large farms is small, [∈Δ 0, 280], the large farmers are relatively 

ineffective in raising the dynamic efficiency.  This is because, even though they decrease 

their pumping rates in order to compensate for the higher pumping rates by small 

farmers, their weight in aggregate pumping is relatively light.  And so, the negative effect 

of the aggressive pumping by small farms dominates, and the groundwater stock in 

period 2 falls.  As the share of total acreage owned by small farmers declines, but their 

pumping rates remain constant (  for 11
*
1, == hui kLi∈  and 50,...,1=k ), the large farmers 

need to give up less of period 1 pumping to push the region towards more dynamically 

efficient allocation.  From the perspective of a large farmer, the groundwater resource is 

more private, which reinforces the diminished influence of aggressive pumping by small 
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farmers.  As a result, the average stock in period 2 increases, and the region moves 

towards a more dynamically (and spatially) efficient allocation. 

Figure 1(c) shows the non-monotone effect of the inequality in farm sizes on total 

income.  Proposition 4 shows that, in general, an increase in size inequality affects the 

total farm income in two distinct ways.  First, it affects the groundwater stock in period 2.  

Second, it affects the variability of the pumping rates among farmers in period 1.  When 

the gap is small, 0, 280], both the “stock” and “pumping rate variability” effects 

work in the same direction.  When the gap is “sufficiently” large, any further increase in 

farm-size inequality raises the total farm income.  Note that the dip in the total income in 

Figure 1(c) has a rather pointed peak.  This is because for 

[∈Δ

280≥Δ  there is an additional 

income gain associated with the gain in the spatial efficiency due to the decline in the 

heterogeneity of pumping rates.  The period 1 pumping on large farms increases, while 

pumping on small farms remains constant (as they deplete their wells in period 1).   

As shown in Figure 1(d), total per farm incomes are also non-monotone in the 

extent of farm-size inequality.  Surprisingly, the total small farm income increases when 

the acreage on small farms decreases in the range [∈Δ 0, 280].  The converse holds for 

large farms.  This is because small farms are in a better position to steal groundwater 

from their neighbors operating on large farms.  However, the cap on the pumping in 

period 1, , eventually annuls this effect.  Consequently, a further increase in farm- 

size inequality affects farm incomes in the expected direction because, keeping 

everything else equal, a smaller (larger) acreage entails a smaller (larger) whole-farm 

income. 

1*
1, ≤iu

 

5. Risk-averse farmers   

So far, we considered the effect of farm-size heterogeneity on welfare in the case of risk-

neutral farmers (constant marginal utility of income).  As we show next, relaxing this 

assumption may lead to rather different conclusions.  Even the property that, under the 

competitive allocation, smaller farmers pump faster may no longer hold.   

We consider the case of risk-averse farmers with (strictly) concave per period 

utility of whole-farm revenues, 0<′′v .  To highlight the role of risk-aversion, we assume 

that per acre profit (e.g., yield) is a linear function of the amount of water applied per 
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acre, and that pumping costs do not depend on the hydraulic head, .  

Following the same steps as before, we can show that the equilibrium best response of 

farmer  on acre , , is  

uhug =),(

k kLi∈ *
1,iu

 ,  *
1,iu ,min[ 1h= )))]((()/1( *

11
1

1 uhAvavA kkk −′−
kLi∈∀    (13) 

where  is the inverse of , and the average pumping in period 1, , solves (.)1
1
−v v′ *

1u

 .    (14) *
1u ∑ =
=

n

k khAA
1 1,min[)/1( )))]((( *

11
1

1 uhAvav kk −′−

Let  denote the Arrow-Pratt coefficient of relative risk-aversion of a 

farmer with the periodic utility of income . 

)(/)()( uvuvuur ′′′−=

v
 
Proposition 6.  Suppose that farmers are risk-averse. Then the average pumping rate is 

higher than the socially efficient average rate, , and for all suu 1
*
1 ≥ kLi∈ , , lLj∈ lk <  

a) smaller farms pump faster, , if *
1,iu *

1,ju≥ 0≥′r . 

b) smaller farms pump slower, , if  

 and .  

*
1,iu *

1,ju≤ )()))(((1 1
1 ahArahAvavr ≤′+ −

],[ lk aaa∈∀ )5.0,0( 1hh∈

 

Farm size has two effects on the farmer’s pumping decision.  On the one hand, 

larger farmers view their stock of groundwater as a relatively more private resource.  This 

provides them with a greater incentive to push the regional use towards a dynamically 

more efficient allocation.  On the other hand, larger farmers may have a smaller 

(negative) difference in marginal utilities of income in periods 1 and 2.  This diminishes 

their incentive to push the region towards a dynamically more efficient allocation 

compared with smaller farmers.  The “private resource” effect dominates if the 

coefficient of relative risk-aversion is increasing in wealth.  The “income scale” effect 

dominates if the coefficient of relative risk-aversion is “sufficiently” large and decreasing 

in wealth (in the sense of condition in Part (b)). 

 While not reported here due to space constraints, the counterparts of Proposition 

3-5 carry over to the case of risk-averse farmers as well.  Competitive allocations may 

either exacerbate or alleviate income inequality associated with the distribution of land 

holdings among farmers.  If the coefficient of relative risk-aversion is increasing in 
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wealth, small farmers pump more groundwater per acre than large farmers.  This lessens 

the income inequality caused by an unequal distribution of acreage.  The converse is true 

if larger farmers pump more aggressively (on a per acre basis), which is possible if the 

coefficient of relative risk-aversion is “sufficiently” large and decreasing. 

Note that, in the absence of the effect of farm-size inequality on the disaggregated 

pumping rates, from the societal point of view, the heterogeneity in land holdings is 

immaterial if farmers are risk-neutral (i.e., they value marginal income in both periods 

independently of the number of acres they farm).  When farmers are risk-averse, the 

heterogeneity in the pumping rates can be welfare-increasing, given that the per acre 

irrigation rates increase on smaller farms and decrease on larger ones, so that in period 1 

income is redistributed from rich to poor farmers (see Proposition 1).  However, because 

of the decreasing marginal per acre benefits of water, total income always decreases 

under a greater variability of the pumping rates.  This may create a tension between the 

effects of farm-size inequality on income distribution and total income (output).  Next we 

take a policy perspective and investigate the workings of a very simple groundwater use 

policy in the presence of farmer heterogeneity. 

 

6. Policy implications: an example of flat-rate quota policy 

In this section, we consider some political economy aspects of implementing a simple 

policy that allocates per period per farm pumping quotas.  Suppose that the policy takes 

the form 

qAu kLi i
k

≤∑∈
*

1,  and ]0,max[ *
1,

*
2, ∑∑ ∈∈

−+≤
kk Li ikkLi i uqAqAu  for ,       (15) nk ,...,1=

where  is the per acre quota (measured in acre-feet), and the quota allocated to 

each farm is proportional to its size.  The quota limits the quantity of groundwater 

extracted in each period, but allows farmers to carry over unused portions of their quota 

into the next period.  There is no market for water rights, and the unused quotas cannot be 

bought or sold. 

],0( 1hq∈

For concreteness, we consider the case of risk-neutral farmers and a strictly 

concave agricultural output function analyzed in Section 4.  The following result 

establishes that, while this policy always slows the rate of the aquifer depletion, the effect 

on farmer incomes is likely heterogeneous.  We consider equilibrium where the pumping 
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rates decrease with time  *
2,

*
1, ii uu ≥ Li∈∀ , so that .  For example, this is 

always true if all farmers are sufficiently small relative to the aquifer,  

.  Then, under quota policy (15), farmers do not 

transfer the unused portion of their quotas from period 1 to period 2: , if 

, and  

*
21

*
1 5.0 uhu ≥≥

≤na

)}(/),({inf 111),0( 1
uhfhuhguhu −−∈

*
2,

*
1, ii uuq ≥≥

2/1hq ≥ quu ii == *
2,

*
1, Li∈∀  if 2/1hq < .  Hence, for  equilibrium is 

given by 

2/1hq ≥

 ,  )(*
1, qui ,min[q= )]));((( 1

*
11

1 hquhfag ku −−
kLi∈∀ , nk ,...,1=   (16)  

  .    (17) )(*
1 qu ∑ =

=
n

k k qa
1

,min[ )]));((( 1
*
11

1 hquhfag ku −−

The income of farmer k  under the quota policy is 

 ({)( gAq kk =π ,q )},() 11 qhqgh −+ , if 2/1hq < , and   (18a) 

 ({)( gAq kk =π ,min[q ))],));((( 11
*
11

1 hhquhfag ku −−     (18b) 

))}(),(( *
11

*
11 quhquhg −−+ , if .  2/1hq ≥

From (18a) it follows that all farmers lose (gain) from a more restrictive quota, if the 

initial quota is sufficiently small and the marginal benefit of a higher stock is “small” 

(“large”) relative to the marginal benefit of water consumption: kk Aqq =∂∂ /)(π  

),({ 1hqgu 0)()},(),( 11 ≤≥−−−+ qhqgqhqg hu  for all nk ,...,1= .  On the other hand, 

from (18b) it follows that the income of large farmers, who are not bound by the quota, 

increases because the quota policy slows down the average pumping rate in period 1. 

Let .  Note that  is a non-

increasing function.  Then farmers 

}1  )),((/),(:sup{)( *
21 nkqhfhqgakqm uk ≤≤≤= )(qm

)(,...,1 qmk =  are bound by the quota in period 1.  

Also, farmers  deplete their wells in period 1, where  

symbolizes the absence of the quota policy. 

,...,1=k )( 1hqm = 1hq =

 

Proposition 7.  Suppose that the quota is applicable, .  Then under the 

groundwater quota policy 

qhqu ′>= )( 1
*

1,1

1hqq <′=  

a) the groundwater stock in period 2 increases, )()( 212 qqhhqh ′=<=  .  

Suppose that the period 2 quota is not binding, 

1hq <′∀

2/1hq ≥′ .  Then 
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b) large farmers gain, )()( 1 qqhq kk ′=≤= ππ  for nqmk ,...,1)( +′= ; 

c) small farmers lose, )()( 1 qqhq kk ′=≥= ππ  for )(,...,1 1hmk = , if (i) , 

, 

0≥uuug

0≥uuhg 0),(),(2 ≤+ hhghhg hhuh , and (ii) ∑∑ +=

−

=
≥

n

zk k
z

k kz aaa
1

21

1
/  for all 

. )(),...,( 1 qmhmz ′=

 

Farmers in the medium size range, ≤)( 1hm )(qmk ′≤ , may lose or gain from a quota.  

The intuition for this result is very clear: Small farmers, who pump faster than the 

average farmer, stand to lose the most from a quota policy.  Large farmers, who are not 

restricted by the policy, strictly gain from the quota because of the more stable inter-

seasonal allocation of groundwater induced by this policy.   

This illustrates that policies that do not account for user heterogeneity, are likely to 

affect not only the inter-seasonal but also the spatial distribution of incomes among 

farmers.  The ensuing political economy issues and the relative weight of small and large 

farmers in the policy-making process pose additional constraints on the design of 

efficient groundwater management policies. 
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Appendix 

Proof of Proposition 1: First, note that in period 2, the planner optimally exhausts the 

remaining stock on each farm because g and  are strictly increasing. This implies that 

constraint (1) binds for t = 2 (i.e., = h

v
s
iu 2, 2 Li∈∀ ), so that (6) can be written 
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Because ∑  is symmetric and concave in , and  is symmetric in , 

optimality requires that  for any 
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s
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s
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s
ju 1,= kLi∈  and lLj∈  if lk AA = .  Additionally, 

corner solutions are ruled out because  and  are increasing and concave in each 

argument.  Substituting the law of motion (2), , into the objective function and 

differentiating, the first-order conditions for a maximum are  
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if , and , otherwise, for all 11, hu s
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i = kLi∈  and nk ,...,1= .  Part (a) follows by 

observing that (A) reduces to (7) when 0=′′v  because AAn

l l =∑ =1
.  Part (b) follows by 

observing that only the first term in (A) depends on farm size , and, by concavity of 

utility function, , it decreases with .  Then by concavity of yield function, , this 

implies that  is a non-increasing function of farm acreage. ■ 

kA

v kA g

s
iu 1,

 

Proof of Proposition 2: Suppose that .  Then, by (11) *
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The inequalities follow by concavity of .  The equality follows by (7).  And so, we 

obtained a contradiction.  Also, 
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Proof of Proposition 3:  

Part (a). Suppose that )()( *
2

*
2 BhAh

rr
> .  Then, by (11),  
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The first inequality follows because the sum of compositions of two concave functions: 

, is Schur-concave in .  To show this, we need to 

check that  is concave in .  Differentiating twice yields 
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where the inequality follows by condition in (a).  The second inequality follows by 

concavity of .  And so, we obtained a contradiction. g
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(see Part (a)).  The second equality follows by assumption.  And so, we obtained a 

contradiction. ■ 

 

Proof of Proposition 4:  

To show parts (a) and (b), we need two facts. 

Fact 1. (i) )])(,(min[)( 1 kkkk auhgAaa =π  is concave in  when ka PR ≤3 . 
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Proof: To verify, differentiate twice with respect to aak = : 
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depending on whether .  This proves Fact 1(ii).  To show Fact 1(i), note that 
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equality follows by b(ii).  The second inequality follows by b(iii) and Fact 2.  ■ 
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Part (b). Proof is analogous. ■ 

 

Proof of Proposition 7:  

Part (a). Note that this trivially true when the quota is binding in period 2, , 
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where the last inequality follows by concavity of .  And so, we obtained a 

contradiction. 
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Part (b). By (18b), farmer k ’s income for nqmk ,...,1)( +′=  is  
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The third inequality in (A3) follows by c(ii).  Hence, )()( 1hqqq kk =≤′= ππ  for 
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