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Abstrast: Two aggregation schemes for food demand systems are tested for consistency with the

Generalized Composite Commodity Theorem (GCCT).  One scheme is based on the standard

CES classification of food expenditures.  The second scheme is based on the Food Guide

Pyramid. Evidence is found that both schemes are consistent with the GCCT.



Consistent Commodity Aggregation in Food Demand Systems

Introduction

Any attempt to estimate a food demand system requires aggregation of elementary

products into a manageable number of composite commodities.  The challenge is to define the

composites so that the estimated system consistently reflects the demand for the elementary

products that consumers actually purchase.  Incorrect aggregation over products can lead to

errors in estimating demand elasticities and imply misleading policy implications.

Assumptions about the separable structure of underlying consumer preferences are the

most common justification for maintaining a particular aggregation scheme.  However,

seperability can impose strong restrictions on consumer preferences that are often difficult to test

(Moschini, Moro, and Green; Diewert and Wales).  Instead of testing the assumption underlying

seperability,  a common practice is to heuristically argue in favor of a particular aggregation

based on the characteristics of the individual items and the reasonableness of the groupings.

An alternative criterion for aggregating elementary into a valid composite is given by the

Hicks-Leontief Composite Commodity Theorem (CCT).  The CCT requires, however, that the

set of relative prices, defined by the ratio of the elementary product price to its corresponding

group price index, to remain constant over time (e.g., Nelson, 1991). Empirically, this restriction

is generally rejected.

In a seminal paper, Lewbel generalizes the CCT by viewing theoretical elementary and

composite demand relationships as systems of conditional means (i.e., regression equations). In

this setup, Lewbel shows that aggregation under the Generalized Composite Commodity

Theorem (GCCT) can be obtained under the weaker condition that the vector of relative

elementary prices is independent of the vector of group price indices. Specifically, the GCCT
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relaxes the restriction of constant price ratios within groups by strengthening the requirement

that independence holds across all groups.

While this generalization is significant, tests of the GCCT that have been proposed do not

check all of the conditions implied by vector independence.  In an important paper, Davis, et. al.

propose family-wise tests of joint independence between the elementary price ratios of a group

and the group’s price index. In the case of consumer demand, it is important, however, to check

whether such restrictions hold jointly across groups and not just within the groups. In this paper,

we extend the tests of the GCCT to take account of these cross group restrictions.

In this paper, we illustrate this test procedure for two aggregation schemes using

quarterly Consumer Expenditure Survey (CES) data from 1984.1 to 1997.4. One is a scheme

based on the standard food classification system used in the CES.  The second is a scheme based

on grouping food items according to their nutritional content and is motivated by the USDA’s

Food Guide Pyramid.

Theory of the GCCT and Consumer Demand Systems

Consistent aggregation based on the GCCT places restrictions on share-based models of

composite demand. Elaboration of this theory leads to tests of the GCCT.

The GCCT maintains the existence of an n-vector of elementary demand functions, g that

maps an n-vector of logged elementary retail prices (r) and logged income (i.e., total

expenditures) 1(z) to an n-vector of expenditure shares (w1, w2 ,…,wn). In the GCCT, each gi

represents a conditional mean so that if E denotes the mathematical expectations operator, there

exists elementary demand functions gi : (r, z) → wi (i = 1, 2,...,n) such that

(1) wi = gi (r, z) + ei      where   E(ei |r, z) = 0  ⇒   E(wi |r, z) = gi (r, z).
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In particular, g satisfies adding-up (∑ gi = 1), homogeneity (for all i: gi (r-k, z-k) = gi (r, z)), and

Slutsky symmetry (i.e., (∂ gk/∂ rj) + (∂ gk /∂ z)gj = (∂ gj /∂ rk) + (∂ gj /∂ z) gk). These three

conditions are termed integrability conditions (Lewbel) and ensure that (1) derives from a well-

defined optimization problem. From the n- vector of elementary demands, the task is to find an

M-vector (M < n) of group or composite demand functions, G, that map the M-vector of logged

group price indices R = (R1, R2, …, RM)’ and (log) income, z, to the M-vector of group

expenditure shares (W1,W2 ,…,WM). It is understood that each element in the group price index

vector R is constructed as some (continuous) function h of the elements of r associated with the

group (i.e., R1 = hI (ri∈I)).  In the theory of the GCCT, each GI is the mean of the Ith group share

conditioned on R and z. In particular, GI : (R, z) → WI  where WI ≡ ∑i∈I wi  satisfies

(2) WI = GI (R, z) + uI, where E(uI |R, z) = 0  ⇒ GI (R, z) = E(WI |R, z)

for (I = 1,…,M).

The theory provides two definitions that link the n-system of elementary demand

functions g to the M- system of composite group share functions G. First, for any group K, the

group share is defined as WK ≡ ∑k∈K wk . Analogously, GK
*(r, z) ≡ ∑k∈K gk(r, z). Second, ρk

denotes the deviation between the log of the kth elementary price and the log of its group price.

Hence if k∈K, ρk = rk - RK . In vector notation, ρ = r – R* in which R* is the n-vector that has RK

in position k and every k∈K. These definitions and the above setup imply, by the law of iterated

expectations, that

(3) GK (R, z) ≡ E(WK |R, z) = E{E(WK |r, z)|R, z)} ≡  E(GK
*(R* + ρ, z) |R, z) (K = 1,…,M)

or GK(R, z) = E(GK
*(r, z)|R, z). Equation (3) states that any composite share equation that

satisfies (2) is the best predictor of vector sums of elementary demand equations that can be
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computed from composite price indices and income. The central question is whether this set of

predictors represents a system of composite demand functions.

Lewbel shows that the answer depends on whether the vector ρ is independent of the

vector (R’ z)’. From (3) Lewbel notes that vector independence implies

(4) GK(R, z) = E(GK
*(R*+ρ, z)|R, z) =  ∫ GK

*(R*+ρ, z) f1 (ρ) dρ.

where f1(ρ) is the marginal probability distribution function of ρ. The first equality is a

restatement of (3) and the second equality holds when ρ is independent of (R’ z)’. Lewbel shows

(Theorem 1) that if the second equality of (4) is satisfied, the multivariate composite demand

system satisfies adding-up and homogeneity. In addition, if elementary demands take on special

functional forms, vector independence between ρ and (R’ z)’ implies Slutsky symmetry holds for

composite demand.  It is evident from equation (4) that the requirement of vector independence

places joint restrictions on the conditional mean of the vector ρ by jointly restricting correlations

between all elements of ρ and all elements of (R’  z)’ (Reed, Levedahl, and Hallahan).

Family-Wise Tests of the GCCT

For each composite group K, the Davis, et. al. methodology suggests regressing each ρk,

k = 1,2,…,nK on the associated group price index RK (and z and a constant and time trend). In the

case in which both series are integrated of order 1 or higher, they suggest testing for a spurious

regression by performing residual-based tests on each of the nK model residuals separately.

However, since vector independence imposes joint within-group restrictions, they combine the nk

individual tests statistics into a family-wise test using the Holm procedure. In particular they

suggest testing the null that the vector ρK is independent of RK  (and z) by computing the Kth

group’s order statistic, TK = maxk |Tk|.  The null that ρK is independent of RK (and z) is rejected at
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the α-level of significance if TK = maxi |Ti| > |T|ν,δ . Here ν relates to the number of observations

used and δ=α/nK for nK one-sided unit root tests. Otherwise, the null that ρK is independent of RK

is accepted implying that the elementary products of group K represent a valid composite.

This methodology computes each group test independently of all other group tests, so that

the correlations among elements of different groups are not considered.1  Our test procedure uses

the same Hohm procedure to define a family-wise test, however, we include all the relative and

group price indices in the test.

Assume that {ρt} and {Rt} are vector time series, and that each vector contains

deterministic components (e.g., means, deterministic time trends), d.  Let ℜ = (R’ z)’.  By the

law of iterated expectations it follows that

(5) E(ρ|d, ℜ)  = E(ρ|d) + E{(ρ - E(ρ|d)|( ℜ - E(ℜ|d)}.

 Consider the case in which all of the elements of the vector (ρ ℜ) are integrated (of order 1)

Write a vector of linear regressions of the form

(6) Y = BX + e

where Y = ρ - E(ρ|d) and X = ℜ - E(ℜ|d). If Y and X are independent then E{(ρ - E(ρ|d)|( ℜ -

E(ℜ|d)} = 0 , B=0, and model errors are integrated (of order 1).  If, on the other hand, the model

error are integrated (of order 1), equation (6) would represent a vector of spurious regressions

implying that Y and X are asymptotically independent (Reed, Levedahl and Hallahan).  This

suggests that a test of vector independence amounts to a test that the n- system of regressions of

ρ - E(ρ|d) on ℜ - E(ℜ|d) is jointly spurious.   To test the null of n spurious regressions we extend

                                                
1 By testing that each of the n- relative price ratios is independent of the deflated price index is an attempt

to account for some cross group correlations
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the Holm procedure as described by Davis et al. but include all the Ti ‘s in calculating the order

statistic.

Tests of the Standard and Pyramid Aggregations

In this section, two commodity aggregations are tested for consistency with the GCCT.

The first is referred to as the standard aggregation.  This aggregation is defined using the

classification of foods in the CES.  In total, this aggregation consists of eight composite

commodities.  Table 1 lists the composition of each composite in the standard aggregation.  The

second aggregation is referred to as the pyramid aggregation.  This aggregation is motivated by

the USDA’s Food Guide Pyramid, and groups the food items according to their nutritional

content.  The pyramid aggregation tested in this paper is similar to an aggregation scheme used

by Ramezani, Rose and Murphy, however, it differs in some important ways.  In total, the

pyramid aggregate consists of nine composite commodities.  Table 2 lists the composition of

each composite in the pyramid aggregation.  In principle both the standard and the pyramid

classification represent the aggregation of the same elementary food items.

Consistency of the standard and pyramid aggregations with the GCCT was tested using

the procedure outlined in the previous section.  In these tests price indices for each of the

composite commodities were built up using the individual CPI food component price series

reported by BLS.2  Composite price indices were calculated from the individual component

prices using (weighted) mean 1997 expenditures as weights.  This allowed us to use the greater

detailed food expenditure categories incorporated into the CES in 1997.  In particular, for

                                                
2 Several problems associated with data limitations were encountered.  The most significant were the

changes in the food expenditure categories collected in the CES instituted in 1997. These changes resulted in BLS
discontinuing several CPI components that were part of the Old Series. Several component price CPI series that
were previously calculated for time periods prior to 1997 are no longer available after this date.  In addition, the
pyramid aggregated required knowledge of actual prices (such as for peanut butter and dried beans/peas).  BLS
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example, the protein composite in the pyramid aggregate could be calculated using actual dried

beans/peas expenditure. Quarterly data, 1984 to 1997, was used ( T=56).

Empirical Results

Results of augmented Dickey-Fuller Unit Root tests for each log composite price indices

and each relative price are reported in Table 3 for the standard aggregation and in Table 4 for the

pyramid aggregation.  The standard aggregation consists of 8 composites and 42 relative prices.

The pyramid aggregation consists of 9 composites and 44 relative prices.  In both, it is

maintained that Food Away from Home group is a valid composite.

For each aggregation, the results suggest that both τµ and ττ tests fail, at the 10 percent

level of significance, to reject the null that each of the RK series are generated by a unit root.

However, the tests for the relative elementary prices are mixed indicating that some of these

prices may be stationary.   For both aggregations, these results suggest that some elements of ρ

are integrated of order 1 and all elements of R’ are integrated of order 1.  A test of a jointly

spurious regression of ρ on R provides a test of independence between ρ on R’.

Based on specification given in equation (6), OLS residuals from each of the (de-meaned and de-

trended) regressions of the ρk on all the composite price indices were used to compute the

Augmented Dickey-Fuller statistics.  These statistics were then used to apply the Holm

procedure.  The critical value of the Holm order statistic for a one-tail family-wise test at the 10

percent level is given by p*(.10, n) = .10/n.  The probability of observing a residual ADF test

statistic, under the null hypothesis of a spurious regression, that is smaller than the observed

                                                                                                                                                            
provides these data but generally only back to 1984.  We, therefore, limited our aggregation tests to the time period
1984-97.
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Holm order statistic was calculated using the approximations given by MacKinnon.  Table 5

summarized the results of the family-wise tests for the two aggregations.

Table 5:  Family-Wise Test of Vector Independence at the 10 Percent Level_______________                            

Aggregation: Standard Pyramid

Observed Holm
  Order Statistic, T0 -5.4052 -5.6454

Prob (T > T0) .0140 .0145

Critical Values p*(.10, 42)=.0024 p*(.10, 44)=.0023

p*(.10, 37)=.0027 p*(.10, 42)=.0024

A value of p*(.10, n) ≤ Prob (T>T0) indicates a failure to reject the null hypothesis of family-
wise vector independence at the 10% level.  Probability values for the order statistic were
calculated as asymptotic p-values of ADF statistic for the appropriate number of regressors using
MacKinnon.                         

Table 5 show evidence that both aggregation schemes are consistent with the GCCT at

conventional significance level of 10 percent.  Table 5 includes alternative significance levels for

the Holm for each of the aggregations.  These levels were obtain after deleting the ρi  from the

family-wise test for which µ τ indicated stationarity.  In neither aggregate did this change the

value of the order statistic.

Conclusion

Both the standard and pyramid aggregations considered in this paper appear to be

consistent with GCCT.   The observed P-value associated with the family-wise test (when all the

ρ’s are included) is 0.64 for the pyramid and 0.59 for the standard aggregation.  Based on an

interpretation by DeGroot observed P-value can be interpreted as a degree of belief that the null

holds (given diffuse priors).  Such a comparison would provide a criterion for evaluating the

consistency with GCCT of the two aggregation schemes relative to each other.
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Table 1:  Composition of the Composite Commodities-Standard Aggregation
______________________________________________________________________________
Aggregation Scheme Composites Elementary Food Items
Standard Cereal/Bakery (11) flour/flour mixes; cereals; white bread;

other bread; rice/pasta/cornmeal; cookies;
biscuits/rolls/muffins; cakes/cupcakes;
crackers/cracker products; fresh/frozen
bakery products/pie/tarts/turnovers;
sweetrolls/coffeecakes/donuts

Dairy (5) fresh milk/cream; cheese; ice cream;
other dairy; butter.

Meats (6) beef; poultry; fish; pork; other meats;
eggs.

Fruits (7) apples; bananas; oranges;
other fresh fruits; frozen fruit/juices;
other fruit juices; canned/dried fruits.

Vegetables (7) potatoes; lettuce; tomatoes; other fresh
vegetables; frozen vegetables; canned
beans/corn; other processed vegetables
(including dried beans/peas).

Fats and Oils (3) margarine, creamer/peanut
butter, other fats/salad dressing.

Other (3) beverages; potato chips/other snacks;
sugars/sweets,

FAFH (1) food-away-from-home.
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Table 2:  Composition of the Composite Commodities-Pyramid Aggregation
______________________________________________________________________________
Aggregation Scheme Composites Elementary Food Items

Pyramid Grains (7) flour/flour mixes; cereals; white bread;
other bread; rice/pasta/cornmeal;
biscuits/rolls/muffins; crackers/cracker
products

Dairy (3) fresh milk/cream; cheese; other dairy
products

Protein (8) beef; poultry; fish; pork; other meats;
peanuts butter/nuts; dried beans/peas;
eggs

Fruit (7) apples; bananas; oranges; other fresh
fruits; frozen fruit/juices; other fruit
juices; canned/dried fruits.

Vegetables (7) potatoes; lettuce; tomatoes; other fresh
vegetables; frozen vegetables; canned
beans/corns; processed vegetables
(excluding dried beans/peas)

Sweets (6) cookies; cakes/cupcakes; fresh/frozen
bakery products/pies/tarts/turnovers; ice
cream; sugar/sweets; sweetrolls/
coffeecakes/donuts

Fats and Oils (4) margarine; butter; other fats/salad
dressing; creamer

Other (2) beverages; potato chips/other snacks

FAFH (1) food-away-from-home.
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