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Abstract 

Six popular crop yield distributions are compared to determine which best describes yield 

fluctuations out-of-sample.  For 183 crop and county combinations, each distribution is estimated 

and ranked according to its log-likelihood function observed at out-of-sample observations.  A 

semiparametric model dominates the contest for all crops and most counties, likely due to its 

flexibility and treatment of heteroskedasticity.  Most other models ranked lower because their 

variance equation performed poorly out-of-sample. 
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HOW ARE CROP YIELDS DISTRIBUTED? 

Characterizing the behavior of crop yields is an important component of 

agricultural economic analysis.  Accurate knowledge of crop yield behavior is critical in 

devising farm management tools, farm policy, and crop insurance.  For example, low 

yields may occur during periods of low commodity prices, causing financial distress on 

the farm sector.  Knowledge of the likelihood of such events is necessary for government 

programs to respond with appropriate policy.  However, crop yields can be extremely 

variable from year to year, perhaps much more than the output of non-agricultural firms.  

Although understanding the stochastic nature of crop yields is critically important in 

agricultural economic analysis, characterizing yield distributions can be quite difficult. 

 How are crop yields distributed?  There is no one answer for every crop region, 

and although we will never know a crop’s true distribution, there are ways of measuring 

model accuracy.  Many innovative yield distributions have been offered over the last 

three decades, six of which are discussed here.  This study seeks to understand which of 

this six models best describe yield fluctuations in out-of-sample settings. 

The literature is filled with various candidate yield distributions, few of which can 

be excluded on theoretical grounds.  How should one discern which is best?  Previous 

studies rely almost exclusively on hypothesis tests for model discrimination using in-

sample fit.  Though useful in many regards, as with any other approach it has its 

disadvantages.  Usually, if a set models are not significantly different the most 

parsimonious is chosen, but sometimes appeals to parsimony cannot be made.  For 
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instance, if a three parameter beta distribution is not significantly different from a three 

parameter normal distribution, which one should be chosen? 

While acknowledging the potential usefulness of hypothesis tests in many 

settings, this paper considers an alternative approach to model selection extendable to 

more settings, and is more consistent with the purpose of crop yield distribution 

estimates.  This alternative approach assigns an unambiguous ranking to almost any 

number and type of yield models, where models are ranked based on their out-of-sample 

performance.  For the most part, yield distributions estimated from historical data are 

used for extrapolating into the future.  For instance, crop insurance premiums are set by 

estimating yield distributions from historical yields and assuming that distribution will 

carry over to next year’s yield.  The analysis of farm policies often make similar 

assumptions.  Thus, it seems natural to rank yield distributions by their out-of-sample 

performance.   

The second and third sections discuss six popular crop yield models and an 

appropriate methodology for discriminating among them.  This model selection criterion 

is referred to as the Out-of-Sample-Log-Likelihood Function (OSLLF) approach.  The 

fourth section pits each candidate yield model in three contests.  These contents are 

designed to illustrate which model is best across different crops and regions, along with 

an indication of how much confidence one can place in that chosen model being “best.”  

Overall, this paper contributes to our knowledge of yield distributions firstly by 

describing a method of model selection particularly suited to yields.  Second, estimating 

yield distributions and performing one’s own validation tests can be time consuming.  
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Much time can be saved in future work by using the results of this study’s model 

rankings. 

CANDIDATE YIELD DISTRIBUTIONS 

 Long ago it was discovered that yields can exhibit various sorts of behavior.  

Mean yields may be increasing in yield, or it may not.  The same can be said for yield 

variance.1  Furthermore, yields may be negatively skewed, positively skewed, or 

symmetric (Day) and even exhibit bi-polarity (Goodwin and Ker).  In response, 

agricultural economists have developed a myriad of rich models allowing any of these 

descriptions, but implying none of them.  Articles from the American Journal of 

Agricultural Economics from 1990-2000 were reviewed to reveal six popular yield 

models, each to be analyzed here. 

 Gallagher and Nelson and Preckel utilize the concept of a maximum attainable 

yield.  Gallagher describes this maximum yield as a time trend, while Nelson and Preckel 

model it as a constant.  Gallagher’s model states deviations of yield from its maximum 

value (which is time dependent) as a gamma distribution, and is thus referred to as the 

GAMMA model.  Heteroskedasticity is accounted for in his estimation routine.2  Nelson 

and Preckel model deviations from its maximum value (which is not time dependent) as a 

two parameter beta distribution, and is referred to as the BETA model.  In its original 

form, the BETA model conditioned the two beta parameters on agricultural inputs, such 

as nitrogen use and soil characteristics.  To facilitate comparison with the other five 

models, these parameters are instead conditioned upon a time trend.3  This specification 

naturally allows heteroskedasticity and a time-dependent mean yield. 
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 Moss and Shonkwiler describe yields as a time trend, but allows the parameters of 

this trend to be random according to a Kalman Filter.  Instead of estimating deviations 

from this trend as a normal distribution, they estimate a function of those deviations as 

normal.  This function is called an inverse hyperbolic sine transformation of normality 

and requires two additional parameters.  Depending on the parameter values, yield may 

be positively or negatively skewed or symmetric and may exhibit kurtosis.  This model is 

referred to as STOCHIHS where the STOCH portion designates yields to be a function of 

stochastic parameters and the IHS portion indicates the use of an inverse hyperbolic sine 

function. 

 The STOCHIHS model does not allow heteroskedasticity because the Kalman 

Filter becomes intractable.  Ramirez modifies this model to allow heteroskedasticity by 

replacing the stochastic trend with a fixed-parameter trend, in addition to several other 

creative reparameterizations.  This new model allows a positive covariance between 

different yields4 and so becomes a multivariate distribution.  This model’s name is 

MULTIHS, as it is multivariate and still utilizes an inverse hyperbolic sine function for 

non-normality.   

 A simpler but more flexible model is that offered by Goodwin and Ker.  This 

model, denoted SEMIPAR for semiparametric, portrays percent deviations of yield from 

its mean with a nonparametric kernel smoother.   Mean yields are estimated from an 

ARIMA model5 making the mean yield component parametric and the remaining portion 

nonparametric.  The kernel smoother is applied to percent deviations of yield from its 

mean, rather than raw deviations, to account for heteroskedasticity.6 
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 A recent article by Just and Weninger suggests that previous findings of skewed 

yield distributions may be the result of inappropriate detrending and failure to account for 

heteroskedasticity properly.  When using flexible polynomial trends for mean yield and 

yield variance the authors find that normality is difficult to reject.  This last model is 

referred to as the NORMAL model.7 

 There exists plenty of evidence for considering each six models as a candidate for 

use in yield distribution estimates.  The first five models; the GAMMA, BETA, 

STOCHIHS, MULTIHS, and SEMIPAR are flexible enough for yield to exhibit a wide 

array of behavior.  The NORMAL model is more restrictive, but as illustrated by Just and 

Weninger, is often difficult to reject.  This study is not concerned with which models are 

significantly different, but rather which one is best for a particular crop and region.  

Besides, hypothesis tests would be difficult to apply in this situation.  No two models are 

nested implying non-nested tests would have to be employed.  But non-nested tests are 

famous for ambiguous conclusions as they can reject all models and often fail to reject 

more than one model.  Plus, some of these models contain the same number of 

parameters, making appeals to parsimony infeasible. 

 The next section describes a different way of looking at model selection.  

Statistically, it is based on the Kullback-Leibler Information Criterion, but more 

importantly ranks models by their out-of-sample performance, as yield distributions are 

ultimately used for making probability statements about the future. 
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THE OUT-OF-SAMPLE-LOG-LIKELIHOOD FUNCTION (OSLLF) APPROACH 

TO MODEL SELECTION 

 Ranking yield models by their out-of-sample performance is worthwhile for two 

reasons.  First, sample sizes are typically low, making it easy to over-fit models.  Second, 

as mentioned previously, many yield models are used for making probability statements 

about future yields, so it seems natural to rank these models by their ability to describe 

yields post-sample.  By far, the most common method of ranking models according to 

out-of-sample performance is prediction error.  Each yield model has an implied expected 

value.  Prediction error measures the distance between this expected value and actual 

yields for a series of out-of-sample yields.  Examples are out-of-sample-root-mean-

squared error; average-absolute-out-of-sample error; and the Ashley, Granger, 

Schmalensee test (Brandt and Bessler; Kastens and Brester; Norwood and Schroeder). 

 Be it useful in many instances, in regards to selecting yield distributions, 

considering only forecast errors leaves much to be desired.  Prediction error alone does 

not account for how well a model captures variance, skewness, kurtosis, and probabilities 

in general.  If the purpose of yield distributions is to generate probability statements, we 

must consider more than just prediction error.  Put differently, we are not just interested 

forecasted yields relative to observed yields, but forecasted probability statements 

relative to observed yields.  The entire distribution should be considered in the model 

ranking. 

 An alternative is to rank models by their out-of-sample-log-likelihood function 

(OSLLF) values, as likelihood functions also measure fit but take into account the entire 
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distribution.  Let Lj(Yt|θ) be the log-likelihood function value from Model j and 

parameter vector θ.  A log-likelihood function is then the sum of Lj(Yt|θ) over a set of 

Yt’s.   Judging models by their log-likelihood function values has many nice features to 

be discussed shortly, but first, a discussion of how Lj(Yt|θ) can be considered “out-of-

sample” must be given. 

 For Lj(Yt|θ) to be “out-of-sample” the parameter vector θ cannot be estimated 

with information on yields at time t (Yt).
8  Suppose there are T yield observations; Y1, Y2, 

…, YT.  Cross-validation entails calculating Lj(Yt|θ) where θ is estimated using every 

observations except Yt, and is appropriately denoted θ-t.  An OSLLF value from cross-

validation can then be denoted  ∑tLj(Yt|θ-t).  Grouped-cross-validation is similar, except 

one or more yields are excluded in addition to Yt.  For instance, the OSLLF value for 

Yt=15 may be calculated using observations Yt=1, …Yt=15-3 and Yt=15+2, …, YT.  An 

OSLLF value using grouped cross-validation is denoted ∑tLj(Yt|θ-((t-i)→ (t+j))).  The 

grouped method will tend to choose more parsimonious models (Shao).  The decision of 

whether to use cross- or grouped-cross-validation, and if the grouped method is pursued 

which groups to leave out, depends on the true data generating process, which is never 

known. 

Consider the following arguments for using the OSLLF approach for selecting 

yield distributions.  First, we know that models should not be ranked according to their 

in-sample-log-likelihood function values, as one will tend to pick incorrect models over 

correct models simply because they have more parameters.9  The Akaike Information 

Criterion (AIC) avoids this by penalizing a model’s likelihood function value for each 



 

8 

parameter it employs.10  This penalty works:  In large samples and under certain 

conditions (Sawa), it will pick the distribution closest to the true distribution (Akaike).   

 Stone has shown that when cross-validation is used, the OSLLF value is 

asymptotically equivalent to the AIC value.  This means that the OSLLF approach avoids 

overfitting and no penalty parameter is needed.  However, under certain conditions,11 

both the AIC and OSLLF calculated using cross-validation will pick models with too 

many parameters, although both are better than using in-sample-log-likelihood functions.  

The correction for the AIC in these cases is to increase the parameter penalty (Sawa).  

The correction for the OSLLF is to use grouped-cross-validation (Shao) with an 

increasing number of observations “left out at a time.”  Unfortunately, these certain 

conditions requiring larger penalty parameters or more observations to be left out are 

never based on observable quantities.   

The OSLLF shares the asymptotic properties of the AIC and similar criteria 

(Stone; Shao).  One of these properties is that it chooses the model with the highest 

information content, as measured by the Kullback-Leibler Information Criterion.12  

Asymptotic properties are nice, but yield samples are typically small, so it is natural to 

explore the small sample properties of the OSLLF.  Previous studies providing a 

simulation-based comparison between the OSLLF and other model selection criteria in 

small samples was performed.  The simulations were designed to mimic crop yield 

distributions, and results suggested that the OSLLF picks the true yield distribution with a 

higher frequency than other methods considered (Norwood, Lusk, and Roberts; 

Norwood, Ferrier, and Lusk).13   
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 For these reasons, the OSLLF approach is a desirable method of ranking models 

based on out-of-sample fit and will be used to discriminate among the six models 

mentioned previously.  Three contests are conducted to determine which model ranks 

best across various settings.  Before these contests take place, some method must be used 

to assess how much confidence can be placed in the rankings.  This study wishes to ask:  

For any model ranked highest for a particular crop and region, in repeated samples, how 

often would this model continually be selected?  A nonparametric technique is used 

which proceeds as followed.  Let OSLLFt,j be the OSLLF value for a yield observation in 

time t using Model j, OSLLFj be a vector of those values for Model j, and t = 1, …, T.  

Suppose Model j =1 is ranked highest because OSLLF1 > ∀ OSLLFj>1.  If the vector 

OSLLF = [OSLLF1 OSLLF2 … OSLLF6] with T rows where each row corresponds to a 

particular t, a new simulated matrix SIMOSLLF is created by randomly selecting rows of 

OSLLF with replacement.  The rows of OSLLF are randomly picked, rather than 

individual values of OSLLFt,i, because correlations between OSLLFi,t and OSLLFj,t ∀ i,j 

seem likely.   

A variable called IFCHOOSE is created which equals one if the highest ranked 

model from the simulated OSLLF values is the highest ranked model from the original 

estimation (if the highest ranked model is still MODEL 1) and zero otherwise.  This 

exercise is repeated 1,000 times.  If the value of (IFCHOOSE)/(1,000) equals one, then 

we can say that in repeated samples we would expect to choose Model 1 100% of the 

time and would therefore place great confidence in that model.  Conversely, if 
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(IFCHOOSE)/(1,000) equals 50%, we would say this model is not “truly dominant” over 

the set of remaining models.   

This is analogous to a test for the alternative hypothesis that Model 1 has a higher 

Kullback-Leibler Information Criterion value than all others (with the null being its value 

is equal to the largest of all the others) and 1-(IFCHOOSE)/(1,000) is the p-value.  Or, it 

can be interpreted as a test for the null hypothesis that Model 1 will be chosen 50% of the 

time, against the alternative hypothesis that it will be picked more than 50% of the time, 

with the test statistic being 2T1/2[(IFCHOOSE)/(1,000) -1/2] (Mendenhall, Wackerly, and 

Schaeffer).  This test does not depend on any of the models being the true, or any other 

assumption about the true data generating process. 

HOW ARE CROP YIELDS DISTRIBUTED?  RESULTS OF THREE MODEL 

RANKING CONTESTS 

 This section pits the six models in multiple contests to determine which one tends 

to be ranked highest across various regions and crops.  In each contest, the models’ out-

of-sample-log-likelihood function (OSLLF) is calculated using grouped-cross-validation.  

The sample size for each contest is divisible by five.  First, the models are estimated 

using observations six and larger, and then used to calculate OSLLF values for the first 

five observations.  Then, observations one through five and eleven and larger are used for 

the estimation and calculation of OSLLF values six through ten.  This continues until the 

OSLLF values for the last five observations are calculated from parameters that were 

estimated using all previous observations.  This amounts using grouped-cross-validation 
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“leaving five out at a time.”  This choice is based on recommended procedures for 

grouped-cross-validation.14 

The first contest utilizes data for Cornbelt corn, soybeans, and wheat yields for 

1950-1989 available in the Appendix of Ramirez.  This data was used by Ramirez 

because the three yields are likely correlated and, since his yield distribution is 

multivariate, allows a determination of whether taking correlations among crops into 

account will improve model performance.  Ramirez finds that while wheat yields appear 

independent, corn and soybeans yields are correlated.   

 This study will ask a similar question using a different methodology.  All six 

models are estimated with this data.  The five univariate models; GAMMA, BETA, 

STOCHIHS, SEMIPAR, and NORMAL are used to obtain OSLLF values for each crop.  

The OSLLF values are then summed across the three crops to produce a multivariate 

OSLLF value.  Then, the MULTIHS model estimates corn, soybeans, and wheat yields 

jointly to obtain another multivariate OSLLF value.15  If MULTIHS is ranked higher than 

the other six, this is evidence that accounting for correlation across crops may improve 

the accuracy of forecasted probability statements. 

 Table 1 shows that the semiparametric model, SEMIPAR, is ranked highest.  

Outliers had a huge influence on this ranking though.  Both the GAMMA and BETA 

models have the lowest possible OSLLF value of negative infinity due to the manner in 

which they represent the maximum attainable yield.  Both models place values on the 

highest value yield can take, which according to both models, the probability of a yield 

above this value is zero.  However, in out-of-sample forecasts there were yields that 
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exceeded this ceiling, making the log-likelihood function negative infinity.  Excluding 

these models based on one outlier may seem harsh, but remember, both models said the 

probability of yield exceeding a particular level was zero, and yield did exceed that level.  

It is doubtful researchers will want to use a model so confident, and so wrong. 

 The NORMAL model performed poorly due to its variance equation.  A linear 

trend was chosen to represent heteroskedasticity, however, when forecasting yields in 

years in 1950-1955 it predicted an extremely low variance.  Then, when matched with a 

rather high prediction error the result was a yield observation the NORMAL model said 

had an extremely low probability of occurring.16  Notice this would not be reflected in the 

model ranking if only prediction errors were considered.  Again, the model received a 

low ranking because it was very confident and very wrong. 

The low ranking of the MULTIHS model was also the result of a few observations 

(three out of 40 total).  Just like the NORMAL model, when forecasting yields in 1950-

1955 it predicted a low variance, suggesting the yields that did occur had a very low 

probability.  If the model rankings were repeated using only OSLLF values from 1956-

1989 the MULTIHS would be ranked highest.17  Further evidence for this can be seen by 

noticing the median OSLLF value for MULTIHS is considerable lower than the others.  

Table 1 provides a test indicating this lower median is significantly smaller.   

If one wishes to rank models excluding outliers, an alternative is to choose the 

model with the lowest median OSLLF value.  Then, to determine the confidence of 

picking this model in repeated samples the test for significant medians (shown in Table 1) 

can be employed.  If the inclusion of outliers is desirable, as would likely be the case 
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when applied to crop insurance premiums, the OSLLF values summed across all 

observations should be used.  Finally, when applying the bootstrap procedure described 

in the previous section, the bootstraps suggest that in repeated samples one would choose 

the SEMIPAR model 73% of the time.  Being significantly greater than 50% (the test 

statistic is 2*(10001/2)*(0.73-0.50) = 15), this implies the SEMIPAR model is truly 

dominant. 

The previous contest concerned multivariate yield models; the next two contests 

concern univariate yield models.  For a single crop and region, the MULTIHS model is 

still applicable by setting the correlations across crops and regions to zero.18  Using 

county data for corn, soybeans, and wheat, the thirty counties with the largest harvested 

acreage were selected.  For all 90 counties (largest thirty counties for three crops) all 

yield models were estimated and ranked according to the OSLLF approach.   

The results, shown in Table 2, indicate that the semiparametric model proposed 

by Goodwin and Ker, SEMIPAR,  is ranked highest more than half the time for each crop.  

Models GAMMA and BETA are second best depending on the crop, while the other 

models are rarely chosen.  The next contest chooses thirty counties at random, excluding 

those counties in the previous contest, for each crop.  Results are in Table 2 and are 

almost identical to the previous one, except that STOCHIHS is picked more frequently 

and the GAMMA model less frequently. 

Lastly, a single measure of model performance is provided across all 180 counties 

of the previous two contests (30 counties per crop per contest = 180 counties).  For each 

six models, a variable is created which equals one if the model is ranked highest and zero 
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otherwise.  Then, if its value equals one,  the variable is multiplied by the variable 

IFCHOOSE.  Recall this variable is a measure of confidence that the highest ranked 

model for that county would continue to be ranked highest in repeated samples.  Finally, 

this variable is summed across all counties for each model and divided by 180/100,19 then 

compared across models.  Results are reported in Table 3.  This is an index of model 

performance and is not a statistic to be used for hypothesis tests.  The best model for 

issuing probability statements post-sample is SEMIPAR which detrends yields with a 

flexible polynomial, creates a vector of values equaling the percent deviation of yield 

from its forecast, and applies a kernel smoother to those values.   

SUMMARY AND IMPLICATIONS 

 Many creative candidate yield distributions have been offered by agricultural 

economists for use in farm risk management, policy analysis, crop insurance, and similar 

research functions.  Discerning which distribution is best for a particular crop or region 

can be difficult and time consuming though.  This study seeks to provide insight into 

which distributions perform best by offering a desirable method of model selection and 

applying it to a variety of crops and regions. 

 The model selection method has two strong advantages compared to conventional 

methods.  First, it ranks models based on their performance out-of-sample, as most 

distribution estimates’ ultimate purpose is extrapolating into the future.  Second, it takes 

into account the entire model specification, and therefore reflects the relative ability to 

capture mean yield, yield variance, skewness, kurtosis, and other moments of interest.  

The approach simply requires picking the model with the highest log-likelihood function 
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value when observed at out-of-sample observations.  Since all yields models must be 

stated as probability density functions, this method can rank any number and type of 

yield models in a manner that exhibits desirable statistical properties. 

 Six recent and popular models offered by Gallagher; Nelson and Preckel; Moss 

and Shonkwiler; Goodwin and Ker; Just and Weninger; and Ramirez were ranked 

according to this method in numerous settings.  The first contest asked which model best 

describes soybean, wheat, and corn yields in the Cornbelt under a multivariate setting.  

The second and third contests asked which captures yield fluctuations for these same 

crops in a univariate setting across 180 counties.  The second contest used the thirty 

counties with the highest harvested acreage for each crop, and the third chose thirty 

counties for each crop at random. 

 The model developed by Goodwin and Ker dominated all three contests, as it is 

the highest ranked in over half of the 183 counties analyzed.  The model is 

semiparametric; yields are detrended with a flexible polynomial, and a kernel smoother is 

applied to the percent deviation in yields from this trend.  There are several reasons why 

this model frequently dominates.  First, perhaps its nonparametric nature is best suited for 

yields because it is the most flexible and makes little a priori distributional assumptions.  

Second, it accounts for heteroskedasticity differently.  Other candidates specify 

yield variance (or standard deviation of yield) according to a polynomial trend, and as 

mentioned in the previous sections, these models often received low rankings because 

their variance consistently under predicted the true yield variability.  Goodwin and Ker’s 
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model does not forecast yield variance, but simply assumes the percent deviation of yield 

from its trend is homoskedastic.  Perhaps this latter approach is superior? 

This does not imply that the semiparametric model should always be used, nor 

does it imply that other models are not better suited for a researcher’s needs.  For 

instance, if a research agenda can be simplified using the mean-variance approximation 

of expected utility, the normal model offered by Just and Weninger may be preferred.  

Alternatively, if the objective is to estimate the maximum value yield can take, Gallagher 

or Nelson and Preckel’s model may be the top choice. 

What this study does do is provide practical guidance for selecting yield 

distributions.  In cases where time does not allow researchers to perform their own model 

validation tests, they can rely on these findings that, most of the time, the semiparametric 

model offered by Goodwin and Ker issues the most realistic yield probability statements.   
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FOOTNOTES 

1)  For instance, of one regresses US corn yields from 1960-2000 against an intercept and 

time trend, the trend parameter is significantly positive.  Though a plot of yields against 

time seems to suggest an increasing variance, the White test for heteroskedasticity does 

not support that claim.  Conversely, Miller, Kahl, and Rathwell find that South Carolina 

and Georgia peach yield distributions exhibit a constant mean and variance over this 

same time period. 

2)  Gallagher constructs an index for yield variance which is dependent upon a time 

trend.  In the maximum likelihood estimation, each observation is weighted by its 

predicted standard deviation, very similar to weighted least squares. 

3)  One might be more familiar with the two parameter (α,β) beta model where the 

independent variable lies on the (0,1) interval.  In the Nelson and Preckel article, α and β 

are conditional on data in X, and the dependent variable is yield divided by its maximum 

value.  Nelson and Preckel specify α = aXb, and a similar specification for β, where X 

denotes an agricultural input.  This study replaces X with a time trend, but this particular 

form made convergence in non-linear estimation extremely difficult.  Thus, we replaced 

it with the form α = a + bt where t is a time trend, with an identical form for β.  This 

implies a five parameter beta distribution; one for maximum attainable yield, two for α 

and two for β.  With this form yield may exhibit a time-varying mean and variance. 

4)  This correlation may be between different crops in the same region, the same crop in 

different regions, or different crops and regions. 
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5)  One of the authors suggested using either a quadratic or linear trend instead of an 

ARIMA model.  In response a quadratic trend is used unless the quadratic term is 

insignificant, in which case a linear trend is employed. 

6)  If Yt is yield and E(Yt) is its expected value, the kernel smoother is applied to (Yt-

E(Yt))/E(Yt) rather than (Yt-E(Yt)), because the former is considered a time invariant 

distribution while the latter is not. 

7)  A cubic polynomial is used for expected yield, which can be reduced to a quadratic or 

linear trend if supported by hypothesis tests.  Heteroskedasticity is accounted for by 

modeling the absolute value of ordinary least square residuals as a quadratic trend.  The 

variance equation may be reduced to a linear trend or a constant if hypothesis tests 

suggest doing so. 

8)  Authors often include a data matrix in the likelihood notation, such as Lj(Yt|θ,Xt).  

Sometimes this is important because Yt must be predicted without knowledge of Xt.  

However, this is not the case here and so this distinction is not made.  This study only 

considers estimating yields from either a time index or yields from other time periods, so 

the “data” is always known. 

9)  Likelihood functions are useful model development tools because they indicate 

probabilities.  In some circumstances, a likelihood function can be interpreted as the 

probability of observing the data assuming the model (and its parameters) are true.  

However, in-sample likelihood functions are subject to the inclusion of additional, 

irrelevant parameters which will always increase the likelihood function value.  For 

instance, using the classical linear regression, one could include a unique dummy variable 
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for each observation and proceed to maximize a normal homoskedastic likelihood 

function.  This method will always result in zero errors and a variance of zero.  In this 

case, the likelihood function will always equal one because the model is a tautology.  

Plus, it will equal one no matter whether unique dummy variables are replaced with other 

unique explanatory variables.  The likelihood function will fail to provide information 

because its value is not a statistic--it is determined by the researcher and will equal one 

with a probability of 1.  Note that if this method were pursued and then one calculated an 

out-of-sample-log-likelihood function (OSLLF), the OSLLF values will not equal one, 

will differ across models, and will likely be very low.  This is because the out-of-sample-

likelihood function is a statistic, and the in-sample function is not. 

10)  The AIC subtracts K from a model’s log-likelihood function value, where K is the 

number of parameters.  Other penalties exist, such as the Final Prediction, Schwartz, and 

Shibata Criterion.  These other criteria are derived assuming all candidate models are 

nested, and the researcher is determining which explanatory variables to include.  They 

are almost always derived under normality and using asymptotic statistics.  Since 

normality is only one possibility for crop yields, these other penalties may not be as 

desirable as the AIC. 

11)  That is, under certain formulations for the true and candidate models. 

12)  If f(Y) is a candidate model and g(Y) is the true model, where both functions are 

probability distribution functions, the Kullback-Leibler Information Criterion is 



 

20 

( )
( ) ( )∫ 








dYYg

Yf

Yg
ln .  The smaller the number, the more information.  This information 

measure is non-negative, based on the assumption that g(Y) is always larger than f(Y), 

unless the candidate model is true (g(Y)=f(Y)), in which case is zero.  This is equivalent 

to saying the model with the highest expected value of f(Y) is the best. 

13)  Other criteria considered were the Akaike Information Criteria; out-of-sample-root-

mean-squared error;  and the Chi-Square, Kolomogorov-Smirnov, and Anderson-Darling 

statistics.  The three latter statistics were applied using both in-sample and out-of-sample 

observations.  The OSLLF picked the true model 25% of the time, which was 

significantly higher than the other eight criteria and a random pick.  The true yield 

distribution could randomly take one of twelve forms in any simulation.  Further details 

are available from the authors by request. 

14)  If there are thirty (40) observations, this implies 6 (40/5=8) subgroups of out-of-

sample observations.  Zhang suggests not using less than five subgroups and Shao 

suggests dropping more than one observation at a time. 

15)  The form of MULTIHS used follows from the restricted full information estimate 

shown in Table 7 of Ramirez.  This form assumes corn and soybean yields are correlated 

but wheat yields are not.  Following Ramirez, wheat yields are assumed normally 

distributed while the other two are non-normal.   

16)  Recall that heteroskedasticity is not a maintained hypothesis of this model, but is 

determined by the data.  See Footnote 7.   
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17)  Using years 1956-1989, the OSLLF values for each model are (1) GAMMA = -311  

(2) BETA  = -infinity (3) STOCHIHS = -313  (4) SEMIPAR  = -312  (5) NORMAL = -333 

(6) MULTIHS =  

-232. 

18)  In this contest, the MULTIHS model was always estimated under the maintained 

assumption of non-normality. 

19)  This ensures the index lies in the (0,100) interval.
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 TABLE 1 
MODEL RANKING RESULTS FOR CORN, SOYBEAN, AND WHEAT YIELDS IN THE 

CORNBELT 
Let Yt be yield at time t  

Li(Yt) be the out-of-sample-log-likelihood function value at Yt 
St

i,j = 1 if Li(Yt) > Lj(Yt) and 0 otherwise 
The “i’s” represent the model in column and “j’s” represent the model in row 

 
 Out-of-Sample-Log-

Likelihood Function 
(OSLLF) 

Average 
OSLLF 
Value 

Median 
OSLLF 
Value 

Minimum 
OSLLF 
Value 

Maximum 
OSLLF 
Value 

 
SEMIPAR -355 -8.88 -8.54 -14.72 -7.05 

STOCHIHS -363 -9.08 -8.67 -14.43 -6.69 

MULTIHS -3,622 -90.56 -6.40 -1716 -4.10 

NORMAL -27,065 -676.62 -8.91 -26,405 -5.48 

GAMMA -infinity -infinity -8.60 -infinity -7.12 

BETA 

 

-infinity -infinity -8.79 -infinity -7.81 

Test For Significant Differences in Median Out-of-Sample-Log-Likelihood Function Values. 
Null hypothesis is the median of the model in column is equal to the median of the model in row. 

Test Statistic = 
T

TS
T

t

ji
t

2
1

2
1

, −∑
= and is approximately standard  normal under the null hypothesis.a 

 

 SEMIPAR STOCHIHS MULTIHSa NORMAL 
 

GAMMA BETA 

SEMIPAR  0.32 -5.38 0.95 0.95 2.85 

STOCHIHS   -5.38 0.95 1.26 1.26 

MULTIHSb    5.38 5.96 5.38 

NORMAL     -0.32 1.26 

GAMMA      1.26 

       
Note:  These are multivariate models, meaning the OSLLF values correspond to the probability 
of the corn, soybean, and wheat yields being realized simultaneously.   
a)  See Mendenhall, Wackerly, and Schaeffer (Page 677). 
b)  The test statistics for the median of MULTIHS versus four other models are identical because, 
for these models, the OSLLF value is smaller at every observation except the years 1950-1952. 
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TABLE 2 
MODEL RANKINGS FOR CORN, SOYBEANS, AND  

WHEAT FOR VARIOUS CROPS AND REGIONS 
Model Corn Soybeans 

 
Wheat 

Across Thirty Counties With Largest Harvested Acreage of 
Each Crop 

 
 Percent of Times Model Is Ranked Highest 

 
SEMIPAR 
 

53% 53% 60% 

STOCHIHS 
 

3% 13% 7% 

MULTIHS 
 

3% 0% 0% 

NORMAL 
 

3% 3% 0% 

GAMMA 20% 23% 13% 
 

BETA 
 

17% 7% 20% 

Across Thirty Counties Chosen At Random For Each Crop 
 

 Percent of Times Model Is Ranked Highest 
 

SEMIPAR 
 

53% 63% 63% 

STOCHIHS 
 

10% 17% 10% 

MULTIHS 
 

3% 0% 3% 

NORMAL 
 

3% 0% 3% 

GAMMA 
 

7% 13% 13% 

BETA 
 

23% 7% 7% 

  Note:  Numbers may not add to 100% due to rounding. 
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TABLE 3 
MODEL PERFORMANCE INDEX VALUES 

Model 
 

Index Valuea 

SEMIPAR 
 

36 

STOCHIHS 
 

6 

MULTIHS 
 

1 

NORMAL 
 

1 

GAMMA 
 

9 

BETA 
 

9 

  
 a)  The model performance index value can take 
 values from 0-100 for each model.  It represents the 
 percent of times one would expect to pick each model 
 across all 180 counties from Contests #1 and #2,  
 multiplied by the average percent of times the  
 model, if ranked highest, would continually to be 
 ranked highest in repeated samples.  Its values are  
 only relative to other model values, and should 
 not sum to one across all models. 


