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A NUMERICAL EXAMPLE OF THE PRACTICAL

USE OF DUMMY VARIABLES

Charles Sappington*

Although the use of dummy variables in regression ANALYSES
analysis is quite common, the implications of alterna-
tive models for incorporating dummy variables are
not generally understood. References dealing with the Various models can be rationalized from these
use of dummy variables are numerous but scattered in data; some presented here are examples of proper
the literature. The purpose of this article is to demon- analysis under given situations and others are
strate, using numerical examples, the implications and examples generally considered improper.
interrelationships among various models which incor-
porate dummy variables. Five separate models are Allmodelsareofthegeneralform P =a+bQ.In
considered. -- some, dummy variables are added to take account of

the qualitative variable. The several models con-
irDATA ''- sidered here are of little interest standing alone; how-

ever, much can be learned by comparison.

Hypothetical data were generated from three
straight lines representing the "true" demand sched- DefintionofVariables
ules for each of three different sizes of potatoes:
small, medium, and large. The formulae are:

The variables used in all models are defined as:
For Small: P= 12.0 - .0100 (1)

P = price of potatoes (cents/lb.)
For Medium: P= 22.0 - .0067Q (2)

Q = quantity of potatoes sold (lbs.) in that par-
For Large: P= 20.0 -. 0125Q (3) ticular size group

where X2 = 1 if in small group, otherwise = 0

P = price X3 = 1 if in medium group, otherwise = 0

Q = quantity X4 = 1 if in large group, otherwise = 0

These lines have different slopes but do not intersect X5 = 1 if in small group
over the range of the data. These three equations
indicate that the demand for potatoes is a function of 2 if in medium group
price, quantity, and the qualitative variable, size.
Price is considered as the dependent variable through- 3 if in large group
out this paper.

X6= X3 Q; i.e., =Q of the medium size if in the
To these "true" price readings a small random medium size group, otherwise = 0

error, drawn from a rectangular distribution, was
added. This process generated the combination time X7= X4 Q; i.e., = Q of the large size if the large
series by size group data of Table I. size group, otherwise = 0

*Charles Sappington is assistant professor of Agricultural Economics, University of Tennessee. Helpful suggestions were made by
L. L. Bauer, L. H. Keller, J. G. Snell, and B. J. Trevena.
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Model I For Small: (4)

This model involves the independent estimation of
an equation for each size group. This is equivalent to P = 13.098-.0135Q (R2 .7887; u= .3199)
assuming that each size group is really a separate
product with the demand for each a function of its For Medium: (5)
price and quantity. Such an analysis of time series, 
qualitative data is proper, the simplest to make, and P= 21.066 - .0053Q (R2 = .1112; = .6472)
may be of direct use or suggest what further analysis
may be useful. For Large: (6)

A
The separate demand functions are: P = 22.395-0157Q (R2 = .7042; = .7109)

TABLE 1. TIME SERIES DATA GENERATED FOR THREE DIFFERENT SIZES OF POTATOES

Time Potatoes
Periods Small Medium Large

P(cents/lb) Q(lbs) P(cents/lb) Q(lbs) P(cents/lb) Qtlbs)

1 9.50 300 18.18 600 11.00 800
2 9.15 325 18.75 575 8.05 900
3 9.40 250 17.61 625 8.06 875
4 8.70 300 18.64 650 9.31 775
5 8.20 350 16.91 700 10.29 825
6 9.65 275 18.51 550 11.94 725
7 8.50 300 18.78 600 11.65 700
8 9.80 250 18.38 600 9.40 800
9 8.45 325 18.01 625 8.45 900

10 8.35 325 17.51 550 9.46 875
11 10.00 250 17.58 600 8.57 850
12 9.10 300 17.04 650 9.91 775
13 7.80 400 17.71 550 11.02 750
14 8.15 375 16.98 600 9.20 800
15 9.10 300 17.18 600 10.65 700

Mean 8.923 308.33 17.842 605.00 9.797 803.33

T.S.S. 6.2944 6.1278 22.204

St. dev. .6705 43.98 .6616 41.40 1.2594 67.39

All Groups

P(cents/lb) Q(lbs)

Mean 12.188 572.222

T.S.S. 759.88

St. dev. 4.155 211.946
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By comparing Equations (4), (5), and (6) with (1), Model 1 only the variation within each size group is
(2), and (3), respectively, it can be seen that the esti- relevant (Table 1). The increased number of degrees
mated equations of this model closely approximate of freedom for Model 2 as compared with Model 1
the "true" equations to which the random error was (41 vs 13) is a strong argument in favor of Model 2.
added. Further, these three estimates are the best However, the imposed constraint did result in pa-
possible estimates of the true parameters obtainable rameter estimates quite different from the "best"
using ordinary least squares. estimates of Model 1.1

Model 2 Model 3

Whereas, Model 1 was three separate regressions of This model removes the constraint of a common
15 observations, the next three models use all 45 slope imposed on Model 2. Variables X6 and X7 are
observations in one regression and consider various added so as to allow for separate slopes as well as
techniques of incorporating dummy variables to different intercept values for each demand curve. This
separate the qualitative aspects of the data. In Model analysis is statistically equivalent to making no
2, the particular dummy variable used is the usual (0, assumption about the slopes or the intercepts. The
1) type which allows for intercept changes only. This procedure is economically equivalent to assuming
procedure is equivalent to assuming that there is one that there is one product with important differences
product with important differences among size among size groups which affect not only the vertical
groups. Using this procedure, three parallel demand placement of the three demand functions, but their
curves are estimated, one for each size group. Since slopes as well. The effects of the qualitative dif-
the results of Model 1 indicate that the best estimates ferences are, thus, allowed a larger role in the deter-
of the slopes of the three demand curves are not mination of the demand for potatoes.
equal, the results of this model are constrained.

The estimating equation for this model is:
The dummy variable for the'small group is used as A

the base; i.e., X2 is deleted to avoid singularity. The P = 13.098 -. 0135Q + 7.968X3 + (11)
constant term is, thus, the true unknown intercept
plushb2. f ; 9.297X4 + .0082X 6 - .00214X7

The estimating equation for this model is: (R2 =.9824; U = .2850)
P= 12.934-.0130Q +12778X + (7) The demand functions from (11) are:P = 12:934 - .0130Q + 12.778X 3 + (7)

For Small: (12)
7.313X 4 (R2 = .9800; = .6093) ^

P= 13.098 - .0135Q
The demand functions from (7) are:

For Small: (8) For Medium: (13)
A ^
P= 12.934-.0130Q P = (13.098 + 7.968)+ (-.0135 + .0082)Q

For Medium: (9) = 21.066 - .0053Q
A
P= (12.934 + 12.778)- .0130Q =or For Large: (14)

25.712- .0130Q P = (13.098 + 9.297) + (-.0135 - .0021)Q

For Large: (0 = 22.395 - .0156Q

P= (12.934 +7.313)-0130 = Except for minor rounding errors, these param-
P* . . (123 eters are identical to those of Model 1. This method

20.247 - .0130Q of analysis repeats the best estimates of Model 1 by
removing all constraints, but has the advantage of a

The standard error is approximately equal to the considerable increase in R2 for the reasons given
average of those of Model 1, but the R2 is increased under Model 2.
considerably. This is to be expected since the total
sum of squares to be explainedin Model 2 is the sum Comparing the R2 and standard error, Model 3 is
of the variation within and between groups, while in slightly superior to Model 2. The constraint of Model

1The demand functions (8), (9), and (10) could be exactly duplicated using a (0, 9) dummy variable rather than a (0, 1).
Had this been done, b3 and b4 would be 1/9 of their reported values; yet, nothing would really be changed.
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2 was effective since the best estimate of the slopes of For Medium: (17)
the lines are different. Even though the constraint of 
Model 2 is only slightly effective, the sum of the P = [9.824 - 4.338 (2)] + .0193Q=
squared residual terms of Model 3 (disregarding the
two degrees of freedom difference, the standard error 1.148 + .0193Q
of the estimate) is necessarily less than that of Model
2 since a constrained minimum can never be less than For Large: (18)
an unconstrained minimum.

P = [9.824 - 4.338 (3)] +.0193Q=
The added value of a higher R2 and lower standard

error is, however, not without cost. While not re- -3.190 +.0193Q
ported here, the standard errors of b3 and b4 in
Model 3 are over twice those of b3 and b4 in Model Given the data used here, these results are com-
2. This is caused by the high degree of linear relation- pletely unacceptable; even the slopes change sign. If a
ship between X3 and X6 on the one hand and X4 and student obtained such results as these, the impulse
X7 on the other (r3,6 and r4 ,7 both exceed .99). The would likely be to find another problem. Instead, he
impact of multicollinearity on the estimated standard should simply remove or relax the constraint as in
errors of the coefficients is a very real drawback of Model 2 or 3.
this type model. Johnston [2, pp. 205-206] shows
that an increasing degree of multicollinearity can also Admittedly, we rigged our data so that this paral-
affect the estimated regression coefficients. However, lel, equidistant and ordered constraint would be
such was not the case for Model 3. severe since the results of Model 2 indicate that, given

common slopes, the estimated curve for the medium
class lies above both small and large. We did not

1Model 4 -realize ex ante just how severe the rigging was. Per-
-•:~~~~~~ - - ~haps, though, the message is made clearer this way.

Had we exchanged our arbitrarily assigned numbers
This model is presented- in an effort to warn the for medium and large; i.e., a (1,3, 2) rather than a (1,

novice of the danger of doing what seems to be a first 2,3) dummy variable, the constraint would have been
impulse when qualitative data are to be analyzed. The lessened considerably. With the (1,3,2) dummy va-
impulse seems to be to assign some number to each able, the size ordering would be correct but the equi-
size group, often with invalid reasoning. distant constraint would be mildly more severe than

that of Model 2.
The impulse with these data is to assign 1, 2, and 3

to small, medium, and large, respectively. Using a (1, The demand functions (16), (17), and (18) could
2, 3) dummy variable for intercept changes alone is be exactly duplicated using a (7, 8, 9) dummy vari-
statistically equivalent to asserting that the three able rather than the (1, 2,3). Hadthisbeendone, b
demand curves are not only parallel but also equi- would take on the same value as in this model but
distant apart, with the curve for the medium group value of the constant term, a, wouldthe computed value of the constant term, a, would
placed between the other two. Since this is not true, change.
the constraint is much more severe than that of
Model 2. In general, the equidistant parallel and Model 5
ordered constraint are quite strong and should be
avoided. This model treats the data as though they were all

time series. This is the most severe constraint of all
The estimating equation for this model is: those discussed. The procedure is equivalent to

assuming that there is one demand curve which is a
P = 9.824 + .0193Q - 4.338X5 (15) function of price and quantity alone.

(R2 = .0756; u = 4.089) The estimating equation for this model is:

P = 10.473 + .003Q (R2 = .0234; u = (19)
The demand functions from (15) are:

4.1540)
For Small: (16)

.A Equation (19) would be the demand curve for all
P = [9.824 - 4.338 (1)] + .0193Q = three size groups.

5.486 + .0193Q These results are poor by any standards. The
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demand curve is positively sloped and the R2 is factory results than with no constraint. Ordinary least
almost nonexistent. squares is, of course, constrained in that it is linear in

the parameters. We speak here of constraints in addi-
If no size differences are assumed when in fact tion to the usual ones. These unsatisfactory results

there are differences, the time series data should be can vary from mild to severe dependent on how
aggregated across the size groups yielding 15 observa- severe the "subject to" is to the data. A model,
tions. If data are both time series and qualitative, the proper in one instance, may be improper in another.
proper analysis must take account of both aspects. To The choice of a proper model is dependent on the
assume one portion of the data away can, and likely view taken as to how the data are generated.
will, give spurious results as to the parameters and
lead to false conclusions. The five models presented use data which are time

series and qualitative in nature. Had the size groups
Other Possible Models been called stores A. B, and C or states X, Y, and Z,

the data would have been combination time series
There are other models which might be of interest, and cross sectional. The same comments and conclu-

One is to use a common intercept term but allow for sions would apply.
slope changes. The model would be:

A These conclusions are:
P=a+b1 Q+b 6 X6 +b 7X7

(1) Independent estimation of each qualitative or
A second is to specify a zero intercept term and cross sectional group will give the best possible esti-
duplicate the results of Model 2. The model would mates of the parameters. The R2 will probably be
dutbe: -lower than with other proper methods and degrees ofbe:

freedom may be a problem.
A
P b1Q +b2X2 + b3X3 + b XP =bQ+b2 2 + bX 3 +b 4 4 (2) The (0, 1) dummy variable to allow for inter-

cept changes is proper only if some a priori know-This computation involves a cross product of rawThis comput n i e a cs p t of r: ledge exists to justify the assertion that the functionsdata rather than deviations from the mean, so no the are parallel.deletion is necessary to avoid singularity (the dummy arepara
variables are orthogonal). Here, the computed R2 will
be greater than that of Model 2 since the total sum of (3) Using (0, 1) dummy variables on both slope
squarees is tPi2 rather than o(P- P)2. Model 3 sct of and intercept gives, with the data used here, estimates
scould be duplicated similarly. Mdl 3 of the parameters as good as those discussed in con-

clusion number (1). However, multicollinearity will
make the testing of the bi values misleading.

CONCLUSIONS
(4) Using a (1, 2, 3) dummy variable should gener-

The main consideration of this paper is alternative ally be avoided.
methods of handling a qualitative variable. When
numbers are assigned to such variables, some thought (5) When data are time series as well as either
must be given to the imposition of a constraint. Any qualitative or cross sectional in nature, the statistical
imposed constraint, if effective, will yield less satis- procedure should take account of both aspects.
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