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Abstract

Self-interested agents (e.g., interest groups, researchers) produce verifiable evidence in an
attempt to convince a principal (e.g., legislator, funding organization) to act on their behalf
(e.g., introduce legislation, fund research). Agents provide less informative evidence than the
principal prefers since doing so maximizes the probability the principal acts in their favor. If the
principal faces budget or other constraints that limit the number of agents whose proposals she
can support, then agents produce more-accurate evidence as they compete for priority. Under
reasonable conditions, the principal is better off when her capacity to act is limited.
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1 Introduction

Imagine that a legislator must decide which earmark projects to bring before the appropriations

subcommittee. Each project is supported by an interest group, who benefits only if its project

is funded. In order to convince the legislator that its project deserves funding, an interest group

may collect evidence about the project’s impact on the local economy, or popularity among the

legislator’s constituents. Although it may be difficult for the interest group to falsify evidence

outright, the evidence that it chooses to produce may not completely reveal all relevant information

about the costs and benefits of the project. For example, an interest group decides how many

constituents to poll about their support for a project. If it surveys few constituents, then the survey

outcome (whatever it is) is not very informative about the project’s popularity. If the interest group

polls a large portion of constituents, then the resulting evidence is significantly more informative.

In some cases, the legislator may be able to fund any project she believes has an expected benefit.

However, empirical evidence exists to the contrary. According to (Frisch and Kelly 2010, 2011), the

appropriations committee systematically limits the total amount of earmark funding that legislators

can request for their home districts. A similar story could describe a legislator selecting which pieces

of legislation to pursue; time and procedural constraints may prevent her from actively pursuing

all reforms that she believes to be better than the status quo.

Alternatively, consider an organization offering grant money to researchers. Many grant appli-

cations require some description of preliminary findings, which may be difficult to falsify. However,

these findings may vary in how informative they are about the project’s overall promise. Highly

speculative preliminary findings may not be extremely informative about the research project’s

ultimate chances of success. In many cases, one may conduct preliminary research that produces

more-convincing evidence about a proposal’s ultimate chance of success. Depending on the or-

ganization’s budget, it may have the capability to approve all grant proposals if it believes it is

appropriate to do so, or it may face binding budget constraints that potentially prevent it from

funding all projects even if it believes all of them to be worthwhile.

Motivated by these examples and others, we develop a game theoretic model in which two

independent, self-interested agents produce verifiable evidence in am effort to convince a principal

to accept proposals of unknown quality. Each agent supports a different proposal. An agent benefits

if the principal accepts his proposal, regardless of its quality. The principal, however, prefers to

accept good proposals and reject bad proposals. We focus on situations in which neither principal

nor agents know the qualities of the proposals (at the beginning of the interaction). For instance,

both the interest groups and the legislator may be uncertain about constituent support for an

earmark project or policy reform prior to polling. Before she makes decides which proposal(s) to

accept, the principal observes evidence produced by the agents, which conveys information about

proposal quality. This evidence is verifiable: agents cannot manipulate or misrepresent the evidence

that they uncover (nor would they choose to keep it hidden). However, before uncovering evidence,

agents determine how informative their evidence will be (e.g. the interest group chooses how many

constituents to poll). After observing the evidence, the principal decides which, if any, proposals
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to accept. If the principal can accept all proposals, then her capacity is unlimited. However, as is

more typical, the principal may be constrained in her ability to accept proposals. If she is unable

to accept all proposals, then she has limited capacity.1

We begin by identifying a strong conflict of interest between the principal and agents that exists

whenever capacity is unlimited.2 The principal benefits from accepting good proposals and rejecting

bad proposals. She therefore prefers that agents produce fully-informative evidence, ensuring that

she always makes the right decision. Agents, on the other hand, want to maximize the probability

that the principal accepts their proposals. Because of this, the agents produce less-than-fully-

informative evidence. To understand why an agent keeps the principal less-informed, imagine first

that the principal is initially optimistic about the proposal. If she would be willing to accept based

on the prior alone, there is no reason for the agent to produce informative evidence. On the other

hand, if the principal would reject the proposal based on the prior, then the agent must produce

informative evidence in his favor for his proposal to be accepted. However, he will choose to supply

evidence that is just informative enough for a good outcome to sway the principal in favor of the

proposal. He will never make the principal fully informed. In fact, when capacity is unlimited, the

evidence supplied by the agents is effectively worthless. The principal’s payoff is the same as if she

never observes the signal and only acts according to her prior.3

The primary goal of our analysis is to show that limited capacity can mitigate or eliminate this

conflict of interest between principal and agents. First, we show that limited capacity increases the

quality of evidence produced by the agents. Second, we show that these informational benefits can

dominate the costs that come with limited capacity. The principal often expects be better off with

limited capacity.

Under limited capacity, it is not enough for agents to convince the principal that their proposal

is likely beneficial. They also must convince the principal their proposal is a better choice than

the other proposal. In this sense, limited capacity creates a competition in which agents produce

more-informative evidence as they vie for priority. In equilibrium, the principal is exposed to

more informative evidence under limited capacity than under unlimited capacity. However, a more

informed principal is not necessarily better off. Limited capacity imposes a capacity constraint

that has the potential to make the principal worse off; she cannot accept both proposals even when

she expects to benefit from doing so. Our second set of results demonstrate that the informational

benefits of limited capacity can dominate the downside of being constrained. Indeed, as long as she

is not extremely optimistic about both proposals, the principal strictly prefers limited capacity.4

The analysis proceeds in two parts. In Section 3, we begin with a relatively simple version

1These types of capacity constraints could arise for a number of different reasons; for example, the principal may
have a limited budget (e.g. to fund projects or make purchases), or limited time (e.g. to introduce legislation).

2The discussion of the results in this paragraph focuses on the more-general model of Section 4. While the results
also hold in the simpler binary model, some of the results in the simple case are less clear-cut.

3This is true even though there are no direct costs to producing informative evidence. Agents do not supply
informative evidence in order to strategically manipulate the principal’s beliefs, not to save on costs. Including an
explicit cost of supplying evidence does not change the qualitative nature of the results.

4Again, this result is true in the model with general signal structures. In the simple game we initially present, the
result is less clear cut.
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of the game in which we make two simplifying assumptions. First, we assume that proposals

are ex ante identical. Second, we model evidence in a simple fashion. We assume that evidence

is the realization of a binary signal that correctly reflects the true quality of the proposal with

some probability α, chosen by the agent. The simple signal structure leads to a straightforward

interpretation: α represents the accuracy (informativeness) of the evidence presented by an agent.

We rely on this version of the game to develop intuition for the results.

In Section 4, we relax both simplifying assumptions, developing a more-general version of the

game. In this section we allow for heterogeneous proposals; the prior beliefs associated with each

proposal need not be identical. We also do not constrain an agent’s evidence production to be

represented by a binary signal structure, nor do we require that signals belong to a particular

parametric class. We allow agents to design the experiment (i.e. the signal) that they use to

produce evidence in a general way. Despite the complexity of the game in this environment, we

are able to fully solve the model and provide a complete characterization of the equilibrium under

all parameter values. The primary results are similar under both the binary game and the general

game: the principal is better informed and (sometimes) better off when her capacity is limited.

In addition to showing that the main results hold in a general environment, the section provides

a series of novel results concerning agent asymmetries that were not present in the more-simple

game.

Section 5 discusses a number of applications, including the legislator and grant writing examples

discussed above, as well as additional examples involving a consumer making purchase decisions,

a college deciding which applicants receive admissions or scholarships, a firm executive deciding

which products to bring to market or which divisions to expand, and the FDA choosing which drugs

to approve. In each of these situations, limited capacity may be a reality of the decision making

process. Whereas the costs of limited capacity are largely understood, we demonstrate that these

limitations may also have informational benefits. These benefits can be so large that the principal

prefers to have capacity limitations.

2 Related Literature

The insightful work of Austen-Smith and Wright (1992) (henceforth AW) presents a model of

adversarial evidence production. As in our model, both the politician (principal) and lobbyists

(agents) are uncertain about the qualities of competing alternatives, and the politician must rely

on lobbyists to supply evidence. A number of key differences between AW and our model exist,

however. First, our evidentiary structure is more complex. In AW, agents make a binary decision

about whether or not to produce evidence; the accuracy of their evidence is not a choice variable.

In our framework, agents choose not only whether to produce evidence,5 they also choose the

informativeness of the evidence that they do produce. The main focus of our analysis is on the

informativeness of evidence chosen by the agents, a consideration that is not possible in AW.

5The decision not to produce evidence is equivalent to sending an uninformative signal.
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Second, the agents in AW represent mutually exclusive policy alternatives (e.g., one interest group

advocating in support of and the other against a smoking ban). In our framework, choosing

an action that benefits one agent does not necessarily prevent the principal from simultaneously

choosing an action that benefits the other agent; proposals are not, by nature, mutually exclusive

alternatives. This does not mean that the principal is necessarily able to act in favor of both agents,

just that her inability to do so is caused by factors such as limited budgets or time constraints and

is not an inherent feature of the proposals under consideration. This allows our framework to

describe a variety of situations which do not necessarily fit into the AW framework (e.g., college

admissions, grant funding, earmarks). It also makes for a natural comparison between outcomes

when the principal is able to act in favor of all agents (e.g., has a sufficiently large budget to fund

all grant proposals if she sees fit) and outcomes when the principal is constrained (e.g., due to

budget limitations) in her ability to support agents.6

In recent articles, Brocas et al. (in press) and Gul and Pesendorfer (in press) analyze dynamic

models of adversarial evidence production, where—as in our analysis–the correct course of action

is unknown to all parties, and agents supply evidence that is publicly observed. Like AW, however

agents have opposing preferences over a single policy and agents do not control the quality of

evidence directly.7 Furthermore, in these models the decisions to acquire information are made

in a sequentially rational manner. These works are therefore best suited to describing prolonged

advertising or persuasion campaigns, rather than to the types of decisions we study.

Other articles relate to our underlying evidence production framework but do not consider ei-

ther direct or indirect competition between agents. Brocas and Carrillo (2007) study a dynamic

information acquisition game, in which a leader has the capability to generate information that

influences the decision of a follower with different preferences.8 Kamenica and Gentzkow (in press)

consider the problem of a sender who tries to influence the action of a receiver by designing a signal

whose realization will be observed by the receiver prior to choosing an action. Like Brocas and Car-

rillo, these authors characterize environments in which the sender benefits from persuasion. These

results are closely related to our results for a decision making environment with unlimited capacity.

6Additional differences between AW and our paper include AW’s assumptions that signal collection is costly, and
that agents privately observe their signals before deciding whether to share them with the principal (although the
search choice is observed). Instead, for reasons discussed in the analysis, we assume that signal collection is without
cost and any signal is publicly observable (although these assumptions are not required for our main results to hold
qualitatively). Although the AW assumptions provide a more realistic description of some settings, we believe they
would likely distract from our results. Adding costs of signal accuracy, for example, will make agents even less likely
to collect informative signals, and would distract from the more interesting finding that agents prefer to keep the
principal less-than-fully informed, even when signals are costless to produce.

7Both articles are concerned with the effect of cost differences on equilibrium outcomes. In both analyses, a public
draw from a given informative signal is revealed, as long as one party chooses to exert effort. Thus, taking a new
draw can be regarded as a decision to reveal new information to the decision maker, affecting her beliefs about which
policy is best. However, in these analyses no action directly affects the informativeness of the signal itself. (Note
that if players could committ to acquire a certain number of signal realizations initially, the adversaries would be
competing in a manner similar to our model.)

8Brocas and Carrillo’s analysis is best suited to applications with a temporal component, for example, the problem
of a committee chairman deciding when to suspend debate and call a vote on a proposal. The authors describe
situations in which the leader benefits from controlling the flow of public information.

5



However, even there, our focus is quite different: we are primarily concerned with determining the

extent to which limited capacity improves the incentives for agents to supply accurate signals. This

comparison is impossible in their analysis, as they focus on the case of a single agent. Building

on their earlier results, Gentzkow and Kamenica (2011) analyze a persuasion environment with

multiple players. They show that (i) moving from collusive to competitive play, (ii) introducing

additional senders, (iii) decreasing alignment of sender preferences increase the amount of informa-

tion revealed in equilibrium. We look at an alternative to these remedies. In our environment a

restricted action space for the decision maker improves information accuracy.

We focus on the agents’ choice of evidence quality, and assume that evidence is perfectly ob-

servable by the principal. We could relax this assumption slightly, assuming that evidence becomes

private information of the agent, who then decides whether to transmit this evidence to the prin-

cipal. If the principal can observe that evidence has been generated, and communication and

verification is costless, then the disclosure game unravels, so that evidence is effectively observed

by the principal.9 Henry (2009) considers the impact that mandatory research disclosure rules may

have on an agent’s decision to acquire evidence. Che and Kartik (2009) consider how differences

of opinion between decision makers and agents affects the agents’ incentives to acquire and trans-

mit evidence.10 Other articles assume that agents know their evidence ahead of time, and must

choose whether to disclose it (e.g., Milgrom 1981, Milgrom and Roberts 1986, Bull and Watson

2004). Cotton (2009) presents a model in which agents must compete for access to disclose their

evidence to a time-constrained decision maker. The preferences of agents in our paper are similar

to advocates in Dewatripont and Tirole (1999).

3 A Model with Symmetric Proposals and Binary Evidence

A principal (she) and two agents (he) play a two-stage game. All parties are risk-neutral. The

principal must decide whether to accept or reject each of two separate proposals. She prefers to

accept a proposal only if the proposal is of sufficiently high quality. The agents are associated with

separate proposals. Each agent wants the principal to accept his proposal regardless of quality.

Initially, both the principal and agents are uncertain about the quality of each proposal. Before the

principal chooses which proposals to accept, each agent can produce evidence about the quality of

his proposal.11

To keep the analysis as straightforward as possible, we assume that each proposal is either

“good” (i.e., τi = g) or “bad” (i.e., τi = b). If accepted, all good proposals provide the same net

benefit and all bad proposals provide the same net loss to the principal. The true quality of each

proposal is unknown to all players, but it is common knowledge that quality is an i.i.d. draw from

9See the analysis of Kamenica and Gentzkow (in press) for more information on this point.
10Austen-Smith (1998) considers similar questions in a model of political access.
11Although we present the model as one in which the principal decides whether to accept different proposals,

nothing is changed if we adapt the terminology to refer to the principal awarding funding, admitting applicant,
implementing policy, or making other decisions that directly affect agent payoffs.
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a Bernoulli distribution:

Pr (τi = g) = γ

Pr (τi = b) = 1− γ.

If the principal rejects proposal i, she earns proposal-specific payoff wi = 0 independent of τi.

If the principal implements proposal i, she earns proposal payoff wi = 1− θ > 0 when the proposal

is good and wi = −θ < 0 when the proposal is bad. Preference parameter θ ∈ (0, 1) represents

the “stakes” inherent in the principal’s decision: when θ is large, the downside of accepting bad

proposals is high compared to the upside of accepting good proposals.12 The principal’s total payoff

is the sum of her payoffs from each proposal: w = w1 + w2. Agents benefit only if their proposal

is accepted, with i receiving ui = 1 if proposal i is accepted and ui = 0 if rejected.

In the first stage of the game, each agent simultaneously commissions independent research to

produce verifiable information about the quality of its proposal. The research outcome is a publicly

observable realization Si ∈ {G,B}, of signal si with the following conditional distribution:13

Pr (si = G | τi = g) = Pr (si = B | τi = b) = αi

Pr (si = G | τi = b) = Pr (si = B | τi = g) = 1− αi.

The signal realization (or outcome) reflects true quality of the proposal with probability αi ∈ [12 , 1].

We therefore refer to αi as the “accuracy” of si. Increasing accuracy improve the informativeness

of the signal in the sense of Blackwell. A signal with the lowest accuracy, αi = 1
2 , is completely

uninformative; a signal with the highest accuracy, αi = 1, is fully informative about quality.

Agent i controls the accuracy of signal si.
14 When an agent commissions research, he chooses

the ability of the researcher. Higher ability researchers are more likely to produce accurate findings.

Alternatively, the agent may influence the informativeness of the signal by choosing the research

design directly. Once both agents choose their signal accuracy, these choices are observed by the

principal. By implication, the principal is able to observe and correctly interpret the identity,

credentials, and reputation of the researcher; alternatively, she is able to observe and effectively

analyze the informativeness of the research design.15 In a later section, we consider a significantly

more general framework in which agents design general signals and demonstrate that our results

12This specification is without loss of generality. If the principal’s payoff from accepting a good proposal is v > 0
while the payoff of accepting a bad proposal is −c < 0, dividing both payoffs by v + c gives the specification defined
in the text.

13Identical results would hold if the research outcome (signal) were private information for the agent, provided
this research outcome was verifiable, i.e. could be witheld but not falsely reported. See Kamenica and Gentzkow (in
press) for more information. Identical results would also hold if the signal realization were privately observed by the
principal, i.e. if it is a subjective impression, rather than verifiable evidence.

14In our framework there is no exogenous cost for increasing signal accuracy. Therefore, if agents do not provide
fully informative signals, it is because they prefer such signals for strategic reasons, not because more informative
signals require too much effort or money to generate. Including an exogenous cost does not alter the qualitative
nature of the results.

15In some fields, research protocols must be registered in a database before subjects are enrolled. Stiff penalties
exist for violating the protocols.
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continue to hold.

At the beginning of the second stage, the principal observes both signal realizations. On the

basis of all available information (prior information, signal accuracies and signal realizations), the

principal chooses which proposals, if any, to accept. Once the principal makes her decision, the true

quality of any accepted proposal is then revealed, and all payoffs are realized. This is a game of

imperfect but symmetric information, similar to the persuasion games analyzed in Kamenica and

Gentzkow (in press) and Brocas et al. (in press).

The principal’s ability to accept proposals may be either limited or unlimited. If capacity is

unlimited, she can accept neither, either, or both proposals as she sees fit. In this case no link exists

between proposals; the decision to accept each proposal is made independently. Alternatively, when

capacity is limited, she can accept at most one proposal. This limitation may arise for a variety of

reasons: she may be constrained by limited budgets or limited time, she may also be constrained

by procedural or bureaucratic hurdles that require considerable effort to overcome. When capacity

is limited, a decision to accept a proposal precludes the possibility of accepting the other proposal.

Therefore, acceptance decisions cannot be made in isolation; the signals and accuracies for both

proposals influence the principal’s decision. The capacity of the decision making environment is

common knowledge.

We solve for Perfect Bayesian Equilibria of this two stage game under the limited and unlimited

capacity systems. In the first stage, agents simultaneously choose their respective signal accuracies,

α1 and α2. Once both agents choose their accuracies, these become public. In the second stage, the

signals are realized, and the principal decides which proposals to accept, subject to the constraints

of the decision making environment.

3.1 Unlimited Capacity

We begin by analyzing a setting in which the principal is unconstrained in her ability to accept

proposals. Therefore, the principal accepts any proposal for which the expected payoff from doing

so is positive. This expected payoff depends on her posterior belief about the quality of the proposal

after observing the realization of the signal. Let γ̂(Si, αi) denote the principal’s belief that proposal

i is good after observing signal realization Si, given accuracy αi:

γ̂(G,αi) =
γαi

γαi + (1− γ) (1− αi)

γ̂ (B,αi) =
γ (1− αi)

γ (1− αi) + (1− γ)αi

The principal accepts proposal i if

γ̂i(Si, αi)(1− θ)− (1− γ̂i(Si, αi))θ ≥ 0 ⇐⇒ γ̂i(Si, αi) ≥ θ.
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Thus the principal accepts if the updated probability of a good proposal is at least as great as the

stakes, θ. Otherwise, she rejects the proposal. We assume that the principal accepts a proposal if

she is indifferent between accepting and rejecting.

If γ < θ, then the principal is predisposed against accepting: if her decision were based solely on

her prior belief, she would reject each proposal. In this case, observing a bad signal realization rein-

forces the principal’s beliefs that the proposal is bad, and she continues to favor rejection. Observing

a good signal realization, however, improves her belief about the quality of the project. When the

good realization is generated by a sufficiently accurate signal, it overturns her predisposition and

causes her to accept the proposal. This is the case when

γ̂ (G,αi) ≥ θ ⇐⇒ αi ≥
θ (1− γ)

(1− θ)γ + (1− γ)θ
.

We define

r ≡ θ (1− γ)

(1− θ)γ + (1− γ)θ
.

Therefore, for a good signal realization to persuade the principal to accept a proposal that she is

predisposed against, it must be that

αi ≥ r.

If signal accuracy is sufficiently low, then a good signal outcome is not persuasive enough to overturn

the principal’s predisposition to reject.

If γ ≥ θ, then the principal is predisposed in favor of accepting; her prior is sufficiently optimistic

that she would accept each proposal given her prior alone. In this case, observing a good signal

realization only strengthens the principal’s beliefs that the proposal is good, and she continues to

favor accepting. Observing a bad signal realization, however, weakens her beliefs that the proposal

is good. When the signal is sufficiently accurate, the bad realization overturns her predisposition

and causes her to reject the proposal. This is the case when

γ̂ (B,αi) < θ ⇐⇒ αi > 1− θ (1− γ)

(1− θ)γ + (1− γ)θ
= 1− r.

If signal accuracy is sufficiently low, then a bad realization is not persuasive enough to overturn

her predisposition in favor of accepting.

The above discussion is summarized in the following lemma.

Lemma 3.1 When accepting capacity is unlimited, the principal’s equilibrium strategy is:

• If predisposed in favor of accepting, γ ≥ θ, then the principal rejects proposal i if and only if

si = B and αi ∈ (1− r, 1].

• If predisposed against accepting, γ < θ, then the principal accepts proposal i if and only if

si = G and αi ∈ [r, 1].
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A persuasive signal has the potential to overturn the principal’s predisposition; no realization

of a weak signal affects the principal’s decision. When γ ≥ θ, a persuasive signal has accuracy

α > 1− r. When γ < θ, a persuasive signal has accuracy α ≥ r. Otherwise, the signal is weak.

Agents anticipate the principal’s behavior when they choose signal accuracy. Suppose that the

principal is predisposed in favor of accepting, i.e., γ ≥ θ. In this case, the principal implements

the proposal even if the signal is weak. Choosing a persuasive signal introduces the possibility that

the principal observes a bad realization and does not implement the reform. In this case, agents

strictly prefer weak signals.

Alternatively, suppose that the principal is predisposed against accepting, i.e., γ < θ. If an

agent chooses a weak signal, then the proposal is rejected. If the agent chooses a persuasive signal,

then the proposal is accepted if and only if si = G. Let σ(α) denote the probability of observing a

good realization given accuracy α:

σ(α) ≡ αγ + (1− α)(1− γ).

When the signal is persuasive, the proposal is accepted with probability σ(α), which is also the

agent’s expected payoff. An agent’s optimal signal accuracy maximizes σ(α) subject to α ∈ [r, 1].

If γ < 1
2 , then σ is strictly decreasing in α, and the agent prefers α = r to any higher value. He also

prefers α = r to any weak signal, as supplying the marginally persuasive signal leads to a positive

probability of the proposal being implemented. If θ < 1
2 , then this is the only possible case. If,

however, θ > 1
2 , then we must also consider the possibility that γ is such that 1

2 ≤ γ < θ. In this

case, the principal is predisposed against accepting proposals that are most likely good (and are

more likely than not to generate good signals). In this case, σ(α) is strictly increasing in α and the

agent prefers α = 1 to any lower value.

These observations lead to the following description of the equilibrium outcome.

Lemma 3.2 In equilibrium under unlimited capacity,

• If θ ≤ γ, then for each i the agent chooses a weak signal, the principal accepts the proposal,

and

E [wi] = γ(1− θ)− (1− γ)θ = γ − θ and E [ui] = 1.

• If γ < q and γ < 1
2 , then for each i, αi = r, the principal accepts proposal i if and only if

si = G, and

E [wi] = 0 and E [ui] = σ(r) > γ.

• If 1
2 ≤ γ < θ, then for each i αi = 1, the principal accepts proposal i if and only if si = G,

and

E [wi] = γ(1− θ) and E [ui] = γ.

Although the principal finds a fully-informative signal optimal, agents choose α = 1 in only one

situation: when the principal is predisposed against accepting and proposals are most-likely good
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(i.e., when 1
2 ≤ γ < θ). In all other cases, the agent prefers to keep the principal less than fully-

informed, and provides either a weak or marginally-persuasive signal. If the principal is predisposed

in favor of accepting, then it is a dominant strategy for the agent to choose a weak signal. Doing so

assures that the principal implements the proposal. If the principal is predisposed against accepting

and proposals are most-likely bad (γ < 1
2 and γ < θ), then agents choose signal accuracies that are

just strong enough to make the principal indifferent between accepting and rejecting their proposals

if she observes a good signal realization. This maximizes the probability that the principal observes

a favorable realization and implements the proposal.

In the unlimited capacity system, two critical factors determine the agents’ incentives to supply

accurate signals. The first critical factor is the monotonicity of σ (α). When the proposal is most-

likely good (γ > 1
2), increasing a persuasive signal’s accuracy makes a good realization more likely,

which increases the probability that the proposal will be accepted; accuracy is success-enhancing.

However, when the signal is most-likely bad (γ < 1
2), σ (α) is decreasing. In this case increasing the

accuracy of a persuasive signal decreases the probability of generating a good realization and hurts

the probability of proposal implementation; accuracy is therefore success-diminishing. Thus, the

prior belief determines which signal accuracy is optimal among the persuasive signals. The second

critical factor is the principal’s predisposition toward the proposal, determined by the relationship

between θ and γ. The principal’s predisposition determines whether or not the agents prefer to

produce persuasive or weak signals. If the principal is predisposed towards accepting, agents strictly

prefer weak signals to persuasive ones; if the principal is predisposed against accepting, then agents

strictly prefer persuasive signals to weak ones. The severity of the conflict of interest between the

agents and the principal thus depends critically on the interaction between these two forces.

(The problem with) Commitment

The principal prefers α = 1 to all lower values, as it allows for a fully-informed decision. The

politician’s sequentially rational strategy, however, implements any proposal for which γ̂ ≥ θ, even

if α < 1. The agents recognize this and prefer to produce a less than fully informative signal.

If the principal could credibly commit to a strategy at the onset of the game, she could guarantee

her ideal outcome by committing to reject any proposal for which αi < 1. That is, she would commit

to reject any proposal for which she is less-than-fully informed about its quality. The agents would

react by always choosing α = 1, guaranteeing a fully-informed policy decision. In some situations

such commitment may be reasonable. If we imagine an infinitely repeated sequence of stage games

between a long-lived principal and short-lived agents, the principal’s commitment power could be

derived from reputation (provided her discount factor is sufficiently high). However, in a static

game, the principal would have to derive commitment power from writing some kind of contract,

under which she commits to reject any proposal for which the signal is not fully revealing.

This type of contract is problematic for several reasons. First, these types of contracts may be

prohibited for institutional or legal reasons. In politics, for example, legislators typically cannot

contract with interest groups to choose favorable policy conditional upon some action by the agent.
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Second, even if contracts are allowed, deriving commitment power from writing legally binding

contracts, may prove difficult. Signal accuracy may not be verifiable in court, rendering any contract

based on accuracy unenforceable. Furthermore, even if α were verifiable, both the principal and

agent would prefer to disregard the contract and allow the proposal to be implemented if the agent

produced a favorable, persuasive signal realization with α < 1. In our analysis, we focus on a

principal who cannot commit to accept only those proposals with perfectly informative signals.

3.2 Limited Capacity

In the previous section where the principal could implement as many proposals as she wanted,

the principal’s choice regarding one proposal was independent of her choice regarding the other

proposal. In this section, the principal can implement at most one of the two proposals. Here,

choosing to implement one proposal excludes the possibility of implementing the other proposal.

Therefore, to get his proposal accepted, it is no longer enough for an agent to provide sufficient

evidence to convince the principal that his proposal has a positive expected payoff. The agent must

also convince the principal that his proposal is more-likely beneficial than the alternative option.

In this section, we derive the Perfect Bayesian Equilibria of the game under limited capacity.

The characterization of equilibrium depends on (i) whether the principal is predisposed in favor

or against proposals, and (ii) whether the proposal is most-likely good or bad. When θ = 1
2 , the

principal is predisposed in favor of proposals that are most-likely good and against proposals that

are most likely bad. When θ < 1
2 , the stakes are small enough that the principal may be predisposed

in favor of proposals for which the probability of being good is less than 1
2 . Conversely, when θ > 1

2 ,

the stakes are large enough that the principal may be predisposed against projects that are more

likely to be good than bad. Given this, we must consider four mutually exclusive parameter cases.

1. When the principal is predisposed against proposals, and proposals are most-likely good.

2. When the principal is predisposed in favor of proposals, and proposals are most-likely bad.

3. When the principal is predisposed against proposals, and proposals are most-likely bad.

4. When the principal is predisposed in favor of proposals, and proposals are most-likely good.

In cases 1 and 2, limited capacity does not encourage agents to produce more-informative signals.

In case 1, agents prefer to produce a fully-informative signal (α1 = α2 = 1) even when capacity is

unlimited.16 In case 2 agents prefer to keep the principal uninformed (α1 = α2 = 1
2) even under

limited capacity.17 In these two cases, limited capacity does alter agent behavior.

In cases 3 and 4, limited capacity introduces competitive pressure between the agents, who must

provide more-accurate evidence than the other agent to have priority when both agents produce

16Both critical factors line up in favor of signal accuracy: the principal is predisposed against, and, because proposals
are most-likely good, accuracy is success-enhancing.

17In this case, both critical factors line up against signal accuracy: principal is predisposed in favor, and accuracy
is success-diminishing.
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favorable signal realizations. This competitive pressure results in the agents choosing more-accurate

signals, and in a more-informed principal. The discussion below focuses on these two cases, first

showing that limited capacity increases signal accuracy, then deriving conditions under which the

principal prefers limited capacity.

3.3 Principal predisposed against and proposals most-likely bad

The first case we consider is one in which the principal is predisposed against accepting (i.e., γ < θ)

and proposals are most likely bad (i.e., γ < 1
2). We have already shown that if capacity is unlimited,

then in this case both agents will supply marginally persuasive signals, α1 = α2 = r. That is, both

agents provide just-accurate-enough signals to make the principal indifferent between implementing

and not implementing their proposals in the event that their signal produces a favorable realization.

When the principal can implement at most one proposal, this is no longer an equilibrium.

In the case of limited capacity, an agent prefers to provide a marginally-more accurate signal

than the other agent. Producing a marginally more accurate signal than one’s opponent results in

the agent having priority in the event that both signal realizations are favorable, while having only

a marginally lower probability of producing favorable evidence. This leaves open the possibility of

two types of equilibria. The first possibility involves both agents producing fully informative signals;

in which case, marginally increasing accuracy is not possible. The second possibility involves the

agents playing mixed strategies over a continuum of signal accuracies with the only possible mass

point on αi = 1. We provide a detailed characterization of the equilibria in the appendix, showing

that when θ is low agents mix over a continuum with support between the marginally persuasive

accuracy r and some upper bound ᾱ ∈ (r, 1], where ᾱ is strictly increasing in θ up to ᾱ = 1. For

higher θ, the upper bound ᾱ is then decreasing in θ, and the mixing distribution develops a mass

point on αi = 1.

We formally characterize the equilibrium in the appendix. Lemma 3.3 summarizes the equilib-

rium results.

Lemma 3.3 Under limited capacity with γ < θ and γ < 1
2 , there exists a threshold value of

θ̂ ∈ [γ, 1] such that:

• If θ ≥ θ̂, then the unique equilibrium involves both agents producing fully-informative signals,

α1 = α2 = 1.

• If θ < θ̂, then the only equilibria involve both agents playing mixed strategies such that α1, α2 >

r with probability 1.

The threshold value θ̂ is strictly decreasing in γ, starting at θ̂ = 1 when γ = 0. If γ < 3−
√
5

2 , then

θ̂ > γ and thus the type of equilibrium depends on the exact value of θ. If γ ≥ 3−
√
5

2 , then θ̂ = γ

and all θ > γ exceed θ̂. Therefore, when γ is not too low, the only equilibrium involves both agents

producing fully-informative signals. Proposition 3.4, the main result for this case, holds as long as

γ < θ and γ < 1
2 , regardless of whether the equilibrium involves pure or mixed strategies.
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Proposition 3.4 When γ < θ and γ < 1
2 ,

• With probability one, each agent provides a more accurate signal under limited capacity than

under unlimited capacity.

• The principal prefers limited capacity to unlimited capacity.

Under unlimited capacity, both agents provide marginally pivotal signals, setting α1 = α2 = r.

Under limited capacity, as determined by Lemma 3.3, the agents either provide fully-informative

signals, or they play a mixed strategy that involves both agents producing evidence that almost

certainly has accuracy greater than r. Regardless of whether the limited capacity game achieves

the pure strategy or mixed strategy equilibrium, the agents produce more informative evidence

than in the equilibrium of the unlimited capacity game.

That the principal tends to be more informed under limited capacity does not in itself imply

that the principal prefers limited capacity to unlimited capacity. This is because limited capacity

prevents the principal from implementing both proposals, even when both have positive expected

value. When the principal is predisposed against proposals, this potential cost of limited capac-

ity never negates the expected benefits that come from more-accurate signals. Recall, that with

unlimited capacity, agents supply marginally persuasive signals, and the principal is, at best, indif-

ferent between implementing and rejecting proposals. Her equilibrium expected payoff under the

unlimited capacity system is always zero. Under limited capacity, the probability that she accepts

a proposal which generates a positive expected surplus is non-zero in each type of equilibrium.

Thus her expected payoff is positive under limited capacity. Intuitively, limited capacity improves

information accuracy, but has no expected cost when the principal is predisposed against proposals.

The loss of an option to accept a proposal does not impose a cost on the principal, as her expected

payoff under unlimited capacity is the same as if she rejects both proposals.

3.4 Principal predisposed in favor and proposals most-likely good

We turn to the case in which the principal is predisposed in favor accepting (i.e., θ < γ), and

proposals are most likely good (i.e., γ > 1
2). We have already shown that in equilibrium under

unlimited capacity, both agents produce weak signals and the principal always implements both

proposals. In this section, the principal continues to be predisposed in favor of both proposals, but

she only has the capacity to implement one of them. This introduces competitive pressure between

the agents who are now concerned about convincing the principal that their proposal is more likely

than the other proposal to be beneficial. This pressure causes agents to provide persuasive evidence

under limited capacity as they compete for their proposal to have priority over the other proposal.

Because the principal is predisposed towards accepting, she is willing to implement any proposal

with a good signal realization. If only one proposal generates a favorable signal realization, then she

implements that proposal regardless of signal accuracy. If both proposals generate good realizations,

then the principal accepts the proposal with the more-accurate signal. For sufficiently large γ, the
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competitive incentives result in both agents producing fully informative signals in equilibrium with

α1 = α2 = 1. When this is the case, the probability of generating favorable evidence is sufficiently

high that the agents prefer a tie at αi = 1 rather than deviating to produce weak evidence with

the hope that the other agent generates an unfavorable signal realization. For lower γ, the fully-

informative equilibrium cannot be sustained and there exists both a pure strategy equilibrium in

which only one of the agents produce a fully-informative signal, and a symmetric mixed strategy

equilibrium with mixing between fully-informative and marginally-persuasive signals. We describe

these equilibria in Lemma 3.5.

Lemma 3.5 Under limited capacity with θ < γ and γ > 1
2

• If γ ≥ 2−
√

2 then the unique Nash equilibrium is for each agent to produce a fully informative

signal, α1 = α2 = 1.

• If γ < 2 −
√

2 then many asymmetric Nash equilibria exist. In each Nash equilibrium, one

agent produces a fully revealing signal αi = 1, and the other agent produces a weak signal,

αj ∈ [12 , 1− r].

• If γ < 2 −
√

2 a symmetric mixed strategy Nash equilibrium exists. Each agent chooses

αi = 1− r with probability p = γ2−4γ+2
γ2−2γ+1

, and αi = 1 with probability 1− p.

Under unlimited capacity, both agents provide weak signals. Here under limited capacity, there

always exists a pure strategy equilibrium in which at least one agent produces fully-informative

evidence, making the principal more informed than in the unlimited capacity environment. For low

enough γ, there also exists a mixed strategy equilibrium in which the principal is fully-informed

with positive probability. Thus, the principal always expects to be better informed under limited

capacity than under unlimited capacity.

Showing that the principal prefers limited to unlimited capacity is less straightforward here

compared to the previous section. Here, limited capacity constrains the principal to implement at

most one proposal even though from an ex ante perspective, she would like to implement both.

In order for the principal to prefer limited capacity, it must be that the expected benefits of more

accurate evidence dominate the expected costs of rejecting one proposal with positive expected

value. This is the case when θ is not too small relative to γ. The potential benefits are summarized

in Proposition 3.6.

Proposition 3.6 When θ < γ and γ > 1
2 ,

• In every pure strategy Nash equilibrium under limited capacity, at least one agent supplies a

fully revealing signal.

• In every mixed strategy Nash equilibrium under limited capacity, agents never supply less

accurate signals than in the unlimited capacity equilibrium, and supply fully-revealing signals

with non-zero probability.
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• For each γ, there exists a value θ̃ < γ such that the principal prefers limited capacity to

unlimited capacity if and only if θ̃ ≤ θ < γ.

The benefit of limited capacity is an increase in evidence quality (i.e. signal accuracy). However,

because she is predisposed in favor of the proposals, limited capacity has a cost: the principal is

constrained to implement fewer policies than she would like to implement if capacity were unlimited.

If proposals have relatively little downside risk (small θ) and relatively high probability of being

good (high γ), then the principal has a strong prior predisposition in favor of accepting proposals.

In this case, the option to implement a reform is very valuable. In this case, the informational

benefits associated with limited capacity will not be large enough to overcome the costs of not

being able to support both proposals. When θ is sufficiently close to γ, however, the informational

benefits dominate the downside associated with the capacity constraint. As θ approaches γ, the

principal’s predisposition in favor of proposals becomes weaker, and the ex ante expected benefit

from being able to implement a given proposal decreases. Decreasing the ex ante benefit from

implementation in turn decreases the relative downside of limited capacity, which eventually allows

the informational benefits of more accurate signals to dominate the costs from being constrained

on the number of proposals that can be accepted.

3.5 Summary of results

In the previous sections, we demonstrated the following main results.

1. In the majority of cases under unlimited capacity, agents produce less informative evidence

than the principal prefers. They strategically keep the principal less than fully informed since

doing so maximizes the probability that the principal implements their proposal.

2. When the principal has limited capacity to implement proposals, agents increase the quality

of evidence they produce as they compete with each other for priority. If the principal is

predisposed against proposals that are most likely bad, or predisposed in favor of proposals

that are most likely good, then more accurate signals are supplied under limited capacity

than under unlimited capacity. This leads to a more-informed principal.

3. For a significant range of parameter values, the principal prefers (ex ante) to operate under

limited capacity, even if she has ex ante beliefs that both proposals are worthwhile. Here, the

informational benefits of limited capacity outweigh the capacity costs.

Figure 1 illustrates the values of θ and γ under which the principal prefers limited capacity to

unlimited capacity. When θ and γ are in the shaded regions, the informational benefits dominate

the expected costs of limited capacity.18

18The plot assumes that agents play the symmetric mixed strategy when 1
2
< γ < 2−

√
2 and γ > θ. Alternatively,

one may assume that they play the asymmetric pure strategy in this range. This choice makes little difference for
the qualitative nature of the results.
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Figure 1: Range of parameters for which the principal prefers limited capacity

4 A Model with General Signals and Asymmetric Proposals

The previous section demonstrates that limited capacity often improves the informativeness of

evidence supplied by agents, and that this benefit can outweigh the expected cost associated with

capacity constraints. In demonstrating this result, we constrained agents to choose their signals

from a simple parametric class and assumed that the prior beliefs about each proposal was identical.

These simplifications allowed for a more-intuitive presentation of our results. In this section, we

present our results in a significantly more general framework.

We expand the model of the last section in two ways. First, the prior beliefs associated with

the proposals need not be identical. Let γi denote the ex ante probability that proposal i is good,

where γi ∈ (0, 1) for i = H,L, and γH ≥ γL. Second, we do not constrain the agents’ choices of

signals to any particular parametric class. Here, agents have considerably more freedom to design

their signals.

Formally, signal (or experiment) Σ is a random variable, jointly distributed with proposal qual-

ity. We represent Σ as a pair of conditional random variables (Σg,Σb). If the true type of the

proposal is g, then a realization of random variable Σg is observed; otherwise a realization of Σb

is observed. We focus on random variables Σt, (t = g, b) for which the cumulative distribution

function has a countable number of discontinuities or mass points. Except at mass points, Σt ad-

mits a continuous density ft(x) which is strictly positive in some interval It. These are the only

requirements on Σt, and any random variable with such a structure is valid. The set of mass points

of random variable Σt is denoted Mt, a particular mass point in this set is denoted mj
t , and the

magnitude of the jump at mj
t is µjt . St is the set of possible realizations of Σt, and is thus Mt ∪ It.

Thus the cumulative distribution function of any valid random variable can be written

Pt(x) = Ft(x) +
∑
j

H(x−mj
t )µ

j
t
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where H(x) is the Heaviside (or step) function. The associated density function pt(x) is defined

using the Dirac delta function, δ.19 Thus,

pt(x) = ft(x) + δ(x−mj
t )µ

j
t

where ft(x) is continuous and equal to the derivative of Ft(x).20

The public realization of signal Σ (also called the outcome of the experiment) conveys infor-

mation about proposal quality. Because the true quality of each proposal is unknown, any signal

realization s ∈ Sg ∪ Sb induces a posterior belief that the proposal is good, consistent with Bayes’

Rule. This posterior belief depends on the prior, the signal realization, and on the signal structure

itself. For any signal realization s ∈ Sg ∪ Sb the principal’s posterior belief that the proposal is

good given this signal realization is given by Bayes’ rule:21

γ̂(s) =
γpg(s)

γpg(s) + (1− γ)pb(s)

Once the experiment is chosen by the agent, but before the outcome of the experiment is

realized, the value of the posterior belief γ̂(s) is a random variable Γ = γ̂(Σ) = Pr(τ = g|Σ). This

random variable is thus the ex ante value of the principal’s posterior belief. Observe that random

variable Γ is valid, has support confined to the unit interval, and (according to the law of total

expectation) has expected value equal to the prior belief, i.e. E [Γ] = γ. In the next Lemma we

show that this is the only substantive restriction on random variable Γ.22

Lemma 4.1 Consider any valid random variable Γ with support confined to the unit interval and

expectation γ. If the prior belief is γ then there exists a signal Σ for which the ex ante posterior

belief is Γ.

This proposition considerably simplifies the analysis of this game. Instead of designing a signal

directly, each agent i simultaneously chooses a valid random variable Γi, with support in the unit

interval and expectation γi. This choice represents the ex ante value principal’s posterior belief

about proposal quality, and is equivalent to a choice of any experiment that generates the same

distribution of posterior beliefs. We refer to this decision as a choice of a signal, although Γ

technically represents an entire payoff-equivalent class of signals. Once both agents have chosen

their Γi, these random variables are realized (i.e. the principal observes both the design and outcome

of the experiment, and rationally updates her beliefs). On the basis of the realized posterior beliefs,

19Of course this density is not a proper function; any statement that defines a random variable by specifying such
a density should be interpreted to mean that the cumulative distribution function of the variable is Pt(x).

20Since we are dealing with random variables, all of the statements throughout the paper are true up to variations
on sets of measure zero, a caveat which has no significant implication for our results.

21Recall that a1+b1δ(x)
a2+b2δ(x)

is equal to a1
a2

for x 6= 0 and is equal to b1
b2

for x = 0
22In recent papers, Kamenica and Gentzkow (in press) use a related representation of signals to study a general class

of persuasion games, while Ganuza and Penalva (2010) use a related representation to study information disclosure
in auctions.
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the principal decides which proposals to accept, respecting the capacity constraints of the decision

making environment.

4.1 Unlimited Capacity

To analyze the game with unlimited capacity, observe first that it is sequentially rational for the

principal to accept all proposals for which the realized posterior belief is at least as large as θ. An-

ticipating the principal’s sequentially rational behavior, in equilibrium each agent chooses random

variable Γi to maximize Pr (Γi ≥ θ) subject to E [Γi] = γi and Pr (0 ≤ Γi ≤ 1) = 1.

Observe first that each agent always has the capability to choose a fully revealing signal :

Pr(Γi = 1) = γi and Pr(Γi = 0) = 1− γi

This signal completely reveals the quality of the proposal with which it is associated. After observing

the signal realization, the principal’s beliefs are either one (she is sure the proposal is good) or zero

(she is sure the proposal is bad). Consequently, she always chooses the right course of action. From

the principal’s perspective the fully revealing signal is optimal. If capacity is unlimited, however,

agents never supply fully revealing signals. In fact, their signals are effectively worthless to the

principal.

If the principal is predisposed in favor of implementing proposal i (γi ≥ θ), then agent i chooses

a signal for which the entire support of Γi is above θ. The simplest way to do that is to concentrate

all mass on γi so that Pr (Γi = γi) = 1, but any signal for which all realizations are above θ achieves

the same result: each proposal is always accepted. We refer to such signal as weak. Consistent

with the results of the previous section, when the principal is predisposed in favor of accepting a

proposal and capacity is unlimited, the agent associated with that proposal supplies a signal that

never affects the principal’s behavior.

If the principal is predisposed against proposal i, (γi < θ) then agent i must choose a persuasive

signal for a proposal to have a chance to be accepted. In this case, signals with non-zero probability

mass on posterior beliefs strictly above θ are dominated.23 Similarly, any posterior distributions

which put non-zero probability mass on realizations between 0 and θ are dominated.24 Thus, the

optimal signal concentrates mass on only two posterior beliefs, 0 and θ. In order to satisfy the

constraint on the expectation, the probability of generating the posterior belief θ must be equal

to φ = γi
θ . Thus, the optimal signal requires only two realizations. One signal realization reveals

that the proposal is bad for certain, while the good realization leaves the principal just indifferent

between accepting and rejecting the proposal. This is qualitatively similar to the results of Section

23By concentrating all mass above θ in a mass point on θ, the agent generates a new random variable with the
same probability of being greater than or equal to θ but with a smaller mean; the agent can then move additional
probability mass from realizations below θ to the mass point on θ in order to satisfy the constraint. Doing so increases
the agent’s payoff.

24By moving the probability mass between 0 and θ into a mass point on 0, the agent can increase the probability
mass that is weakly above θ without violating the constraint.
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3.25

Lemma 4.2 In equilibrium under unlimited capacity

• The principal accepts any proposal for which the realized posterior is greater than or equal to

θ.

• If θ ≤ γi, then agent i chooses a weak signal. On the equilibrium path, the principal accepts

the proposal.

E [wi] = γi − θ and E [ui] = 1.

• If γi < θ then agent i chooses a signal such that Γi is equal to θ with probability γi
θ and zero

with probability 1− γi
θ . On the equilibrium path, the principal accepts if and only if Γi = θ.

E [wi] = 0 and E [ui] =
γi
θ

.

This result demonstrates that the conflict of interest identified in the previous sections also

exists in this framework: although agents have the capacity to fully reveal the quality of their

proposals, in equilibrium they never choose to do so. Moreover, the evidence that they choose to

provide is effectively worthless to the principal. She would obtain the same expected payoff if she

did not observe the signal realization and simply acted according to her prior belief.

4.2 Limited Capacity

In this section we establish the two main results. First, when capacity is limited, agents supply

more-informative equilibrium signals as they compete for priority. Second, for a wide range of

parameters, the benefit of receiving more informative signals outweighs the expected cost of limited

capacity; in these cases, the principal expects to do better when capacity is limited.

To analyze the game with limited capacity, observe first that the principal can accept at most

one proposal, even though she expects a positive payoff from any proposal for which the realized

posterior belief is at least as large as θ. She will therefore choose to accept the proposal that

generates the highest posterior belief, provided this posterior belief exceeds θ.

In the first stage of the game, agents H and L (γH ≥ γL), simultaneously design valid random

variables ΓH ,ΓL with support confined to the unit interval. The mean of each player’s random

variable is constrained:

E[ΓH ] = γH and E[ΓL] = γL

These random variables represent the ex ante posterior beliefs induced by the agent’s experiment.

Once both agents have made their choices, each random variable is realized; that is, the outcome of

the experiment is observed. The principal then implements the proposal that generates the highest

25The optimal signal in the parametric class of 3, however, is not optimal, because the principal’s belief following
a bad realization is not zero, as it is under the optimal signal.
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realized posterior belief, provided this realization is greater than θ. If both random variables have

the same realization above θ each proposal is equally likely to be implemented; if both random

variables have the same realization below θ, both proposals are rejected.26

In this game, agents want to make their proposals appear as good as possible, that is, they

want to concentrate as much mass as possible on high realizations of the posterior belief. However,

because of the feasibility constraint, any probability mass on realizations higher than γi must be

offset by probability mass on realizations below γi. Thus, reducing the prior belief associated with

a proposal limits the ability of the agent to reveal good information about the proposal.27

The normal form representation of this game is closely related to the normal form of a full-

information symmetric all-pay auction with the inclusion of mixed strategies, though important

differences exist. In the standard symmetric full-information all-pay auction, each agent’s strategy is

a choice of non-negative bid. The agent who chooses the highest bid wins a prize, but all participants

must pay their bids. The prize is equally valued by all players, and this value is common knowledge.

A mixed strategy in this game is a choice of random variable, which represents a player’s random

bid. The player whose realized bid is highest wins the prize and, in expectation, pays a price equal

to the mean of his random bid.28 In our framework, agents also design random variables, and the

agent whose random variable generates the highest realiation has his proposal accepted (provided

a threshold is reached). Unlike an all-pay auction, the mean of each agent’s strategy is constrained.

In our framework, the agent’s strategy represents the posterior belief associated with his signal.

Bayesian rationality therefore requires that the expected value of an agent’s strategy must be equal

the prior belief (which can be different for each agent).29 Despite this important distinction, our

analysis brings to light a connection between persuasion games and all-pay auctions.30

4.2.1 Equilibrium

In this section we describe the equilibrium of the game for all possible parameter values.31 Qual-

itatively, all of the equilibria of this game share a similar structure. The disadvantaged player, L,

26Conitzer and Wagman (2011) analyze a model related to our underlying framework. There are, however, a number
of features of our environment that are absent in their analysis: we allow for different means and a minimum outcome
simultaneously. Also, our random variables are confined to the unit interval. These differences have significant
implications for the results.

27Also observe that in the game we consider, the inclusion of mixed strategies does not expand the available
strategies for the players. Any mixed strategy in our setting is simply a mixture of valid random variables with the
same mean, which is equivalent to a new valid random variable with the same mean, which is an admissible “pure”
strategy.

28Thus, with two players, i’s expected payoff from choosing mixed strategy Bi against mixed strategy Bj in the
full information symmetric all pay auction is vPr(Bi > Bj) + 1

2
vPr(Bi = Bj)− E[Bi]

29Applied to the all-pay auction setting, this requirement forces each bidder to adhere to a (potentially different)
budget constraint that holds in expectation only. While in the all pay auction agent i chooses best response Bi
to maximize vPr(Bi > Bj) + 1

2
vPr(Bi = Bj) − E[Bi], in our game player i’s best response maximizes Pr(Γi >

Γj) + 1
2
Pr(Γi = Γj) subject to E[Γi] = γi

30Less substantial differences also exist. Unlike the standard treatment of the full information all-pay auction,
in the game we consider there is both a maximum possible realization (equivalent to a bid cap) and a minimum
realization required for the proposal to be allocated (equivalent to a reservation price).

31A detailed derivation of each equilibrium can be found in the appendix.
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chooses a strategy that consists of some combination of the following: a mass point on zero, uniform

mixing between θ and some value γ̄ no greater than one, and a mass point on one. The advantaged

player, H, chooses a strategy that consists of some combination of the following: a mass point on

zero, a mass point on θ, uniform mixing between θ and the same γ̄, and a mass point on one.

Lemma 4.3 In every equilibrium, agents’ strategies are of the following type:

ΓH =


0 with probability fH0

θ with probability fH1

U [θ, γ̄] with probability fH2

1 with probability fH3

ΓL =


0 with probability fL0

U [θ, γ̄] with probability fL1

1 with probability fL2

fH0 + fH1 + fH2 + fH3 = fL0 + fL1 + fL2 = 1

Within this structure, the nature of the equilibrium depends critically on the strength of com-

petition between the agents. The severity of competition depends on the interplay of two related

factors. The first factor is the optimism of the prior beliefs associated with each proposal; speaking

roughly, as the prior beliefs for both proposals increase so that both proposals appear better ex

ante, competition between the agents becomes more fierce. As a response, the agents supply more

valuable signals to the principal. The severity of competition, is undermined, however, by the

degree of asymmetry between the two prior beliefs γH and γL. When this asymmetry is high, the

initial advantage of player H is high. This initial advantage undermines competition between the

agents.

Consistent with this discussion, we expect that if both proposals are very likely to be good and

the asymmetry between the proposals is low, then competition between agents is likely to be fierce.

Fierce competition, in turn, forces agents to supply fully revealing signals. Indeed, this intuition is

borne out by the following lemma.

Lemma 4.4 If γL ≥ 2−2θ
2−θ then it is a Nash Equilibrium for each player to choose a fully revealing

strategy.

On the other hand, if γH is high, and γL is relatively low, the fierce competition of the previous

proposition is somewhat undone by the degree of asymmetry between the proposals. From the

perspective of agent L, in order to have a hope of proposal acceptance, he must still supply a fully

revealing signal, however, agent H need not supply a fully revealing signal. Because it is so likely

that proposal L is rejected when its quality is discovered, agent H does not need to ever reveal

that his proposal is bad to stay competitive. That is, the posterior associated with a bad signal

realization does not need to be zero for the advantaged agent. We refer to a signal that concentrates
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probability mass on only two posteriors, 0 and θ as a quasi-revealing signal.32 Whenever, γH is

high, and γL is relatively low, the advantaged agent chooses a quasi-revealing signal in equilibrium,

rather than a fully revealing signal.

Lemma 4.5 If γL ≤ 2−2θ
2−θ and γH ≥ 2−2θ+θ2

2−θ then it is a Nash Equilibrium for player L to use

a fully revealing signal, and for player H to use a quasi-revealing signal: fH1 = 1−γH
1−θ , fH3 =

γH−θ
1−θ and fH0 = fH2 = 0.

Next, we consider the equilibria that exist for other values of the prior beliefs. In these cases,

competition is somewhat muted compared to the fully revealing case; in addition to sometimes

putting positive probability mass on signal realizations that fully reveal the proposal type, in

equilibrium agents put positive probability mass on posterior beliefs in an interval [θ, γ̄]. We first

consider the case of relatively small differences between the proposals.33

Lemma 4.6 If
√
γ2H − γ2L ≤ θ and γL ≤ 1

2(1− θ2) then the strategies of Lemma 4.3 constitute an

equilibrium for

γ̄ = γL +
√
γ2L + θ2

fH0 = 1− fH1 − fH2, fH1 =
γH − γL

θ
, fH2 = 1−

√
γ2L + θ2 − γL

θ
, fH3 = 0

fL0 = 1− fL1, fL1 = fH2, fL2 = 0

Thus, we find that for small degrees of asymmetry between the proposals, and for relatively small

values of both prior beliefs, both agents send signals that sometimes reveal that their proposal is

bad. In addition, the posterior belief about each proposals is uniformly distributed between θ and

some maximum realization γ̄ ≤ 1 with equal probability for both proposals. The only difference

between the agent’s strategies, is that agent H’s signal is less likely to reveal that his proposal is

bad for certain. Next, we describe the equilibrium for an intermediate range of priors:

Lemma 4.7 If
√
γ2H − γ2L ≤ θ and 1

2(1 − θ2) ≤ γL ≤ 2−2θ
2−θ , then the strategies of Lemma 4.3

constitute an equilibrium for

γ̄ = 2− γL −
√
γ2L + θ2

fH0 = 1− fH1 − fH2 − fH3, fH1 =
γH − γL

θ
, fH2 =

γ̄ − θ
2− γ̄

, fH3 =
2− 2γ̄

2− γ̄
fL0 = 1− fL1 − fL2, fL1 = fH2, fL2 = fH3

From the lemma, we see that the equilibrium is different in two ways from the case discussed

previously. First, because both priors are higher than in the previous case, both agents are able

to send signals that sometimes reveal that the proposals are good; that is, both ex ante posterior

beliefs have mass points on realization 1. Second, the upper end of the support of the uniform

32In order to choose a quasi-revealing signal, the prior must exceed θ.
33That is, when

√
γ2
H − γ2

L ≤ θ.
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γ̄ in this case is just two minus its counterpart in the previous proposition. This equilibrium has

a similar property to the previous one: the only difference between agents strategies is agent H’s

mass point on θ.

We turn now to the case of large differences in prior beliefs about the two proposals. As in

the previous case, we present two propositions, one for the case of relatively pessimistic priors, and

another for the case of relatively optimistic priors. Whenever the difference in prior beliefs is large,

the advantaged agent never chooses a signal that ever reveals that his proposal is bad for certain.

Lemma 4.8 If θ ≤
√
γ2H − γ2L and γH ≤ 1

2(1 + θ2), then the strategies of Lemma 4.3 constitute an

equilibrium for

γ̄ = γH +
√
γ2H − θ2

fH0 = 0, fH1 = 1− fH2, fH2 =
2(γH − θ)
γ̄ − θ

, fH3 = 0

fL0 = 1− fL1, fL1 =
2γL
γ̄ + θ

, fL2 = 0

This equilibrium is somewhat reminiscent of the high asymmetry, high γH equilibrium in which

agent L supplies a fully revealing signal, and agent H supplies a quasi-revealing signal. Unlike that

scenario, however, neither prior belief is high enough that the agent can actually put probability

mass on posterior belief realization 1. In equilibrium it is not worth it for an agent to send a

signal that would actually reveal a good proposal, as the probability that the proposal is good is

low. Instead, of concentrating mass on one, the agents spread it uniformly in an interval from θ to

some threshold γ̄ ≤ 1. For intermediate priors and high asymmetry, agents begin to reveal good

proposals, as demonstrated by the following lemma:

Lemma 4.9 If θ ≤
√
γ2H − γ2L and 1

2(1 + θ2) ≤ γH ≤ 2−2θ+θ2
2−θ , then the following strategies consti-

tute an equilibrium:

γ̄ = 2− γH −
√
γ2H − θ2

fH0 = 0, fH1 = 1− fH2 − fH3, fH2 =
γ̄ − θ
2− γ̄

, fH3 =
2− 2γ̄

2− γ̄
,

fL0 = 1− fL1 − fL2, fL1 =
2γL(γ̄ − θ)

(2− γ̄)2 − θ2
, fL2 =

4γL(1− γ̄)

(2− γ̄)2 − θ2

Qualitatively, the only difference between the intermediate prior case and the low prior case is the

appearance of the mass points on 1. As in the case of small differences in prior beliefs, the mixing

threshold γ̄ is two minus the threshold for small priors.

We illustrate the six propositions that characterize the Nash equilibrium of the first stage game

between agents in Figure 2.

We would like to highlight two key points about these equilibria. First, as agents compete,

probability mass is spread: the probability of posterior realizations above θ is non-zero in all

equilibria. Second, in all equilibria, the probability of either accepting proposal L or rejecting both
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Figure 2: Equilibrium Cases. Labels follow propositions in alphabetical order.

proposals is non-zero. While agent H does possess an advantage, it is never the case that in any

equilibrium the principal always prefers to accept proposal H.

4.3 The Information Benefit of Limited Capacity

We now show that under limited capacity agents supply more informative signals than under

unlimited capacity. To establish this result we apply results from Ganuza and Penalva (2010).

These authors define a convex order among random variables.

Definition 4.1 Y is greater than Z in the convex order if for all convex real-valued function

φ,E[φ(Y )] ≥ E[φ(Z)] provided the expectation exists.

These authors then use this definition to define a notion of signal precision that they call integral

precision. We adapt their definition to our setting.

Definition 4.2 Signal Σ1 is more integral precise than signal Σ2 if the ex ante posterior belief

induced by Σ1 is greater than the ex ante posterior belief induced by Σ2 in the convex order.

The authors then show that with a binary type space (such as ours), the notion of integral precision

is equivalent to Blackwell informativeness. That is, for a given prior, Σ1 is more integral precise

than Σ2, if and only if Σ1 is Blackwell-sufficient for Σ2 (i.e. Σ1 is more informative than Σ2).
34

In order to demonstrate that each agent’s equilibrium signal under limited capacity is more

Blackwell informative than his equilibrium signal under unlimited capacity it is enough to show that

the agent’s equilibrium strategy under limited commitment dominates his strategy under unlimited

commitment in the convex order. In our case, the agent’s strategies have the same mean; therefore,

34Σ1 is Blackwell sufficient for Σ2 if Σ2 is a garbling of Σ1. In this case, any decision maker prefers to observe
signal Σ1 to signal Σ2.
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the convex order is equivalent to the reverse of second order stochastic dominance.35 Thus, if each

agent’s equilibrium strategy under limited capacity is second order stochastic dominated by his

equilibrium strategy under unlimited commitment, then both signals are more Blackwell informative

under limited commitment than under unlimited commitment. In the next proposition, we establish

that this is indeed the case.

Proposition 4.10 Each agent’s equilibrium strategy under limited capacity is more Blackwell in-

formative than the agent’s equilibrium strategy under unlimited capacity.36

This proposition illustrates the informational benefit of limited capacity. Because agents com-

pete (indirectly) under the limited capacity system, they choose to supply signals that are more

informative about the true quality of their proposals. This result is stronger than the similar result

in Section 3, where it held when the principal’s predisposition was aligned with the priors.

Although agents supply more informative signals under limited capacity, the principal is not

always better off because her actions are constrained: she may not be able to accept a proposal

that she expects is beneficial. In the next section, we show that the benefits of limited capacity

frequently outweigh the costs; the principal frequently does better under a limited capacity system.

4.4 Limited Capacity is Preferred

As demonstrated in the previous section, limited capacity comes with benefits, but it also comes

with costs. If both proposals generate posterior beliefs that are greater than θ, under limited

capacity the principal is only able to accept one, although she expects to benefit by accepting both.

In this section, we show that the benefits of limited capacity often outweigh the costs; in these

cases, the principal prefers to have with limited capacity.

If γH ≤ θ, then it is not difficult to see that the principal prefers limited capacity. In this case,

under unlimited capacity, the principal’s expected payoff is zero, equal to her payoff of rejecting

both proposals. Recall that the principal’s expected payoff of accepting a proposal which she

believes is good with probability γ is γ − θ. In the limited capacity equilibrium, the probability

that the largest of the two realizations of the posterior belief is strictly greater than θ is non-zero

(given that γL > 0). Thus, there is a positive probability that the principal accepts a proposal that

brings her a strictly positive expected payoff. Her expected payoff in this equilibrium is therefore

strictly positive.

Intuitively, if the principal is predisposed against both proposals and capacity is unlimited, the

agents supply signals which leave the principal (at best) indifferent between accepting and rejecting.

Thus there is no cost associated with limited capacity, but because limited capacity motivates the

agents to supply signals that are more informative, it is strictly beneficial and always preferred.

35If E[Y]=E[Z] then Y second order stochastic dominates Z if and only if for every concave function φ E[φ(Y )] ≥
E[φ(Z)]. As the negative of a concave function is convex, strategy Γ1 is second order stochastic dominated by strategy
Γ2 if and only if Γ1 is greater than Γ2 in the convex order.

36Here we assume that if the principal is predisposed in favor of an agent’s proposal, the agent supplies an unin-
formative signal.
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A related argument demonstrates that the principal continues to prefer limited capacity when

γL ≤ θ ≤ γH . With these parameters under unlimited capacity, the principal always accepts

proposal H and is at best indifferent between accepting and rejecting proposal L, resulting in

expected payoff γH − θ. If the principal observes the equilibrium signals from the limited capacity

game, but is forced to accept H (and reject L) her payoff will be γH − θ, identical to her payoff

in the unlimited capacity equilibrium. In the limited capacity equilibrium, however, the principal

is not constrained to always accept H and reject L; in fact, the probability that in the limited

equilibrium the principal chooses to accept L or reject both proposals is non-zero. Her expected

payoff in the limited capacity equilibrium therefore exceeds her payoff when she is constrained,

which is γH − θ.
We have therefore demonstrated that the principal strictly prefers the equilibrium with limited

capacity to the equilibrium with unlimited capacity whenever γL ≤ θ, independent of γH . Because

the equilibrium changes in a continuous way as the parameters change, there is some region in which

γL > θ in which the principal also prefers the equilibrium with limited capacity. We therefore have

the following proposition:

Proposition 4.11 If γL, γH ≤ θ, then the principal’s expected payoff always is strictly higher under

limited capacity compared to unlimited capacity. If γH > θ, then there exists a value γ̃L ∈ (θ, γH)

such that the principal’s expected payoff is strictly higher under limited capacity when γL < γ̃L.

This region is illustrated in Figure 3.

Figure 3: Limited capacity is preferred in the shaded region.
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5 Applications

5.1 Legislative Decision Making

Limited capacity is a reality of the legislative process. An appropriation committee may not be

willing to allot individual legislators funds to support all potential earmarks they believe beneficial.

For example, Frisch and Kelly (2010, 2011) present evidence that during the 2006 budget cycle the

Chairman of the US House Appropriations Subcommittee for Labor-Health and Human Services

allowed each rank-and-file member of the U.S. House to request up to $400,000 in earmark funding

from his subcommittee. The allotted amount increased systematically for subcommittee members,

principals in at-risk districts and those in leadership positions. If a legislator requested a larger

amount of funding from the subcommittee, the funding was rejected or cut down to the allotted

amount. This process means that legislators must carefully decide for which earmark projects to

request funding. Legislators often respond to their own limited capacity to request earmarks by

setting up an application process through which potential beneficiaries may apply, and lobby for

funding.

Similarly, time and staff constraints may prevent a politician from introducing legislation on

each policy proposal she or her constituents support. In an attempt to convince the legislator that

its policy proposal is worth the legislator’s time and effort, an interest group can collect evidence

confirming the merits of its proposal. Our story is consistent with Hall and Deardorff (2006)’s story

of “lobbying as legislative subsidy,” where special interest and lobby groups promise assistance (e.g.,

provide help conducting research or writing legislation) to time constrained politicians in an effort

to convince the politicians to take up their cause. In our model, some of the assistance—conducting

research and helping the politician better understand the implications of a policy—may come before

the legislator decides which policies to pursue.

We have shown that limited legislative capacity can entice special interest groups to produce

more informative evidence about the merits of their projects or policies. These constraints have

the potential to improve politician (and constituent) wellbeing, even though they may sometimes

prevent good policies from being implemented or benifical earmark projects from being funded.

5.2 Grant Writing

The second motivating example from the introduction involved grant writing. A funding organi-

zation must choose which research or community development proposals to accept. If the funding

organization could back all projects that it believes worthy of funding, then applicants with ex ante

promising projects have no incentive to produce additional evidence about the merits of its project,

and applicants with projects the funding organization is predisposed not to accept will collect just

enough evidence about the quality of their project to change the funding decision in their favor.

Funding organizations, however, rarely have the ability to back all projects. The organization

often must decide which of the promising projects is most-promising. The Robert Wood Johnson

Foundation makes this clear on their website:
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“Due to the volume of proposals we receive, many excellent projects that meet our

criteria still do not receive funding.”

One way that applicants make their proposals stand out is by producing evidence about the

likely success or contributions of their project. For researchers, this means providing a more-

detailed description of their qualifications, research methods and policy implications, or producing

preliminary results. Before applying for funding for a large scale field experiment, for example,

researchers often run smaller trials. The number of treatments and the number of subjects in their

experiments affect the informativeness of the trials about the eventual success of the project. Even

in theoretical work, the researchers decide whether to develop a formal model and preliminary

propositions prior to submitting an application.

The analysis shows how competition for limited funding between researchers leads to the alloca-

tion of funding to projects that are on average more promising than those funded by an organization

that is able to back all projects it believes beneficial. Although the budget limitation may result in

fewer promising projects being funded, the informational benefits of limited capacity often outweigh

the potential costs, and the funding organization may in fact prefer a limited budget. Increasing

an organization’s budget may make the organization worse off.

5.3 College Admissions

The process of admission to elite undergraduate colleges has become increasingly competitive.

With the increased competition has come a greater emphasis on extracurricular activities. Our

model suggests a reason for this. A college admissions officer at an elite school wants to admit

students who are most-likely high ability. Applicants provide a partially informative signal about

their ability through their high school grade point average. A high GPA, however, is not perfect

evidence that the student is high ability if moderate-ability students have a chance of achieving a

high GPA through extra work and tutoring. Students can devote time to extra curricular activities,

which communicates to the admissions officer that they maintained their GPA while devoting time

to other non-studious activities. Devoting time to the other activities makes maintaining a high

GPA less likely for moderate ability students, and thus improves the informativeness of a good

academic outcome.37

5.4 Firm Expansion and Product Launch

A firm executive may be looking to expand operations, and not know which divisions offer the

most-promise for expansion. The capital available for expansion may be enough to fund expansion

for only one division, even if the executive believes that multiple divisions are worth expanding.

Prior to choosing which division to expand, the division managers may propose strategic plans

37One of the authors is reminded of his high school valedictorian, who got a perfect score on the SAT, twice. He
took the exam a second time to demonstrate that the perfect score he earned on the first attempt was no accident,
increasing the informativeness of his signal.
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and compile verifiable evidence about the profitability of the expansion of their divisions. Our

results suggest that limitations to the amount of funds available for investment may lead to better

investment decisions regarding these funds. That is, limited resources causes competition between

the division managers, incentivizing them to produce more informative information about the future

plans and profitability of their divisions.

A similar story may be told in which a firm is limited in its capacity to introduce new products

to the market, and must decide which successful R&D projects to mass produce. Limited capacity

may improve the quality of evidence produced by project or division managers about the quality

or marketability of their respective products. The analysis suggests that a firm manager who is

constrained in the number of divisions she can expand, or the number of products she can put into

production may be make better decisions and be better off than a manager with unconstrained

capacity.

5.5 Product Information and Pre-purchase Sampling

Firms produce different, independent products. Both producers and consumers may be uncertain

about the match quality between a given product and an individual consumer’s needs. To enable

consumers to learn about the potential enjoyment they will receive from a purchase, the sellers

can allow consumers to interact with a good prior to making a purchase decision (e.g., hands on

interaction with iPads at the Apple Store, test drives at car dealerships, free samples at a chocolate

shop). The more interaction the firm allows prior to purchase, the more informative the consumer’s

impression is about the good. If consumers are without budget constraints, the sellers would need

to provide consumers with just enough interaction with the products to convince them that it is

most-likely in their best interest to make a purchase. When consumers are budget constrained,

however, convincing them that the project is most-likely worthwhile is not enough. Producers

must convince consumers that their product is likely a better purchase than the other products.

Our model predicts that limited consumer budgets lead to increased pre purchase interactions

with products, which makes for a better-informed purchase decision. Our analysis illustrates that

consumers may be better off when they can afford to purchase fewer products. Budget constraints

lead sellers to provide consumers with more pre-purchase interaction, increasing the probability

that the consumers buy products they find worthwhile.

5.6 FDA Approval

The US Food and Drug Administration (FDA) regulates pharmaceuticals. Included in this is

the control of whether drugs are approved for over-the-counter or prescription use. To gain FDA

approval, drug companies conduct clinical trials to provide sufficient evidence that their produce is

safe and effective for human use. There is currently no official limit to the number of new drugs that

the FDA can approve every year. Our analysis shows that limiting the number of annual new drug

approvals could theoretically increase consumer wellbeing. This would be because competition for

a limited number of approvals could incentivize drug companies to conduct more-extensive reviews
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of their product before applying for FDA approval. Of course, we are ignoring the financial costs

and potential health effects of increased time to market associated with additional trials, and the

political and public relations problems that may arise from not approving drugs that the evidence

suggests will most-likely save or improve lives.

6 Conclusion

We develop a model of persuasion in which a principal decides whether to implement each of two

independent proposals (e.g., earmark requests, policy reforms, grant funding). Agents advocating

on behalf of the proposals can produce evidence about the quality of their respective proposal,

enabling the principal to make a more informed decision. The principal prefers the agents to

produce the most-informative evidence possible. Agents, however, strategically choose evidence

quality to maximize the probability that the principal implements their proposal (maximizing their

own payoffs rather than the principal’s payoff). When the principal can implement all proposals she

believes are worthwhile (i.e., the case of unlimited capacity), the agents typically will not produce

fully informative evidence, leaving the principal less than fully informed about proposal quality.

Within this framework, we show that the principal can often be both better informed and better

off when she is constrained in the number of proposals she can implement. When the principal

is unable to implement all proposals, the agents are concerned about their proposal being given

priority over the alternatives in the event that the principal would like to implement more proposals

than she has capacity. If the principal observes evidence in favor of two proposals, but can only

implement one of them, then she will give priority to the one with the more-informative evidence—

that is, the one she is more certain is high quality. The agents react to this by increasing the quality

of the evidence they produce. Under limited capacity, the agents produce more informative evidence

compared to the case in which the legislator had unlimited capacity to implement proposals. We

then derive reasonable conditions under which this informational benefit dominates the expected

cost, and the principal prefers to be limited in the number of proposals she can implement.

The model highlights an informational benefit of limited capacity and competitive advocacy that

has not been focused on before in the literature. The framework may be applied to understand

incentives in a variety of settings, lending insight into informational lobbying, consumer sampling,

college admissions and preliminary research in grant applications, among others.

7 Appendix

7.1 Detailed analysis the symmetric agent, binary signal model under limited

capacity

7.1.1 Predisposed against and proposals most-likely bad

In this case, γ < θ and γ < 1
2 . We first characterize principal behavior under limited capacity. Since the

principal is predisposed against accepting, she certainly rejects any proposal for which the signal is weak or
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the realization is bad. If only one proposal generates a favorable signal from a persuasive distribution, then

the principal implements that proposal. If both signals generate good realizations, she accepts the proposal

she believes is more likely to be good; that is the one with the more-accurate signal quality. Formally:

• If αi ∈ [ 1
2 , r) and αj ∈ [ 1

2 , r) reject both proposals.

• If αi ∈ [r, 1] and αj ∈ [ 1
2 , r) accept proposal i if and only if si = G. Always reject proposal j.

• If αi ∈ [r, 1] and αj ∈ [r, 1] and si = B and sj = B, reject both proposals.

• If αi ∈ [r, 1] and αj ∈ [r, 1] and si = G and sj = B, accept proposal i.

• If αi ∈ [r, 1] and αj ∈ [r, 1] and si = G and sj = G, accept proposal i if αi > αj and accept each

proposal with equal probability if αi = αj .

This illustrates the impact of limited capacity. By supplying a more accurate signal, an agent gives his issue

priority: if both signals are persuasive, and both realizations are good, his proposal will be the one imple-

mented. Because the proposals are most-likely bad, however, increasing accuracy reduces the probability of

generating a good signal. In equilibrium, agents trade off the benefit of taking priority against the reduction

in the probability of generating a good signal.

Given the principal’s strategy, we construct each agent’s first period expected payoff as a function of

both signal accuracies. Suppose agents choose αi, αj :

if αi ∈ [ 1
2 , r) then ui (αi, αj) = 0

if αi ∈ [r, 1] and αi > αj then E [ui (αi, αj)] = σ (αi)

if αi ∈ [r, 1] and αi < αj then E [ui (αi, αj)] = σ (αi) (1− σ (αj))

if αi ∈ [r, 1] and αi = αj then E [ui (αi, αj)] = σ (αi)
(

1− σ(αj)
2

)
.

Each of these payoffs is straightforward to understand. If an agent produces a weak signal, his proposal

is rejected. If an agent produces a persuasive signal with higher accuracy than the other agent, his issue

is decided on its merits. It is implemented if and only if it generates a good signal. If agent i produces a

persuasive signal that is less accurate than the other agent, his proposal is accepted only if it generates a

good signal realization and the other proposal generates a bad realization. Finally, if both agents produce

persuasive signals of identical accuracy, then proposal i is accepted if si = G and sj = B. If both proposals

generate good signal realizations, then each proposal is accepted with equal probability. A weak signal is

strictly dominated by producing a marginally persuasive signal and would never be part of an equilibrium

strategy.

We start by characterizing the unique pure strategy equilibrium of this stage game, αi = αj = 1. Suppose

that agent j chooses a fully informative signal, αj = 1. In this case, the probability that proposal j generates

a good signal realization is σ (1) = γ. Therefore, by choosing αi = 1, agent i expects payoff

γ
(

1− γ

2

)
Any choice of αi ∈ [r, 1) gives expected payoff σ (αi) (1− γ). Since γ < 1

2 , function σ (α) is strictly decreasing

and an agent’s optimal choice of α ∈ [r, 1) is α = r, which gives expected payoff

σ (r) (1− γ) =
γ (1− γ)

2

(1− θ)γ + (1− γ)θ
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In order for αi = αj = 1 to be a Nash equilibrium, it must be that

γ
(

1− γ

2

)
≥ γ (1− γ)

2

(1− θ)γ + (1− γ)θ
⇐⇒ θ ≥ θ̂ ≡ 3γ2 − 6γ + 2

2γ2 − 5γ + 2

The above definition of θ̂ describes the value of θ̂ from Lemma 3.3. No other symmetric pure strategy

equilibrium exists, as a deviation to α̂i = αj + ε gives higher expected payoff than αi = αj . No asymmetric

pure strategy equilibrium exists, as the agent supplying the signal with higher accuracy could always benefit

by slightly reducing his signal accuracy.

If both agents choose α = 1, the most profitable deviation for an agent is to produce a marginally

persuasive signal, ceding full priority to the other agent but maximizing the probability of generating a good

signal realization. Such a deviation is profitable if the probability of generating a good realization when

choosing the marginally persuasive signal is high; this in turn is the case when the marginally persuasive

signal accuracy r is close to 1
2 . When the stakes θ increase, the cost of mistakenly implementing a bad

proposal is high; thus the principal requires a more informative signal in order to overturn her predisposition

towards rejection. In other words, increases in θ increase the value of r. Thus a sufficiently high θ ensures

that both agents produce fully-informative signals in equilibrium.

Next, we provide a partial characterization of all mixed strategy equilibria of the first stage game. This

partial characterization is based on several straightforward observations about the nature of the equilibrium.

For our main result, the partial characterization is sufficient. Consider a mixed strategy Nash equilibrium

in which each agent’s signal accuracy is the realization of random variable A. We assume that this mixed

strategy Nash equilibrium involves randomization, i.e. it is not the pure strategy equilibrium α1 = α2 = 1

already characterized.

Lemma 7.1 Under the limited capacity legislative system with γ < q and γ < 1
2 , in any symmetric

mixed strategy Nash equilibrium of the stage game, the following four properties must hold:

1. Weak signals are outside of the support of A.

2. The only possible mass point is α = 1.

3. The smallest signal accuracy inside the support of A is r.

4. If disjoint intervals [x1, x2] and [x3, x4] are in the support of A, then the entire interval [x1, x4]

is inside the support of A.

Proof.

(1) Uninformative signals are strictly dominated.

(2) If the mixed strategy equilibrium strategy has a mass point at a, then it can be described as

follows: with probability φ each agent selects α = a. With probability 1−φ each agent draws a signal

accuracy from CDF F (x) (which is possibly discontinuous itself, i.e. has mass points). Consider the

following deviation for agent i. With probability φ agent selects α = a + ε. With probability 1 − φ
agent i draws signal accuracy from CDF F (x) With probability (1− φ)

2
both choose to draw from

F (x), in this case the payoff is unchanged. With probability (1− φ)φ the other agent plays his mass

point, while the deviating agent plays from F (x). In this case the deviator’s payoff is unchanged.

With probability (1− φ)φ the other agent plays from F (x) while the deviator plays the mass point.

Because the mass point under the deviation is arbitrarily close to the original mass point the payoff

is also arbitrarily close to the original payoff. With probability φ2 both players play the mass point.
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In this case, the deviation gives expected payoff σ (a+ ε) instead of σ (a)
(

1− σ(a)
2

)
. Thus for small

values of ε this deviation causes a discrete increase in the agent’s expected payoff. When ε is very

small this increase is approximately σ(a)2

2 > 0. This deviation is profitable. The only value of a for

which no such deviation exists is a = 1.

(3) Imagine that α, the lowest element of the support of A, were strictly greater than r. Compare α to

r. As there is no mass point at α, with probability 1 the other agent’s signal accuracy is strictly higher

than both α and r. Therefore, the expected payoff from choosing α for certain is σ (α) (1− E [σ (αj)]),

while the payoff to choosing r is σ (r) (1− E [σ (αj)]). Because γ < 1
2 , σ (x) is decreasing; hence,

σ (r) (1− E [σ (αj)]) > σ (α) (1− E [σ (αj)])

Therefore, if the smallest element of the support is larger than r, then playing the mixed strategy is

dominated by choosing r.

(4) Imagine that disjoint intervals [x1, x2] and [x3, x4] are in the support of A, but interval (x2, x3)

is outside the support of A. Compare playing x2 to x3. Both of these signal accuracies have the

same probability of being larger than the other player’s accuracy, and both accuracies have the same

probability of being less than the other player’s signal accuracy. However, in both of these cases, the

payoff associated with pure strategy x2 is higher than the payoff associated with x3. This contradicts

the indifference condition.

This Lemma is not difficult to understand. As weak signals are dominated they are outside of the

support of the mixed strategy equilibrium. No interior mass point can exist in a symmetric mixed strategy

equilibrium; if both strategies have the same mass point, then agents choose the same accuracy with positive

probability. If both proposals generate good realizations and the accuracies are the same (which happens

with nonzero probability), a tie occurs, and each proposal is accepted with probability 1
2 . By just slightly

increasing the accuracy associated with the mass point, an agent can assure that all ties break in his favor,

which increases his payoff by a discrete amount, and is therefore profitable. The only possible mass point

is therefore at α = 1. If the smallest signal accuracy in the support of the mixed strategy α were strictly

greater than r, then whether agent i chose αi = r or chose αi =α, his accuracy is always less than the

accuracy of the other agent, which always gives the other agent decision making priority. Thus whether

αi = r or αi =α, proposal i is implemented if sj = B and si = G. However, because increased accuracy

reduces the probability of generating a good signal (and does not affect the probability that sj = B), the

signal with αi = r has a higher probability that si = G. Therefore if α> r then choosing αi = r dominates

the mixed strategy. The intuition for the last part of the Lemma is similar: under the assumptions, pure

strategies x2 and x3 give an agent the same priority in the decision making process, but accuracy x2 is more

likely to generate a good signal realization.

Only two types of mixed strategies are consistent with Lemma 7.1. The first type of mixed strategy

calls for agents to choose their signal strengths from a continuous CDF with support on [r, ᾱ], where ᾱ ≤ 1.

The second type of mixed strategy equilibrium calls for agents choosing signal strengths from a CDF with

continuous support on [r, ᾱ] and mass point on 1. Under both feasible mixed strategies, both agents choose

signal qualities greater than r with probability one, since the mixed strategy CDFs do not allow for a mass

point on r and r is the smallest accuracy in the support. Compared to the case of unlimited capacity, here

limited capacity almost certainly results in a more informed principal. Because the principal has an expected

payoff of zero in this case under unlimited capacity, and her expected payoffs are strictly higher here under

limited capacity, she strictly prefers limited to unlimited capacity.
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Although it is not essential for the main results, we believe that a complete characterization of the mixed

strategy equilibria lead to a better understanding of the effects limited capacity has on agent incentives.

Below, we complete the characterization of the mixed strategy equilibrium for γ < θ, γ < 1
2 in the cases in

which no pure strategy equilibrium exists. In an interest of space, and because the characterization is not

required for the results in the body of the paper, we do not walk through the derivation. Define ᾱ1 and ᾱ2

as follows,

ᾱ1 = 1
(1−2γ)2

3γ−2γ2−1
(θ+γ−2θγ)2

( (
4γ − 4γ2 − 1

)
θ2 +

(
4γ2 − 2γ

)
θ +

(
γ3 − 2γ2

)
+γ
√

(4γ2 − 4γ + 1) θ2 + (2γ − 4γ2) θ + (γ4 − 2γ3 + 2γ2)
)

ᾱ2 = 1
(2γ−1)2

1−3γ+2γ2

(4γ2−4γ+1)θ2+(2γ−4γ2)θ+(4γ3−11γ2+12γ−4)

×
( (

4γ2 − 4γ + 1
)
θ2 +

(
2γ − 4γ2

)
θ +

(
5γ3 − 14γ2 + 14γ

)
+ γ

√
(4γ2 − 4γ + 1) θ2 + (2γ − 4γ2) θ + (γ4 − 2γ3 + 2γ2)− 4

)
.

• Under limited capacity with γ < θ, γ < 1
2 and

θ ≤ 1

(1− 2γ)
2

(
(1− γ)

√
(1− 2γ)

3 −
(
γ − 2γ2

))
the unique mixed strategy Nash equilibrium of the first stage game is characterized as follows. Each

agent chooses his signal accuracy αi equal to the realization of random variable A with support on

[r, ᾱ1]. The density of A is given by

f (x) =
σ (ᾱ1) (1− 2γ)

σ (x)
3 .

Each agent’s equilibrium payoff is given by Eui = σ (ᾱ1).

• Under limited capacity with γ < θ, γ < 1
2 and

1

(1− 2γ)
2

(
(1− γ)

√
(1− 2γ)

3 −
(
γ − 2γ2

))
< θ <

3γ2 − 6γ + 2

2γ2 − 5γ + 2

the unique mixed strategy Nash equilibrium of the first stage game is characterized as follows. With

probability φ = 2γ−2σ(A)
γ2−2σ(A)γ an agent chooses a fully informative signal α = 1. . With probability 1−φ,

α is equal to the realization of random variable A with support on [r, ᾱ2] The density of A is given by

f (x) = σ (ᾱ2) γ2 1− 2γ

2γ − γ2 − 2σ (ᾱ2) (1− γ)

1

σ (x)
3 .

Each agent’s equilibrium payoff is given by σ (ᾱ2) (1− γφ).

• For larger θ the Nash equilibrium is the pure strategy equilibrium derived previously.

7.1.2 Predisposed in favor and proposals most-likely good

Here we derive equilibria for the case when θ < γ and γ > 1
2 . The following summarizes the principal’s

equilibrium strategies, as discussed in the body of the paper:

• If si = G and sj = B, the principal accepts proposal i.
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• If s1 = s2 = G. the principal accepts proposal i if αi > αj . If αi = αj accept each proposal with

probability 1
2 .

• If s1 = s2 = B, the principal accepts proposal i if and only if αi < αj and αi ≤ 1−r. If αi = αj ≤ 1−r
accept each proposal with probability 1

2 .

Given the principal’s strategy, it is straightforward to construct each agent’s expected payoff as a function

of both signal accuracies. Suppose agents choose αi, αj ,

if αi > αj then E [ui (αi, αj)] = σ (αi)

if αi ∈ (1− r, 1] and αi < αj then E [ui (αi, αj)] = σ (αi) (1− σ (αj))

if αi ∈ [ 1
2 , 1− r] and αi < αj then E [ui (αi, αj)] = 1− σ (αj)

if αi ∈ (1− r, 1] and αi = αj then E [ui (αi, αj)] = σ (αi)
(

1− σ(αj)
2

)
if αi ∈ [ 1

2 , 1− r] and αi = αj then E [ui (αi, αj)] = 1
2 .

If agent i produces a more accurate signal than agent j, proposal i is implemented if and only if proposal

i generates a good signal. If agent i produces a less informative signal than agent j and this signal is

persuasive, then proposal i is implemented if and only if issue j generates a bad signal and i generates

a good signal. On the other hand if i’s signal is less informative than j and is also weak, then proposal

i is implemented if and only if j generates a bad signal. If both agents produce a signal with the same

persuasive accuracy, then proposal i is implemented whenever si = G and sj = B; furthermore, if both

proposals generate good realizations, each is accepted with equal probability. Finally, if both agents produce

the same weak signal, then i is implemented if it generates a good realization and j does not; otherwise each

proposal is implemented with probability 1
2 . In this case, the probability of i being implemented is just

σ (α) (1− σ (α)) +
1

2

(
σ (α)

2
+ (1− σ (α))

2
)

=
1

2

As in the previous case, an agent who supplies a more informative signal receives priority in the decision

making process. Furthermore, because accuracy is success enhancing, it is easy to see that supplying a fully

informative signal αi = 1 is a best reply to any less than fully informative signal αj < 1.38 Thus, in any

pure strategy Nash equilibrium, at least one agent supplies a fully informative signal. If the best reply to a

fully informative signal is also a fully informative signal, then α1 = α2 = 1 is the unique Nash equilibrium

of the first stage game. This is not always the case, however. If agent i replies to a fully informative signal

by also issuing a fully informative signal, his payoff is

γ
(

1− γ

2

)
When both agents produce fully-informative signals, both proposals have equal priority, and a good signal

realization is required for a proposal to be accepted. Rather than supply a fully informative signal as a

response to a fully informative signal, agent i may prefer to produce a weak signal. In doing so, agent i cedes

priority to agent j; however, if proposal j generates a bad signal realization, proposal i will be implemented,

regardless of i’s signal realization. If a good signal realization is not sufficiently likely when α = 1 (i.e. γ

is not large enough), an agent may prefer to sacrifice priority in order to remove the requirement that his

38Suppose αj < 1. Because σ (α) is increasing, αi = 1 is clearly better than any other αi > αj . Among accuracies
less than αj , weak or marginally persuasive accuracies are preferred to strictly persuasive values. Furthermore,
because σ

(
1
2

)
= 1

2
and σ (α) is increasing, σ (α) > 1

2
. Hence 1− σ (α), the payoff to any weak signal, is less than 1

2
,

which is itself less than the payoff to a fully revealing signal.
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proposal generate a good realization in order to be implemented.

A fully revealing signal from each agent α1 = α2 = 1 is the unique Nash equilibrium of the first stage

game if and only if

γ
(

1− γ

2

)
≥ 1− γ ⇐⇒ γ ≥ 2−

√
2.

If, on the other hand, γ < 2 −
√

2, then the best response to a fully-informative signal is a weak signal

α ∈
[

1
2 , 1− r

]
. Because agent j prefers to produce a fully-informative signal whenever agent i produces a

weak signal, a multitude of asymmetric equilibria exist. In each of these equilibria one of the agents supplies

a fully revealing signal and the other agent supplies a weak signal.

There also exists the possibility of mixed strategy equilibria. Consider the following mixed strategy:

with probability p an agent chooses αi = 1− r, and with probability 1− p an agent chooses a fully revealing

signal αi = 1. First we show that for an appropriate choice of p, an agent receives the same expected payoff

from choosing pure strategies αi = 1 − r and αi = 1 against this mixed strategy. We then verify that this

expected payoff is not less than the expected payoff of choosing any other pure strategy α ∈ [ 1
2 , 1) against

this mixed strategy.

If agent i anticipates that agent j uses this mixed strategy, i’s payoff from choosing αi = 1 − r is
1
2p + (1− p) (1− γ) . His expected payoff of choosing αi = 1 is pγ + (1− p)

(
γ − 1

2γ
2
)
.The value of p for

which the agent is indifferent between these pure strategies is given by equation:

1

2
p+ (1− p) (1− γ) = pγ + (1− p)

(
γ − 1

2
γ2

)

p =
γ2 − 4γ + 2

γ2 − 2γ + 1

γ ∈ (
1

2
, 2−

√
2]→ p ∈ (0, 1].

Each agent’s payoff from either pure strategy is u = 2γ−3γ2

2(1−γ)2

γ =
1

2
→ u =

1

2

γ = 2−
√

2→ u =
√

2− 1.

To complete the derivation, it must be shown that no pure strategy in the interior of the interval α ∈ [ 1
2 , 1),

if played for certain, gives a higher payoff than u against this mixed strategy. Consider the payoff to pure

strategy α̃i < 1 − r; to the payoff of playing αi = 1 − r for certain. If the other agent plays αj = 1, then

the two strategies give the same payoff 1 − γ. However, if the other agent plays αj = 1 − r, then by also

playing αi = 1 − r agent i receives payoff 1
2 . By playing α̃i agent i receives payoff 1 − σ (1− r). Because

1− r > 1
2 and success is effort enhancing, σ (1− r) > σ

(
1
2

)
= 1

2 . Thus 1− σ (1− r) < 1
2 . Any pure strategy

α̃i < 1− r has a smaller expected payoff than αi = 1− r against this mixed strategy. Next we compare the

payoff of playing pure strategy 1 − r < α̃i < 1 to playing pure strategy αi = 1 against this mixed strategy.

If the other agent chooses αj = 1− r then playing α̃i < 1 is dominated by playing αi = 1. If the other agent

plays αj = 1, then the payoff to playing αi = 1 is γ− 1
2γ

2. The payoff to playing α̃i < 1 is σ (α̃i) (1− γ) . As
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σ (α̃i) < σ (1) = γ it follows that

γ − 1

2
γ2 > γ (1− γ) > σ (α) (1− γ)

Therefore playing any pure strategy 1− r < α̃i < 1 is worse than playing αi = 1 against this mixed strategy.

Hence, αi = 1 and αi = 1 − r, give the same payoff when played against this mixed strategy, and all other

possible pure strategies give a worse payoff when played against this mixed strategy. This completes the

derivation of the symmetric mixed strategy equilibrium.

To determine whether the principal prefers limited or unlimited capacity, recall that under unlimited

capacity agents supply weak signals, and the principal approves both proposals, E [w] = 2 (γ − θ). Unlike

the case in which the principal was predisposed against the proposals, if the principal is predisposed in

favor of the proposals, the option to accept a proposal has (ex ante) value in equilibrium. Limited capacity

therefore imposes an expected cost on the principal, as she does not have the option to implement one

of the proposals that she would choose to implement if capacity were unlimited. For the limited capacity

system to be preferred, it must result in a sufficiently large increase in signal accuracy; accepting at most

one proposal with better information about its quality must dominate accepting both proposals with no

additional information about their quality. In the case where γ ≥ 2 −
√

2, limited capacity induces an

equilibrium in which both signals are fully revealing. If at least one of the proposals is good, then a good

proposal is implemented. Thus when γ ≥ 2−
√

2 the principal prefers the limited capacity system (ex ante)

if and only if

(1− θ)
(
2γ − γ2

)
≥ 2 (γ − θ) ⇐⇒ θ ≥ γ2

γ2 − 2γ + 2

Next consider the case when γ < 2−
√

2. If limited capacity induces a fully-informative signal by only one

of the agents (as always happens in the asymmetric pure strategy equilibrium and sometimes happens in

the symmetric mixed strategy equilibrium) the principal implements the proposal associated with the fully

informative signal if and only if it is a good proposal. If the realization of the fully informative signal is

bad, she implements the proposal about which she is uninformed. If she anticipates that agents play the

asymmetric pure strategy equilibrium in the case γ < 2−
√

2, then for such γ, the principal prefers limited

capacity if and only if

γ (1− θ) + (1− γ) (γ − θ) ≥ 2 (γ − θ) ⇐⇒ θ ≥ γ2

If the principal anticipates that agents play the symmetric mixed strategy equilibrium in the case γ < 2−
√

2,

then for such γ the principal prefers limited capacity if and only if

(1− p)2
(1− θ)

(
2γ − γ2

)
+ 2p (1− p) (γ (1− θ) + (1− γ) (γ − θ)) + p2 (γ − θ) ≥ 2 (γ − θ)

⇐⇒

θ ≥ 5γ4 − 17γ3 + 15γ2 − 4γ

5γ3 − 11γ2 + 8γ − 2

The threshold value θ̃ from Proposition 3.6 follows immediately from the above analysis. If γ ≥ 2 −
√

2

then θ̃ = γ2

γ2−2γ+2 . If γ < 2−
√

2 and the principal anticipates that agents play one of the asymmetric pure

strategy Nash equilibria of the first stage, then θ̃ = γ2. If γ < 2 −
√

2 and the principal anticipates that

agents play the mixed strategy Nash equilibrium in the first stage, then θ̃ = 5γ4−17γ3+15γ2−4γ
5γ3−11γ2+8γ−2 . Whenever

θ ∈ [θ̃, γ) it is better for the principal to implement a single proposal with access to better information about

proposal quality, than to decide to implement both proposals based solely on prior information.
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7.1.3 When limited capacity does not increase signal accuracy

In the body of the paper, we only briefly discuss the parameter cases under which limited capacity does

not increase signal accuracy. This includes when the principal is predisposed against policies that are

most-likely good, or predisposed in favor of policies that are most-likely bad. When she is predisposed

against proposals that are most likely good, the agents provide fully-informative signals under both unlimited

and limited capacity and therefore the principal can be no more informed than she was under unlimited

capacity. The slightly less-straightforward case is when the principal is predisposed in favor of proposals

which are most-likely bad. In this case, the agents supply weak signals when capacity is unlimited. Here,

we establish that that the unique Nash equilibrium under limited capacity involves the agents choosing

completely uninformative / weak signals, α1 = α2 = 1
2 .

We first show that the best response of player i to any signal accuracy αj >
1
2 is a weak signal, that is

strictly less than αj . Observe that σ
(

1
2

)
= 1

2 > σ (α) for any α > 1
2 . Suppose first that the other agent

chooses αj >
1
2 . By choosing αi ∈ [ 1

2 , r] and αi < αj , agent i assures himself payoff 1− σ (αj) .Notice that

1− σ (αj) >
1

2
> σ (αi)

and

σ (αi) > σ (αi) (1− σ (αj))

and

σ (αi) > σ (αi)

(
1− σ (αj)

2

)
.

Thus the payoff of choosing any αi ∈ [ 1
2 , r] and αi < αj against αj >

1
2 is greater than the payoff of choosing

any other value of αi. If αj = 1
2 , then agent i’s payoff from choosing αi = 1

2 is just 1
2 which is greater than

his payoff of choosing any αi >
1
2 . Thus α1 = α2 = 1

2 is a Nash equilibrium, and no other Nash equilibrium

exists.

7.2 Details involving the general model

Detailed involving the general model are provided in the online appendix.
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8 ONLINE APPENDIX

The remainder of the document is intended for publication as an online appendix. Here, we walk through

the analysis of the general game in detail. There does not exist a one-to-one relationship between the claims

in this document and the Lemmas and Propositions in the paper. Although each of the results in the

paper follow immediately from one or more of the claims proven here. Lemma 4.1 is restated by Claim 1.

Lemma 4.2 follows the analysis in the body of the paper, as well as Claim 2. Lemma 4.3 follows from the

characterization of all possible equilibria (Claims 3 through 8). Lemma 4.4 follows from Claim 3, Lemma 4.5

from Claim 8, Lemma 4.6 from Claim 5, Lemma 4.7 from Claim 6, Lemma 4.8 from Claim 4, and Lemma

4.9 from Claim 7. Propositions 4.10 and 4.11 follow from the Lemmas and the analysis in the body of the

paper.

Claim 1: Consider any valid random variable Γ with support confined to the unit interval and expectation

γ. If the prior belief is γ then there exists a signal for which the ex ante posterior belief is Γ.

Proof. As Γ is valid, it has a countable set of mass points M . Let mj represent an element of M and µj

represent the jump in the CDF at mj . The density of Γ is given by

p(x) = g(x) +
∑
j

δ(x−mj)

for x in the support of Γ, a subset of the unit interval. Define two new random variables, Γb,Γg by their

densities as follows:

pg(x) =
x

γ
p(x) and pb(x) =

1− x
1− γ

p(x).

Observe that the supports of Γg,Γb coincide exactly with the support of Γ. Observe also that if E[Γ] = γ

then these densities do indeed integrate to one. Consider the signal given by the pair (Γg,Γb). For this

signal, the posterior belief associated with a draw of s is

γpg(s)

γpg(s) + (1− γ)pb(s)
=

γ( sγ )p(s)

γ( sγ )p(s) + (1− γ)( 1−s
1−γ )p(s)

= s

Thus, for this signal, the posterior belief associated with a draw of s from this signal structure is simply s

itself. The density of the posterior belief is therefore equal to the density of a draw from this signal structure:

γpg(x) + (1− γ)pb(x) = p(x)

Thus, we have constructed a signal structure for which the ex ante posterior belief is Γ.39

Claim 2: Any random variable Γ for which Pr(0 < Γ < θ) > 0 is never a best response.

Proof. Suppose that in response to the action of player j player i were to choose random variable Γi which

puts strictly positive probability mass on realizations in the interval (0, θ). Consider a new random variable

Γ̂i constructed in the following way: 1) move all mass in the interval (0, θ) to a mass point on 0. This reduces

the expected value, but does not affect the agent’s payoff. Next distribute some mass from the mass point

on 0 to a new mass point on 1 in such a way that the expected value of the variable Γ̂i is γi. This new

random variable dominates the original, because the probability mass on 1 leads to a strict increase in the

probability of winning.

39This construction is not unique.
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Claim 3: If γL ≥ 2−2θ
2−θ then it is a Nash Equilibrium for each player to choose a fully revealing strategy.

Proof. An agent uses a fully-revealing strategy when he chooses a Bernoulli random variable. That is, player

i’s fully revealing strategy is

Pr(Γi = 1) = γi and Pr(Γi = 0) = 1− γi.

A player can always use a fully revealing strategy.

Suppose that player j uses a fully informative strategy. Because random variables with realizations in

(0, θ) cannot be best responses, player i’s best response Gi has the following structure

Pr(Gi = 0) = φL, Pr(θ ≤ Gi < 1) = φM , Pr(Gi = 1) = φH .

Let gi = E[Gi|θ ≤ Gi < 1]. If there is nonzero probability mass strictly between θ and 1, then gi > θ. Thus,

either player’s best response to a fully revealing strategy can be described by the following maximization

problem:

maxφM ,φH ,g φM (1− γj) + φH(1− γj
2 )

s.t. φMgi + φH = γi, φM + φH ≤ 1,

φM ≥ 0, φH ≥ 0, gi ≥ θ

Thus for any best response it must be that φMgi + φH = γi and φM + φH = x ≤ 1. Solving for φM and φH

gives

φH =
γi − gix
1− gi

, φM =
x− γi
1− gi

In addition,

φH ≥ 0 and φM ≥ 0 ⇐⇒ γi ≤ x ≤
γi
gi

The payoff of playing this strategy is simply

u(x, gi) =
x− γi
1− gi

(1− γj) +
γi − gix
1− gi

(1− γj
2

)

Observe that if some combination of (x, gi) is feasible, then any combination with the same value of x but

smaller value of gi is also feasible. Because du
dgi

= − 1
2γi

x−γi
(1−gi)2 < 0 a best response must have gi = θ. Thus,

u(x, θ) = x−γi
1−θ (1− γj) + γi−θx

1−θ (1− γj
2 )

=
2(1−γj)−(2−γj)θ

2(1−θ) x+
γiγj

2(1−θ) .

Therefore, provided the coefficient on x is negative, the best response will be to set x to its smallest feasible

value, i.e. γi; if this is so, the best reply is φM = 0 and φH = γi, the fully revealing strategy. Thus, provided

(2− γj)θ − 2(1− γj)
2(1− θ)

≤ 0 ⇐⇒ γj ≥
2− 2θ

2− θ

is satisfied for both values, γH , γL each player’s best response to a fully revealing signal is also a fully reveal-

ing signal. If the inequality holds for γL it also holds for γH .
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Claim 4: If θ ≤
√
γ2
H − γ2

L and γH ≤ 1
2 (1 + θ2) then the following strategies constitute an equilibrium:

ΓH =

{
θ with probability 1− fH
U [θ, γ̄] with probability fH

ΓL =

{
0 with probability 1− fL
U [θ, γ̄] with probability fL

γ̄ = γH +
√
γ2
H − θ2

fH =
2(γH − θ)
γ̄ − θ

= 1−
γH −

√
γ2
H − θ2

θ

fL =
2γL
γ̄ + θ

=
γL
θ

(1−
√
γ2
H − θ2

θ + γH
)

E[up] =
1

2
(γ̄ − θ)(fH(1− fL) + fL(1− fH)) + fHfL(

2

3
γ̄ − 1

3
θ)

Proof. First we establish that the proposed strategies are admissible.

By assumption θ ≤
√
γ2
H − γ2

L ≤ γH , therefore γ̄ is a real number. These same conditions imply that γ̄ ≥ θ.
Furthermore, this condition implies that fH ≥ fL (this condition is not necessary for admissibility but it

will play a role later). As θ ≤ γH , fH ≥ 0, fL is obviously positive. Finally, substituting and simplifying

gives fH − 1 = −γH−
√
γ2
H−θ2

θ < 0; fL ≤ fH ≤ 1. If γH ≤ 1
2 (1 + θ2) then γ̄ ≤ 1. Finally, we check that both

random variables have the required expectations.

E[ΓL] =
2γL
γ̄ + θ

γ̄ + θ

2
= γL

E[ΓH ] = (1− 2(γH − θ)
γ̄ − θ

)θ +
2(γH − θ)
γ̄ − θ

γ̄ + θ

2
= γH

We now show that the proposed strategies are mutual best responses. According to Lemma 1, any best

reply to ΓH has the following structure:

Γ̂L =


0 with probability 1− φM − φH
GM with probability φM

GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM (no mass point at left endpoint exists in GH). Furthermore, no mass

point at θ exists in GM . Such mass point leads to ties with positive probability; using a mass point of θ+ ε

leads to all ties at θ breaking in favor of player L.

In order for Γ̂L to be admissible, it must be that φM ḡM + φH ḡH = γL, which implies

ḡM =
γL − φH ḡH

φM

43



Consider the expected payoff of playing Γ̂L against ΓH :

φM (1− fH + fH

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH

= φM (1− fH + fH
ḡM − θ
γ̄ − θ

) + φH

= φM (1− fH + fH

γL−φH ḡH
φM

− θ
γ̄ − θ

) + φH

= φH
γ̄ − θ − fH ḡH

γ̄ − θ
+ φM

γ̄ − θ − fH γ̄
γ̄ − θ

+
γLfH
γ̄ − θ

.

Observe that the coefficient on φM is equal to 0:

γ̄ − θ − fH γ̄ = γ̄ − θ − 2(γH − θ)
γ̄ − θ

γ̄

=
γ2
H − θ2 − (γ̄ − γH)2

γ̄ − θ
=

γ2
H − θ2 − (

√
γ2
H − θ2)2

γ̄ − θ
= 0.

Thus, the payoff of any admissible best response Γ̂L does not depend on the value of φM or n the random

variable GM . Moreover, as no mass point exists in GH at the left endpoint, ḡH > γ̄. Therefore γ̄−θ−fH γ̄ =

0→ γ̄ − θ − fH ḡH < 0. Hence, in any best response, it must be that φH = 0. Therefore, a random variable

is a best response to ΓH if and only if it has the structure of ΓL, with φH = 0. As the strategy ΓL proposed

in the proposition, satisfies these criteria, ΓL is a best reply to ΓH .

As we have already shown, any best reply to ΓL has the following structure:

Γ̂H =


0 with probability 1− φL − φM − φH
θ with probability φL

GM with probability φM

GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM (no mass point at left endpoint exists in GH). Also, GM has no mass

point at θ.

In order for Γ̂H to be admissible, it must be that φLθ + φM ḡM + φH ḡH = γH , which implies

ḡM =
γH − φH ḡH − φLθ

φM
.
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Consider the expected payoff of playing Γ̂H against ΓL:

φL(1− fL) + φM (1− fL + fL

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH

= φL(1− fL) + φM (1− fL + fL
ḡM − θ
γ̄ − θ

) + φH

= φL(1− fL) + φM (1− fL + fL

γL−φH ḡH−φLθ
φM

− θ
γ̄ − θ

) + φH

= φH
γ̄ − θ − fLḡH

γ̄ − θ
+ (φL + φM )

γ̄ − θ − fLγ̄
γ̄ − θ

+
γHfL
γ̄ − θ

.

Observe that the coefficient on (φL+φM ) is positive, because, as demonstrated previously, θ ≤
√
γ2
H − γ2

L →
fH ≥ fL. Moreover, because ḡH > γ̄the coefficient on φH is strictly less than the one on (φL + φM ). There-

fore, in the best response, φH = 0 and φL + φM = 1. As the strategy in the proposition satisfies these

criteria, it is a best response.

Claim 5: If
√
γ2
H − γ2

L ≤ θ and γL ≤ 1
2 (1− θ2) then the following strategies constitute an equilibrium:

ΓH =


0 with probability 1− fH1 − fH2

θ with probability fH1

U [θ, γ̄] with probability fH2

ΓL =

{
0 with probability 1− fL
U [θ, γ̄] with probability fL

γ̄ = γL +
√
γ2
L + θ2

fH1 =
γH − γL

θ

fH2 = fL = 1−
√
γ2
L + θ2 − γL

θ

E[up] =
1

2
(γ̄ − θ)(fH2(1− fL) + fL(1− fH2)) + fH2fL(

2

3
γ̄ − 1

3
θ)

Proof. First, we establish that the proposed strategies are admissible. Obviously, γ̄ ≥ θ, fH1 ≥ 0. A simple

calculation shows that
√
γ2
L + θ2 − γL ≤ θ, and therefore, fH2 = fL ≥ 0. Furthermore, fH1 + fH2 − 1 =

γH−
√
γ2
L+θ2

θ . As θ ≥
√
γ2
H − γ2

L this difference is negative. Thus, all probabilities are valid. Observe that

γL ≤ 1
2 (1− θ2)→ γ̄ ≤ 1. Next we demonstrate that the expected values are correct:

E[ΓL] = fL(
θ + γ̄

2
) = (1−

√
γ2
L + θ2 − γL

θ
)(
θ + γL +

√
γ2
L + θ2

2
) = γL

E[ΓH ] = fH1θ + fH2(
θ + γ̄

2
) = θ

γH − γL
θ

+ γL = γH

Next, we demonstrate that the strategies are mutual best replies. According to Lemma1, any admissible
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best reply to ΓH , denoted Γ̂L must have the following structure:

Γ̂L =


0 with probability 1− φM − φH
GM with probability φM

GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM (no mass point at left endpoint exists in GH). Furthermore, no mass

point at θ exists in GM . Such mass point leads to ties with positive probability; using a mass point of θ+ ε

leads to all ties at θ breaking in favor of player L. In order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH = γL ⇐⇒ ḡM =
γL − φH ḡH

φM

The expected payoff of using such a strategy against ΓH is given by:

φM (1− fH2 + fH2

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH

= φM (1− fH2 + fH2
ḡM − θ
γ̄ − θ

) + φH

= φM (1− fH2 + fH2

γL−φH ḡH
φM

− θ
γ̄ − θ

) + φH

= φH
γ̄ − θ − fH2ḡH

γ̄ − θ
+ φM

γ̄ − θ − fH2γ̄

γ̄ − θ
+
γLfH2

γ̄ − θ
.

Observe that the coefficient on φH is always less than the coefficient on φM , hence, for a best response it

must be that φH = 0. Furthermore, observe that the coefficient on φM = 0. To see this, note

γ̄(1− fH2) = (γL +
√
γ2
L + θ2)

(−γL +
√
γ2
L + θ2

θ
=
γ2
L − γ2

L + θ2

θ
= θ.

Thus, the payoff of any strategy of the type Γ̂L is independent of φM and GM . Therefore, any admissible

random variable of structure Γ̂Lis a best response, provided φH = 0. As the strategy ΓL is consistent with

these requirements, it is a best response.

We now consider the best response to ΓL. According to Lemma 1, any best reply to ΓL has the following

structure:

Γ̂H =


0 with probability 1− φL − φM − φH
θ with probability φL

GM with probability φM

GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM (no mass point at left endpoint exists in GH). Also, GM has no mass

point at θ.
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In order for Γ̂H to be admissible, it must be that φLθ + φM ḡM + φH ḡH = γH , which implies

ḡM =
γH − φH ḡH − φLθ

φM
.

Consider the expected payoff of playing Γ̂H against ΓL:

φL(1− fL) + φM (1− fL + fL

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH

= φL(1− fL) + φM (1− fL + fL
ḡM − θ
γ̄ − θ

) + φH

= φL(1− fL) + φM (1− fL + fL

γH−φH ḡH−φLθ
φM

− θ
γ̄ − θ

) + φH

= φH
γ̄ − θ − fLḡH

γ̄ − θ
+ (φL + φM )

γ̄ − θ − fLγ̄
γ̄ − θ

+
γHfL
γ̄ − θ

.

Observe that the coefficient on (φL + φM ) = 0 because, fL = fH2 and, as demonstrated previously

γ̄(1 − fH2) − θ = 0. Thus, the payoff to any admissible Γ̂L is independent of φL, φM , GM . However,

because ḡH > γ̄ the coefficient on φH is negative. Thus, in a best response, it must be that φH = 0. Hence,

any random variable of the structure Γ̂H is a best response, provided φH = 0. As the strategy in the propo-

sition satisfies these criteria, it is a best response.

Claim 6: If
√
γ2
H − γ2

L ≤ θ and 1
2 (1−θ2) ≤ γL ≤ 2−2θ

2−θ then the following strategies constitute an equilibrium:

ΓH =


0 with probability 1− fH1 − fH2 − fH3

θ with probability fH1

U [θ, γ̄] with probability fH2

1 with probability fH3

ΓL =


0 with probability 1− fL1 − fL2

U [θ, γ̄] with probability fL1

1 with probability fL2

γ̄ = 2− γL −
√
γ2
L + θ2

fH1 =
γH − γL

θ

fH2 = fL1 =
γ̄ − θ
2− γ̄

=
(γL −

√
γ2
L + θ2)(γL +

√
γ2
L + θ2 − (2− θ))

θ2

fH3 = fL2 =
2− 2γ̄

2− γ̄
= 2(1−

√
γ2
L + θ2 − γL

θ2
)

Proof. We first demonstrate that the strategies of both players are admissible. First, observe that if
1
2 (1 − θ2) ≤ γL ≤ 2−2θ

2−θ then θ ≤ γ̄ ≤ 1. These inequalities also imply that fH2 = fL1 ≥ 0 and fH3 =

fL2 ≥ 0. It is also obvious that fH1 ≥ 0. To prove that all probabilities are less than 1, we establish that

fH1 + fH2 + fH3 ≤ 1. This inequality implies that fL1 + fL2 ≤ 1.

fH1 + fH2 + fH3 − 1 =
γH −

√
γ2
L + θ2

θ
≤ 0 if θ ≥

√
γ2
H − γ2

L
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Finally, we demonstrate that both random variables have the correct expected values.

E[ΓL] = fL1
θ + γ̄

2
+ fL2 =

γ̄ − θ
2− γ̄

(
θ + γ̄

2
) +

2− 2γ̄

2− γ̄
= γL

E[ΓH ] = fH1θ + E[ΓL] = γH

Next, we establish that the proposed strategies are mutual best responses. According to Lemma 1, any

admissible best response to ΓH , denoted Γ̂L must have the following structure:

Γ̂L =


0 with probability 1− φM − φH − φH1

GM with probability φM

GH with probability φH

1 with probability φH1

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM , and if a mass point exists at 1, it is not part of GH (no mass point

exists at endpoints of GH). Furthermore, no mass point at θ exists in GM . Such mass point leads to ties

with positive probability; using a mass point of θ + ε leads to all ties at θ breaking in favor of player L. In

order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH + φH1 = γL ⇐⇒ ḡM =
γL − φH ḡH − φH1

φM

The expected payoff of using such a strategy against ΓH is given by:

φM (1− fH2 − fH3 + fH2

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH(1− fH3) + φH1(1− fH3

2
)

= φM (1− fH2 − fH3 + fH2
ḡM − θ
γ̄ − θ

) + φH(1− fH3) + φH1(1− fH3

2
)

= φM (1− fH2 − fH3 + fH2

γL−φH ḡH−φH1

φM
− θ

γ̄ − θ
) + φH(1− fH3) + φH1(1− fH3

2
)

= φM
2(γ̄ − θ)(1− fH3)− 2γ̄fH2

2(γ̄ − θ)
+ φH

2(γ̄ − θ)(1− fH3)− 2γ̄fH2 − 2fH2(ḡH − γ̄)

2(γ̄ − θ)

+ φH1
2(γ̄ − θ)(1− fH3)− 2γ̄fH2

2(γ̄ − θ)
+

2γLfH2

2(γ̄ − θ)
.

Observe first that the coefficient on φH is less than the coefficient on either φM or φH , hence, for any best

response, φH = 0. Furthermore,

2(γ̄ − θ)(1− fH3)− 2γ̄fH2 = 2(γ̄ − θ)(1− 2− 2γ̄

2− γ̄
)− 2γ̄

γ̄ − θ
2− γ̄

= 0.

Thus, the payoff of any admissible random variable does not depends on φH1, φM , GM . Thus any random

variable with the structure Γ̂L and φH = 0 is a best response to ΓH . In particular, ΓL is a best response to

ΓH .

Next, we show that ΓH is a best response to ΓL. According to Lemma 1, any admissible best response
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to ΓL, denoted Γ̂H must have the following structure:

Γ̂H =


0 with probability 1− φM − φH − φH1

GM with probability φM

GH with probability φH

1 with probability φH1

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM , and if a mass point exists at 1, it is not part of GH (no mass point

exists in GH). In order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH + φH1 = γH ⇐⇒ ḡM =
γH − φH ḡH − φH1

φM
.

The expected payoff of using such a strategy against ΓL is given by:

φM (1− fL1 − fL2 + fL1

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH(1− fL2) + φH1(1− fL2

2
)

Because of the equalities fL1 = fH2, fL2 = fH3 this equation becomes

φM (1− fH2 − fH3 + fH2
ḡM − θ
γ̄ − θ

) + φH(1− fH3) + φH1(1− fH3

2
)

= φM (1− fH2 − fH3 + fH2

γL−φH ḡH−φH1

φM
− θ

γ̄ − θ
) + φH(1− fH3) + φH1(1− fH3

2
)

= φM
2(γ̄ − θ)(1− fH3)− 2γ̄fH2

2(γ̄ − θ)
+ φH

2(γ̄ − θ)(1− fH3)− 2γ̄fH2 − 2fH2(ḡH − γ̄)

2(γ̄ − θ)

+ φH1
2(γ̄ − θ)(1− fH3)− 2γ̄fH2

2(γ̄ − θ)
+

2γHfH2

2(γ̄ − θ)
.

Thus, from the previous equation, it follows that in any best response φH = 0. Furthermore, the payoff of

any admissible strategy is independent of φM , φH1, GM , thus any admissible strategy with φH = 0 is a best

response. As ΓH satisfies these criteria it is a best response.

Claim 7: If θ ≤
√
γ2
H − γ2

L and 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ then the following strategies constitute an

equilibrium:

ΓH =


θ with probability 1− fH1 − fH2

U [θ, γ̄] with probability fH1

1 with probability fH2

ΓL =


0 with probability 1− fL1 − fL2

U [θ, γ̄] with probability fL1

1 with probability fL2

γ̄ = 2− γH −
√
γ2
H − θ2

fH1 =
γ̄ − θ
2− γ̄
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fH2 =
2− 2γ̄

2− γ̄

fL1 =
2γL(γ̄ − θ)

(2− γ̄)2 − θ2

fL2 =
4γL(1− γ̄)

(2− γ̄)2 − θ2

E[up] =

Proof. We first demonstrate that the strategies of both players are admissible. As θ ≤
√
γ2
H − γ2

L ≤ γH , γ̄

is a real number. Observe that 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ → θ ≤ γ̄ ≤ 1. Under these conditions, clearly

both fH1, fH2 are positive. Furthermore, fH1 + fH2 − 1 = − θ
2−γ̄ < 0. Observe next that,

θ ≤
√
γ2
H − γ2

L → γ̄ ≤ 2− γL −
√
γ2
L + θ2

This inequality will play a significant role again later in the proof. For now, note that

2− γL −
√
γ2
L + θ2 − (θ + 2(1− γL)) = γL − θ −

√
γ2
L + θ2 < 0

The right hand side equals zero when θ = 0 and has a negative derivative in θ. Thus,

γ̄ ≤ 2− γL −
√
γ2
L + θ2 → γ̄ ≤ θ + 2(1− γL)

Observe that θ ≤ γH → 2− γ̄ = γH +
√
γ2
H − θ2 ≥ θ. Hence fL1, fL2 ≥ 0. Next, observe that fL1 +fL2−1 =

γ̄−(θ+2(1−γL))
2−γ̄−θ ≤ 0 as described above. Therefore ΓH ,ΓL are random variables. They are admissible if they

satisfy the constraints on the expected values.

E[ΓH ] = (1− fH1 + fH2)θ + fH1
θ + γ̄

2
+ fH2 =

θ2 + (2− γ̄)2

2(2− γ̄)
= γH

E[ΓL] = fL1
θ + γ̄

2
+ fL2 = γL

Note also that θ ≤
√
γ2
H − γ2

L and 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ means that γL ≤ 2−2θ
2−θ .

Next, we establish that the proposed strategies are mutual best responses. According to Lemma 1, any

admissible best response to ΓH , denoted Γ̂L must have the following structure:

Γ̂L =


0 with probability 1− φM − φH − φH1

GM with probability φM

GH with probability φH

1 with probability φH1

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM , and if a mass point exists at 1, it is not part of GH (no mass point

exists at endpoints of GH). Furthermore, no mass point at θ exists in GM . Such mass point leads to ties

with positive probability; using a mass point of θ + ε leads to all ties at θ breaking in favor of player L. In
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order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH + φH1 = γL ⇐⇒ ḡM =
γL − φH ḡH − φH1

φM
.

The expected payoff of using such a strategy against ΓH is given by:

φM (1− fH1 − fH2 + fH1

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH(1− fH2) + φH1(1− fH2

2
)

= φM (1− fH1 − fH2 + fH1
ḡM − θ
γ̄ − θ

) + φH(1− fH2) + φH1(1− fH2

2
)

= φM (1− fH1 − fH2 + fH1

γL−φH ḡH−φH1

φM
− θ

γ̄ − θ
) + φH(1− fH2) + φH1(1− fH2

2
)

= φM
(γ̄ − θ)(1− fH2)− γ̄fH1

(γ̄ − θ)
+ φH1

(2− fH2)(γ̄ − θ)− 2fH1

2(γ̄ − θ)

+ φH(
(2− fH2)(γ̄ − θ)− 2fH1

2(γ̄ − θ)
− fH1(ḡH − γ̄)

γ̄ − θ
) +

γLfH1

γ̄ − θ
.

Clearly, the coefficient on φH is less than the coefficient on φH1. Thus, in any best response, φH = 0. It is

also easy to check that the coefficient on φM , φH1 are equal to zero. Thus the payoff to using a strategy of

type Γ̂L is independent of φM , φH1, GM . Thus any random variable in class Γ̂L is a best response, provided

φH = 0. As ΓL satisfies these criteria, it is a best response.

Next, we show that ΓH is a best response to ΓL. According to Lemma 1, any admissible best response

to ΓL, denoted Γ̂H must have the following structure:

Γ̂H =


0 with probability 1− φM − φH − φH1

GM with probability φM

GH with probability φH

1 with probability φH1

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x), while

GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and density gH(x). If a mass

point exists at γ̄ then it is part of GM , and if a mass point exists at 1, it is not part of GH (no mass point

exists in GH). In order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH + φH1 = γH ⇐⇒ ḡM =
γH − φH ḡH − φH1

φM

The expected payoff of using such a strategy against ΓL is given by:

φM (1− fL1 − fL2 + fL1

∫ γ̄

θ

x− θ
γ̄ − θ

gM (x) dx) + φH(1− fL2) + φH1(1− fL2

2
)

By symmetry with the previous calculations this simplifies to:

φM
(γ̄ − θ)(1− fL2)− γ̄fL1

(γ̄ − θ)
+ φH1

(2− fL2)(γ̄ − θ)− 2fL1

2(γ̄ − θ)

+φH(
(2− fL2)(γ̄ − θ)− 2fL1

2(γ̄ − θ)
− fL1(ḡH − γ̄)

γ̄ − θ
) +

γHfL1

γ̄ − θ
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As in the previous calculation, φH1 = 0 for any best response. Next observe that

2((γ̄ − θ)(1− fL2)− γ̄fL1) = (2− fL2)(γ̄ − θ)− 2fL1 =
2(γ̄ − θ)

(2− γ̄)2 − θ2

=
2(γ̄ − θ)

(2− γ̄)2 − θ2
(−γ̄2 + (4− 2γL) + θ2 + 4γL − 4)

This is larger than zero, provided γ̄ ≤ 2− γL −
√
γ2
L + θ2, which was demonstrated previously. Hence, any

random variable in class Γ̂H is a best response, provided φH = 0. As the strategy ΓH satisfies these criteria,

it is a best response.

Claim 8: If γL ≤ 2−2θ
2−θ and γH ≥ 2−2θ+θ2

2−θ then it is a Nash Equilibrium for player L to use a fully revealing

strategy, and for player H to use a quasi-revealing strategy.

Proof. A quasi-revealing strategy for player i is the following binary random variable Gi:

Gi =

{
θ with probability 1−γi

1−θ
1 with probability γi−θ

1−θ

This is indeed a random variable if γi ≥ θ. It is also admissible:

θ(
1− γi
1− θ

) +
γi − θ
1− θ

= γi

We refer to this strategy as quasi-revealing because, like the fully revealing signal, it is binary and a good

signal realization reveals the proposal to be good for sure. Unlike the fully revealing signal, a bad realization

does not reduce the principal’s posterior to 0, but only to θ.

A fully revealing strategy is always admissible. A quasi-revealing strategy is well-defined iff γH ≥ θ. By

assumption, γH ≥ 2−2θ+θ2

2−θ = θ + 2 (1−θ)2
2−θ ≥ θ, thus a quasi-revealing strategy is admissible for player H.

We first establish that a quasi-revealing strategy for player H is a best reply to a fully revealing strategy

for player L. According to Lemma 1, any best reply to a fully revealing strategy can be represented in the

following way:

Γ̂H =


0 with probability 1− φM − φH
GM with probability φM

1 with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x). If a

mass point exists at 1, it is not part of GM . In order for such a strategy to be admissible it must be that

φM ḡM + φH = γH

Thus, player H best response is characterized by the solution to the following maximization:

maxφM ,φH ,g φM (1− γL) + φH(1− γL
2 )

s.t. φM ḡM + φH = γH , φM + φH ≤ 1

φM ≥ 0, φH ≥ 0, ḡM ≥ θ
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Thus for any best response it must be that φM ḡM + φH = γH and φM + φH = x ≤ 1 which implies

φH =
γH − ḡMx

1− ḡM
, φM =

x− γH
1− ḡM

.

In addition,

φH ≥ 0 and φM ≥ 0 ⇐⇒ γH ≤ x ≤
γH
ḡM

The payoff of playing this strategy is simply

u(x, gi) =
x− γH
1− ḡM

(1− γL) +
γH − ḡMx

1− ḡM
(1− γL

2
)

Observe that if some combination of (x, ḡM ) is feasible, then any combination with the same value of x but

smaller value of ḡM is also feasible. Because du
dḡM

= − 1
2γH

x−γH
(1−ḡM )2 < 0 a best response must have ḡM = θ.

Thus,

u(x, θ) =
x− γH
1− θ

(1− γL) +
γH − θx

1− θ
(1− γL

2
) =

2(1− γL)− (2− γL)θ

2(1− θ)
x+

γHγL
2(1− θ)

Therefore, provided the coefficient on x is positive, the best response will be to set x to its largest feasible

value min[1, γHθ ]. However, γH ≥ 2−2θ+θ2

2−θ → γH ≥ θ. Thus, if the coefficient on x is positive, the best

response of H is to choose x = 1, which gives φM = 1−γH
1−θ , φH = γH−θ

1−θ , the quasi-revealing signal. Therefore,

if

(2− γL)θ − 2(1− γL)

2(1− θ)
≥ 0 ⇐⇒ γL ≤

2− 2θ

2− θ

The best reply of player H to a fully revealing signal on the part of L is a quasi-revealing signal. Next,

consider the best reply of player L to a quasi-revealing signal from player H.

Γ̂L =


0 with probability 1− φM − φH
GM with probability φM

1 with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM ] = ḡM , and density gM (x). Clearly,

choosing GM with a mass point at θ leads to ties with positive probability. Choosing a mass point at θ + ε

leads all ties to break in favor of player L, causing a discrete jump in payoff when a tie occurs, at expense

of a marginal reduction in payoff otherwise. Thus, no mass point exists on θ in a best response. If a mass

point exists at 1, it is not part of GM . In order for such a strategy to be admissible it must be that

φM ḡM + φH = γH

Thus, player H best response is characterized by the solution to the following maximization:

maxφM ,φH ,g φM (1− γL) + φH(1− γL
2 )

s.t. φM ḡM + φH = γH , φM + φH ≤ 1

φM ≥ 0, φH ≥ 0, ḡM > θ

Note that, because ties are dominated, the last inequality is strict. Thus for any best response it must be
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that φM ḡM + φH = γH and φM + φH = x ≤ 1, which implies

φH =
γH − ḡMx

1− ḡM
, φM =

x− γH
1− ḡM

In addition,

φH ≥ 0 and φM ≥ 0 ⇐⇒ γH ≤ x ≤
γH
ḡM

The payoff of playing this strategy is simply

u(x, gi) =
x− γH
1− ḡM

(1− γL) +
γH − ḡMx

1− ḡM
(1− γL

2
)

Observe that if some combination of (x, ḡM ) is feasible, then any combination with the same value of x but

smaller value of ḡM is also feasible. Because du
dḡM

= − 1
2γH

x−γH
(1−ḡM )2 < 0 agent L would always like to set ḡM to

be as small as possible, but still above θ. Thus, because of an open set problem, if φM > 0 the best response

is not uniquely defined. Observe, however, that the payoff of using any strategy with φM > 0 is strictly less

than the payoff the player would expect if all ties broke in favor of L, and ḡM = θ, but if φM = 0, then the

issue of ties is irrelevant. The payoff of agent L if all ties break in his favor is given by the following:

ū(x, θ) =
x− γL
1− θ

(1− γH) +
γL − θx

1− θ
(1− γH

2
) =

2(1− γH)− (2− γH)θ

2(1− θ)
x+

γHγL
2(1− θ)

.

Therefore, provided the coefficient on x is negative, player L best response is well-defined, as it requires

x = γL which means that L plays the fully revealing signal and φM = 0. Therefore, if

(2− γH)θ − 2(1− γH)

2(1− θ)
≤ 0 ⇐⇒ γH ≥

2− 2θ

2− θ

Since γH ≥ 2−2θ+θ2

2−θ ≥ 2−2θ
2−θ , the required inequality holds. The best reply of player L to player H providing

a fully-revealing signal is to provide a quasi-revealing signal.
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