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PAIRWISE INTERACTIVE KNOWLEDGE AND NASH EQUILIBRIUM

Christian W. Bach and Elias Tsakas

We provide epistemic conditions for Nash equilibrium, which are considerably weaker

than the standard ones by Aumann and Brandenburger (1995). Indeed, we simultane-

ously replace common knowledge of conjectures and mutual knowledge of rationality

with strictly weaker epistemic conditions of pairwise common knowledge of conjectures

and pairwise mutual knowledge of rationality respectively. It is also shown that, unlike

the Aumann and Brandenburger’s conditions, ours do not imply common knowledge of

rationality. Surprisingly, they actually do not even imply mutual knowledge of rationality.

Keywords: Nash equilibrium, pairwise common knowledge, pairwise mutual knowl-

edge, rationality, conjectures, epistemic game theory.

1. INTRODUCTION

In their seminal paper, Aumann and Brandenburger (1995) provided epistemic conditions for Nash

equilibrium. Accordingly, if there exists a common prior, then mutual knowledge of rationality and

common knowledge of each player’s conjecture about the opponents’ strategies imply Nash equilibrium

in normal form games with more than two players. As they pointed out, in their epistemic conditions

common knowledge enters the picture in an unexpected way ; in fact, they stressed that what is needed

is common knowledge of the players’ conjectures and not of the players’ rationality (Aumann and

Brandenburger, 1995, p. 1163). Their result challenged the widespread view that common knowledge

of rationality is essential for Nash equilibrium. Subsequently, Polak (1999) showed that in complete

information games, Aumann and Brandenburger’s conditions actually do imply common knowledge of

rationality. In a sense, his result thus restored some of the initial belief in the importance of common

knowledge of rationality for Nash equilibrium.

Here, we introduce weaker epistemic conditions for Nash equilibrium than Aumann and Branden-

burger (1995), by simultaneously relaxing their two main assumptions. Our new conditions are based

on imposing pairwise mutual knowledge of rationality and pairwise common knowledge of conjectures

only for some pairs of players. This constitutes a significant weakening of Aumann and Brandenburger’s

epistemic foundation, as their conditions correspond to pairwise mutual knowledge of rationality and

pairwise common knowledge of conjectures for all pairs of players. Note that this difference is particu-

larly important for large games, such as economies with many agents.

Apart from generalizing Aumann and Brandenburger’s standard result, we also contribute to the

debate about the connection between common knowledge of rationality and Nash equilibrium. Indeed,

we prove that – contrary to what Polak (1999) showed for Aumann and Brandenburger’s foundation –
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2 C.W. BACH AND E. TSAKAS

our conditions do not entail common knowledge of rationality. Surprisingly, they actually do not even

imply mutual knowledge of rationality.

2. PRELIMINARIES

2.1. Games

Let Γ = (I, (Si)i∈I , (Ui)i∈I) be game in normal form, where I = {1, . . . , N} denotes the finite set

of players with typical element i, and Si denotes the finite set of pure strategies, also called choices,

with typical element si for every player i ∈ I. Moreover, define S := ×i∈ISi with typical element

s = (s1, . . . , sN) and S−i := ×j∈I\{i}Sj with typical element s−i = (s1, . . . , si−1, si+1, . . . , sN). Then, the

function Ui : Si × S−i → R denotes player i’s utility function.

A probability measure µi ∈ ∆(S−i) on the set of the opponents’ choice combinations is called a

conjecture of i, where µi(s−i) signifies the probability that i attributes to the opponents playing s−i.

Slightly abusing notation, let µi(sj) := margSj
µi(sj) denote the probability that i assigns to j playing sj.

Note that it is standard to admit correlated beliefs, i.e. µi is not necessarily a product measure, hence the

probability µi(s1, . . . , si−1, si+1, . . . , sN) can differ from the product µi(s1) · · ·µi(si−1)µi(si+1) · · ·µi(sN)

of the marginal probabilities.1 Given a conjecture µi ∈ ∆(S−i), player i’s expected utility from playing

some strategy si ∈ Si is given by

ui(si, µi) :=
∑

s−i∈S−i

µi(s−i)Ui(si, s−i).

We say that a strategy si is a best response to µi, and write si ∈ BRi(µi), whenever ui(si, µi) ≥ ui(s
′
i, µi)

for all s′i ∈ Si.

A randomization over a player’s pure strategies is called mixed strategy, and is typically denoted by

σi ∈ ∆(Si) for all i ∈ I. Let ∆(S1) × · · · × ∆(SN) denote the space of mixed strategy profiles, with

typical element (σ1, . . . , σN). Slightly abusing terminology, we say that a pure strategy si ∈ Si is a

best response to σ, and write si ∈ BRi(σ), whenever si is a best response to the product measure

σ−i := margS−i
σ, which is an element of ∆(S1) × · · · × ∆(Si−1) × ∆(Si+1) × · · · × ∆(SN) ⊆ ∆(S−i).

Nash’s notion of equilibrium can then be defined as follows: a mixed strategy profile (σ1, . . . , σN) is a

Nash equilibrium of the game Γ, whenever si ∈ BRi(σ) for all si ∈ supp(σi) and for all i ∈ I.

1Intuitively, a player’s belief on his opponents’ choices can be correlated, even though players choose independently

from each other.
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2.2. Epistemic Models

The epistemic approach to game theory analyzes the relation between knowledge, belief, and choice

of rational players. While classical game theory is based on the two basic primitives – game form and

choice – epistemic game theory adds an epistemic framework as a third elementary component so that

knowledge and beliefs can be explicitly modelled in games.

Here, we follow Aumann’s approach to epistemic game theory and use the partitional model introduced

by Aumann (1976). Formally, an epistemic model of some game Γ is a tuple AΓ =
(
Ω, π, (Pi)i∈I , (ŝi)i∈I

)
,

also called Aumann model of Γ, consisting of a finite set Ω of possible worlds, also called states, with

typical element ω, together with a full support common prior π ∈ ∆(Ω). Furthermore, every player

i ∈ I is endowed with an information partition Pi of Ω, as well as a choice function ŝi : Ω → Si. The

cell of Pi containing the world ω is denoted by Pi(ω) and contains all worlds considered possible by i at

ω. Besides, a set E ⊆ Ω of possible worlds is called event. Knowledge is formalized in terms of events:

the set of states at which agent i knows E is defined as

Ki(E) := {ω ∈ Ω : Pi(ω) ⊆ E}.

Then, it is said that i knows E at ω, whenever ω ∈ Ki(E). For every player i ∈ I his choice function

ŝi specifies his pure strategy at each world and is assumed to be Pi-measurable, i.e. ŝi(ω
′) = ŝi(ω) for

all ω′ ∈ Pi(ω), which implies that i knows his own strategy. Note that ŝi induces a coarsening of Pi

consisting of events of the form [si] := {ω ∈ Ω : ŝi(ω) = si}.
An event is mutually known if everyone knows it. Formally, E ⊆ Ω is mutual knowledge at ω, whenever

ω ∈ K(E), where

K(E) :=
⋂
i∈I

Ki(E).

Iterating the mutual knowledge operator then yields higher-order mutual knowledge. Formally, m-

order mutual knowledge of E is inductively defined by Km(E) := K(Km−1(E)) for all m > 0, with

K1(E) := K(E). Then, an event E is commonly known whenever everyone knows E, everyone knows

that everyone knows E, etc. Formally, common knowledge of E can then be stated as

CK(E) :=
⋂
m>0

Km(E).

Aumann (1976) introduced an alternative yet formally equivalent definition of common knowledge in

terms of the finest common coarsening of the players’ information partitions, also called the meet.

Formally, let M := P1 ∧ · · · ∧ PN denote the meet, with M(ω) being the element of M that contains
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ω. It can be shown that

CK(E) = {ω ∈ Ω : M(ω) ⊆ E}.

Given an epistemic model AΓ, for every player i ∈ I conjectures about the opponents’ choices can be

derived at every world ω ∈ Ω from the common prior. Formally, for every world ω ∈ Ω and for every

s−i ∈ S−i, the probability that i’s conjecture assigns to s−i is defined as

µ̂i(ω)(s−i) := π
(
[s−i] | Pi(ω)

)
,

where [s−i] := [s1]∩ · · · ∩ [si−1]∩ [si+1]∩ · · · ∩ [sn]. Note that µ̂i is Pi-measurable, i.e. µ̂i(ω
′) = µ̂i(ω) for

all ω′ ∈ Pi(ω). Henceforth, let

[µi] := {ω ∈ Ω : µ̂i(ω) = µi}

denote the event that player i entertains conjecture µi.

Furthermore, player i is rational at world ω, whenever ŝi(ω) ∈ BRi

(
µ̂i(ω)

)
. Let

Ri := {ω ∈ Ω : ŝi(ω) ∈ BRi

(
µ̂i(ω)

)
}

denote the event that i is rational. Rationality of all players is then given by the event

R :=
⋂
i∈I

Ri.

2.3. Aumann and Brandenburger’s Epistemic Conditions for Nash equilibrium

In their seminal paper, Aumann and Brandenburger (1995) provide epistemic conditions for Nash

equilibrium.2 Accordingly, if conjectures are derived from a common prior and are commonly known,

while at the same time rationality as well as the utility functions are mutual knowledge, then all players

different from i entertain the same marginal conjecture about i’s choice, and the marginal conjectures

constitute a Nash equilibrium of the game. Fixing common knowledge of the game as an implicit

background assumption, Aumann and Brandenburger’s epistemic foundation for Nash equilibrium can

formally be stated as follows.

Theorem 1 (Aumann and Brandenburger (1995)) Let Γ be a game and AΓ be an epistemic model

of it. Suppose that at some world ω ∈ Ω there exists a tuple (µ1, . . . , µN) of conjectures such that

ω ∈ K(R) ∩ CK(
⋂

i∈I [µi]). Then, there exists a mixed strategy profile (σ1, . . . , σN) such that

2Note that Aumann and Brandenburger (1995) employ the formalism of type structures, which is notationally distinct

yet formally equivalent to Aumann models.
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(i) margSi
µj = σi for all j ∈ I \ {i},

(ii) (σ1, . . . , σN) is a Nash equilibrium of Γ.

Subsequently, Polak (1999) shows that common knowledge of conjectures and mutual knowledge of

rationality imply common knowledge of rationality. In the context of Theorem 1, Polak’s result implies

that sufficient conditions for Nash equilibrium without common knowledge of rationality need to relax

common knowledge of conjectures or mutual knowledge of rationality. In fact, we will weaken both

assumptions in Section 4 below and yet obtain Nash equilibrium.

3. PAIRWISE INTERACTIVE KNOWLEDGE

The standard intuitive explanation for the emergence of common knowledge is based on public an-

nouncement. Accordingly, once an event is publicly announced it becomes common knowledge in the

sense that not only everyone knows it, but also everyone knows that everyone knows it, etc. Note that

for mutual knowledge to obtain, the agents are only required to each know the event, and hence mere

private announcements suffice.

Yet, an event may be publicly (privately) announced to some but not all players. For instance, an

event could be publicly (privately) announced to Alice and Bob, but not to Claire. Common knowledge

(mutual knowledge) of the event between Alice and Bob would then emerge, but not necessarily common

knowledge (mutual knowledge). Due to such epistemic possibilities we now introduce pairwise interactive

knowledge operators.

Let E ⊆ Ω be some event and i, j ∈ I be two players. We say that E is pairwise mutual knowledge

between i and j whenever they both know E. Formally, pairwise mutual knowledge of E between i and

j is denoted by the event

Ki,j(E) := Ki(E) ∩Kj(E).

Note that mutual knowledge implies pairwise mutual knowledge, but not conversely. We say that E is

pairwise common knowledge between i and j whenever E is commonly known between them. Formally,

let Mi,j := Pi ∧ Pj with Mi,j(ω) denoting the element of Mi,j that contains ω. Pairwise common

knowledge of E between i and j is then defined as the event

CKi,j(E) := {ω ∈ Ω : Mi,j(ω) ⊆ E}.

Observe that, as Mi,j is a refinement of M, common knowledge implies pairwise common knowledge,

but not conversely.
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In contrast to the standard notions of mutual and common knowledge, our two pairwise epistemic

operators describe interactive knowledge only locally for pairs of agents, postulating the existence of

exclusively binary relations of epistemic relevance. Formally, we represent a set of such binary relations

by means of an undirected graph G = (I, E), where the set of vertices I denotes the set of players from

Γ, and the set of edges E describe binary symmetric relations (i, j) ∈ I × I between pairs of players.

The graph G does neither enrich the epistemic model nor add any additional structure to the game

whatsoever, but only provides a formal framework for expressing pairwise local conditions of interactive

knowledge, e.g. a graph containing an edge between i and j but not between j and k can be used to

model a situation where an event is pairwise mutual knowledge between i and j but not between j and

k. Thus, the connectedness of two agents by an edge is of purely epistemic and not physical character.

However, G could also be interpreted as a network. For instance, in a large economy agents may have

access to information about relevant personal characteristics – such as rationality or conjectures – of

their neighbours only.

Next, some graph theoretic notions are recalled. A sequence (ik)mk=1 of players is a path whenever

(ik, ik+1) ∈ E for all k ∈ {1, . . . ,m − 1}, i.e. in a path every two consecutive players are linked by an

edge. Moreover, a graph G is called connected if it contains a path (ik)mk=1 such that for every i ∈ I

there is some k ∈ {1, . . . ,m} with ik = i. Besides, G is Hamiltonian, whenever there exists a path

(ik)Nk=1 such that for every i ∈ I there is a unique k ∈ {1, . . . , N} with ik = i, and also (i1, iN) ∈ E .

Intuitively, a Hamiltonian graph contains a cycle in which each player appears exactly once. In addition,

G is complete, if (i, j) ∈ E for all i, j ∈ I.

Two specific pairwise-local epistemic conditions are now introduced.

Definition 1 Let Γ be a game, AΓ be an epistemic model of it, G be an undirected graph, ω be a

world, and (µ1, . . . , µN) be a tuple of conjectures.

• Rationality is G-pairwise mutual knowledge at ω, whenever ω ∈ Ki,j(Ri ∩Rj) for all (i, j) ∈ E .

• Conjectures are G-pairwise common knowledge of conjectures at ω, whenever ω ∈ CKi,j([µi]∩[µj])

for all (i, j) ∈ E .

Note that henceforth an edge between two agents i and j in a graph G signifies that i and j entertain

both pairwise mutual knowledge of rationality as well as pairwise common knowledge of conjectures.

The standard notions of mutual knowledge of rationality and common knowledge of conjectures, which

are also used by Aumann and Brandenburger (1995), are weakened by G-pairwise mutual knowledge of
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rationality and G-pairwise common knowledge of conjectures, respectively. Formally, observe that

K(R) =
⋂
i∈I

Ki(R1 ∩ · · · ∩RN)

⊆
⋂
i∈I

⋂
j∈I:(i,j)∈E

Ki,j(R1 ∩ · · · ∩RN)

⊆
⋂
i∈I

⋂
j∈I:(i,j)∈E

Ki,j(Ri ∩Rj),

as well as

CK
(⋂
i∈I

[µi]
)
⊆
⋂
i∈I

⋂
j∈I:(i,j)∈E

CKi,j([µi] ∩ [µj]).

Indeed, our two concepts are considerably weaker than the standard notions on two distinct dimen-

sions. Firstly, the events rationality and conjectures in Definition 1 only refer to the rationality and

the conjectures, respectively, of the two connected agents. Secondly, our two pairwise-local epistemic

conditions impose epistemic restrictions only on the pairs of connected players in the graph, whereas

standard interactive knowledge does so across all pairs of players. In fact, mutual knowledge and com-

mon knowledge coincide with G-mutual knowledge and G-common knowledge, respectively, whenever

G is complete.

The following example illustrates the two new concepts of G-pairwise mutual knowledge of rationality

and G-pairwise common knowledge of conjectures and also relates them to the standard notions of

mutual knowledge of rationality and common knowledge of conjectures.

Example 1 Consider the asymmetric coordination game Γ =
(
I, (Si)i∈I , (Ui)i∈I

)
, where I = {Alice,

Bob, Claire, Donald}, Si = {h, `} for all i ∈ I, and

Ui(sAlice, sBob, sClaire, sDonald) =


2 if si = h for all i ∈ I,

1 if si = ` for all i ∈ I,

0 otherwise.

Now, suppose that an epistemic model AΓ of Γ is given by

Ω = {ω1, ω2, ω3} endowed with a uniform common prior π,

PAlice =
{
{ω1}` ; {ω2, ω3}`

}
,

PBob =
{
{ω1}` ; {ω2}` ; {ω3}h

}
,

PClaire =
{
{ω1, ω2}` ; {ω3}h

}
,

PDonald =
{
{ω1}` ; {ω2}` ; {ω3}h

}
,
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with the information sets’ indices denoting the respective player’s strategy given by the choice function.

Let G = (I, E) be a Hamiltonian graph such that

I = {Alice, Bob, Claire,Donald},

E = {(Alice, Bob), (Bob, Claire), (Claire,Donald), (Donald, Alice)}.

Observe that the conjectures are G-pairwise common knowledge at ω1. Indeed, Alice’s and Bob’s con-

jectures – Alice being certain that each of her opponents plays ` and Bob being certain that each of

his opponents plays ` – are pairwise common knowledge between them. Also, conjectures are pairwise

common knowledge between Bob and Claire, between Claire and Donald, as well as between Donald

and Alice. However, conjectures are not commonly known. In fact, they are not even mutually known,

as Claire does not know Alice’s conjecture at ω1: given her information set PClaire(ω1) = {ω1, ω2}, she

attaches probability of only 1
2

to Alice being certain that each of her opponents chooses `.

Furthermore, note that rationality is G-pairwise mutual knowledge at ω1. However, it is not mutually

known at ω1 that everyone is rational. Indeed, Claire does not know that Alice is rational at ω1, since

` is not a best response for Alice at world ω2.

Besides, observe that for every i ∈ I, the remaining players share the same marginal conjecture about

i’s choice at ω1, i.e. margSi
µ̂j(ω1) = σi for all j ∈ I \ {i}, where the probability measure σi assigns

probability 1 to i playing `. Also, (`, `, `, `) constitutes a Nash equilibrium of Γ. /

In the preceding example neither the conjectures nor rationality are mutually known. Hence, the

two central elements of Aumann and Brandenburger’s conditions for Nash equilibrium are violated,

yet both of their conclusions do hold. Indeed, players entertain the same marginal conjectures about

their opponents’ strategies, and also these marginal conjectures form a Nash equilibrium. On the basis

of Example 1 the natural question then arises, whether there exists a general relation between G-

mutual knowledge of rationality and G-common knowledge of conjectures on the one hand, and Nash

equilibrium on the other hand.

4. PAIRWISE INTERACTIVE KNOWLEDGE AND NASH EQUILIBRIUM

We now weaken Aumann and Brandenburger’s conditions for Nash equilibrium by means of pairwise

interactive knowledge. Indeed, the following result shows that G-pairwise mutual knowledge of ratio-

nality and G-pairwise common knowledge of conjectures already suffice for Nash equilbrium, if G is

Hamiltonian.

Theorem 2 Let Γ be a game in normal form, AΓ be an epistemic model of it, and G be a Hamiltonian

undirected graph. Suppose that at some world ω ∈ Ω rationality is G-pairwise mutual knowledge and
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there exists a tuple (µ1, . . . , µN) of conjectures which is G-pairwise common knowledge. Then, there

exists a mixed strategy profile (σ1, . . . , σN) such that

(i) margSj
µi = σj for all i ∈ I \ {j}, and

(ii) (σ1, . . . , σN) is a Nash equilibrium of Γ.

Proof: Suppose for sake of simplicity and without loss of generality that the Hamiltonian path in G

is {1, . . . , N}, i.e. ik = k for all k = 1, . . . , N .

Proof of (i). This result is a direct consequence of repeatedly applying Aumann’s agreement theorem

(Aumann, 1976). First observe that

[µi] = {ω ∈ Ω : µ̂i(ω) = µi}

⊆ {ω ∈ Ω : margSj
µ̂i(ω) = margSj

µi}

=: [margSj
µi],

implying that for all i, k ∈ I \ {j},

CKi,k

(
[µi] ∩ [µk]

)
⊆ CKi,k

(
[margSj

µi] ∩ [margSj
µk]
)
.

Since, margSj
µi and margSj

µk are posterior probability distributions, in the sense that for each sj ∈ Sj,

margSj
µi(sj) = π

(
[sj]

∣∣ Pi(ω)
)

and margSj
µk(sj) = π

(
[sj]

∣∣ Pk(ω)
)
,

it follows from Aumann’s agreement theorem that ω ∈ CKi,k

(
[margSj

µi] ∩ [margSj
µk]
)

implies

(1) margSj
µi = margSj

µk.

Fix some j ∈ I. Then, it follows from the structure of G and repeatedly applying Equation (1) that

margSj
µj+1 = margSj

µj+2

= · · ·

= margSj
µN

= margSj
µ1

= · · ·

= margSj
µj−1.

Henceforth, for all i, j ∈ I, let σj := margSj
µi.

Proof of (ii). First, we show that for all E ⊆ Ω,

(2) π
(
E ∩ [si]

∣∣ Pi(ω)
)

= π
(
E
∣∣ Pi(ω)

)
· π
(
[si]
∣∣ Pi(ω)

)
.
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This follows directly from the fact that [si] is Pi-measurable: More specifically, if ŝi(ω) = si, then

Pi(ω) ⊆ [si], in which case π
(
E ∩ [si]

∣∣ Pi(ω)
)

= π
(
E
∣∣ Pi(ω)

)
= π

(
E
∣∣ Pi(ω)

)
· π
(
[si]

∣∣ Pi(ω)
)
.

Alternatively, if ŝi(ω) 6= si, then Pi(ω) ∩ [si] = ∅. Then, π
(
E ∩ [si]

∣∣ Pi(ω)
)
≤ π

(
[si]
∣∣ Pi(ω)

)
= 0.

Now, we show that for all i ∈ I

(3) µi(ω) = margS1
µ̂i(ω)× · · · ×margSi−1

µ̂i(ω)×margSi+1
µ̂i(ω)× · · · ×margSn

µ̂i(ω).

Without loss of generality, we show it for player 1. Observe that for an arbitrary (s2, . . . , sN) ∈ S−1,

µ̂1(ω)(s2, . . . , sN) = π
(
[s2] ∩ · · · ∩ [sN ]

∣∣ P1(ω)
)

= π
(
[s2] ∩ · · · ∩ [sN ]

∣∣M1,2(ω)
)

=
∑

P2⊆M1,2(ω)

π
(
[s2] ∩ · · · ∩ [sN ]

∣∣ P2

)
· π
(
P2

∣∣M1,2(ω)
)
.

Then, it follows from Equation (2) that

µ̂1(ω)(s2, . . . , sN) =
∑

P2⊆M1,2(ω)

π
(
[s3] ∩ · · · ∩ [sN ]

∣∣ P2

)
· π
(
[s2]

∣∣ P2

)
· π
(
P2

∣∣M1,2(ω)
)

=
∑

P2⊆M1,2(ω)

π
(
[s3] ∩ · · · ∩ [sN ]

∣∣ P2(ω)
)
· π
(
[s2]

∣∣ P2

)
· π
(
P2

∣∣M1,2(ω)
)

= π
(
[s3] ∩ · · · ∩ [sN ]

∣∣ P2(ω)
) ∑
P2⊆M1,2(ω)

π
(
[s2]

∣∣ P2

)
· π
(
P2

∣∣M1,2(ω)
)

= π
(
[s3] ∩ · · · ∩ [sN ]

∣∣ P2(ω)
)
· π
(
[s2]

∣∣M1,2(ω)
)

= π
(
[s3] ∩ · · · ∩ [sN ]

∣∣ P2(ω)
)
· π
(
[s2]

∣∣ P1(ω)
)

= µ̂2(ω)(s3, . . . , sN) · µ̂1(ω)(s2).

Repeat the previous step inductively to obtain

µ̂1(ω)(s2, . . . , sN) = µ̂1(ω)(s2) · · · µ̂N−1(ω)(sN),

and recall from (i) that all players agree on the marginal conjectures, implying that

µ̂1(ω)(s2, . . . , sN) = µ̂1(ω)(s2) · · · µ̂1(ω)(sN),

which proves Equation (3).

Since every player knows their own conjecture, it follows that
(
µ̂1(ω), . . . , µ̂N(ω)

)
= (µ1, . . . , µN).

Recall from (i) that

(σ1, . . . , σN) :=
(
margS1

µ̂2(ω), . . . ,margSN
µ̂1(ω)

)
.
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For an arbitrary i ∈ I, we are going to show that si ∈ BRi(σ) for every si ∈ supp(σi). For every

si ∈ supp(σi) observe that there exists some ω′ ∈ Pi+1(ω) such that ŝi(ω
′) = si. Since ω ∈ Ki+1(Ri) it

follows that Pi+1(ω) ⊆ Ri, and therefore ŝi(ω
′) ∈ BRi

(
µ̂i(ω

′)
)
. Finally, it follows from ω ∈ CKi,i+1

(
[µi]
)

that µ̂i(ω
′) = µ̂i(ω), and therefore

si ∈ BRi

(
µ̂i(ω

′)
)

= BRi

(
µ̂i(ω)

)
= BRi

(
margS1

µ̂i(ω)× · · · ×margSi−1
µ̂i(ω)×margSi+1

µ̂i(ω)× · · · ×margSN
µ̂i(ω)

)
= BRi(σ1, . . . , σN),

which concludes the proof. Q.E.D.

The contribution of the previous result to the epistemic foundations of Nash equilibrium is twofold.

Firstly, we significantly relax the standard epistemic conditions of Aumann and Brandenburger (1995),

by no longer requiring neither common knowledge of conjectures nor mutual knowledge of rationality.

Secondly, Theorem 2 offers further insight on the relation between Nash equilibrium and common

knowledge of rationality. In fact, for many years the predominant view suggested that common knowl-

edge of rationality was an essential element of Nash equilibrium. This view was then challenged by

Aumann and Brandenburger (1995) who required only mutual knowledge of rationality in their foun-

dation for Nash equilibrium. However, Polak (1999) observed more recently that Aumann and Bran-

denburger’s conditions actually do imply common knowledge of rationality. In a sense, his result thus

restored some of the initial belief in the importance of common knowledge of rationality in the context of

Nash equilibrium. Our theorem not only confirms Aumann and Brandenburger’s initial intuition about

the non-necessity of common knowledge of rationality for Nash equilibrium, but also provides sufficient

conditions for Nash equilibrium that do not even imply mutual knowledge of rationality. To see this,

consider Example 1, and observe that at ω1, which satisfies all the conditions of our theorem, Claire

does not know that Alice is rational, implying that ω1 6∈ KClaire(RAlice).

5. DISCUSSION

Tightness. The assumption of the graph being Hamiltonian is crucial for Theorem 2. Indeed, it is now

shown by means of an example that the graph simply being connected does not suffice for the conclusions

of Theorem 2 to obtain, even if rationality is common knowledge. In that sense our epistemic foundation

is tight.

Example 2 Consider the anti-coordination game Γ =
(
I, (Si)i∈I , (Ui)i∈I

)
, where I = {Alice, Bob,
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Claire}, Si = {h, `} for all i ∈ I, and

Ui(sAlice, sBob, sClaire) =

 0 if sAlice = sBob = sClaire,

1 otherwise.

Now, suppose that an epistemic model AΓ of Γ is given by

Ω = {ω1, ω2} endowed with a uniform common prior π,

PAlice =
{
{ω1}h ; {ω2}h

}
,

PBob =
{
{ω1}h ; {ω2}`

}
,

PClaire =
{
{ω1, ω2}`

}
,

with the information sets’ indices denoting the respective player’s strategy given the choice function.

Let G = (I, E) be a connected graph such that

I = {Alice, Bob, Claire},

E = {(Alice, Bob), (Bob, Claire)}.
Note that at every ω ∈ Ω, rationality is common knowledge, and conjectures are G-pairwise common

knowledge. Moreover, at ω1, Alice is certain that Bob chooses h and Claire chooses `, whereas Claire’s

conjecture attaches probability 1
2

to both of her opponents playing h, and 1
2

to Alice playing h and

Bob playing `. Therefore, Alice and Claire disagree on their marginal conjecture about Bob’s choice,

implying that the conclusion of Theorem 2 does not hold. In fact, all conditions of Theorem 2 are

satisfied apart from G being Hamiltonian. Hence, G simply being connected instead of Hamiltonian

does not suffice for Nash equilibrium. /

Knowledge of an opponent’s conjecture. Already Aumann and Brandenburger (1995) recognize the con-

ceptual difficulty in assuming knowledge of an opponent’s conjecture. We do not intend to provide

any remedy to this problematic assumption whatsoever. Indeed, the conceptual issue imposed by as-

suming knowledge of opponents’ conjectures persists. However, we show that less knowledge about the

opponents’ conjectures is actually needed for Nash equilibrium to obtain.

Related Literature. The sufficient conditions by Aumann and Brandenburger (1995), which we present in

Section 2.3 above, have become the standard epistemic foundation for Nash equilibrium. Subsequently,

Polak (1999) showed that for complete information games, under Aumann and Brandenburger’s as-

sumption of commonly known conjectures, mutual knowledge of rationality does in fact imply common

knowledge of rationality. More recently, Perea (2007) derived Nash equilibrium in a one-person perspec-

tive epistemic model, and Barelli (2009) proposed a foundation for Nash equilibrium without common
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priors.
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