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Birth Spacing, Child Survival and Fertility Decision: Analysis of 

Causal Mechanisms 

 

Abstract 

We jointly analyze infant mortality, birth spacing, and total fertility of children in a rural area in 

Bangladesh, using longitudinal data from the Health and Demographic Surveillance System 

(HDSS) in Matlab. To distinguish causal mechanisms from unobserved heterogeneity and 

reverse causality, we use dynamic panel data techniques. We compare the results in a treatment 

area with extensive health services and a comparison area with standard health services. 

Simulations using the estimated models show how fertility and mortality can be reduced by, for 

example, breaking the causal link that leads to a short interval after a child has died. Eliminating 

this effect would reduce fertility and increase birth intervals, resulting in a fall in mortality by 

0.14 and 2.45 per 1000 live births in treatment and comparison area, respectively. The effects of 

the numbers of (surviving) boys and girls on birth spacing provide evidence of son preference: 

having more boys has a stronger effect on the birth interval than having more girls, though both 

effects are significantly positive. A simulation suggests that if families would behave as if their 

all children were sons, fertility levels would be reduced by 3.5% and 5.7% in the ICDDR,B and 

comparison areas, respectively. 

 

Key words: child mortality, birth spacing, fertility, dynamic panel data models, Bangladesh  

JEL codes: I15, J13, C33   
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1. Introduction 

According to the demographic transition theory, there is a strong correlation between childhood 

mortality and fertility. Understanding the nature of the links between mortality, birth spacing, 

and family planning is important in order to design effective policies in order to achieve the 

United Nations Millennium Development Goals 4 and 5 (UNDP 2003) of reducing child 

mortality and improving access to reproductive health. Empirical evidence has shown that a 

decline in childhood mortality is often a prerequisite for fertility decline (Chowdhury et al. 1976; 

Pritchett 1994; Wolpin 1997). Other studies have emphasized the reverse direction of this 

causation: high fertility and the close birth-spacing associated with it cause an increase in child 

mortality (Cleland and Sathar 1984; Curtis et al. 1993). Yet another set of studies emphasized 

that the analysis of the direction of causality is hampered by the close interrelations between 

child mortality, birth intervals, and fertility (Zimmer 1979; Santow and Bracher 1984).  

The observed associations between child mortality, birth spacing, and fertility may not 

only be due to various causal mechanisms but can also be explained by common unobserved 

factors that drive the various processes. From the point of view of policies aimed at optimal birth 

spacing, reducing mortality, and reducing fertility, it is crucial to identify the importance of the 

various causal mechanisms and alternative explanations. If associations reflect spurious 

correlation or reverse causation instead of the presumed causal effect, then the implications for 

policy design can be dramatically altered (Moffitt 2005). Ben-Porath (1976, p. S168) already 

argued that associations may not reflect causal effects but may be spurious and reflect omitted 

variables operating simultaneously on fertility and mortality. More recently, DaVanzo et al. 

(2008) emphasized the importance of joint analysis including interval lengths and mortality, 

allowing for correlated risks among different births to the same mother. 
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To achieve this latter goal, we use a panel data model similar to the one introduced by 

Bhalotra and van Soest (2008). This model incorporates various causal mechanisms as well as 

several potentially correlated unobserved heterogeneity terms, and exploits the sequence of all 

births and deaths to a mother for identification. It has equations for mortality (neonatal mortality 

in Bhalotra and van Soest; infant mortality in our study), for the birth interval, and for the 

(“fertility”) decision to have another birth.  

Mortality depends on, among other things, the length of the preceding birth interval (for 

birth orders higher than one), age of the mother, gender of the child, socio-economic status of the 

family, religion, and an unobserved mother specific effect. The decision whether to have another 

child or not and the birth interval after a given birth until the next birth in turn depend on gender 

and survival status of previously born children, age of the mother, socio-economic status, 

religion, and unobserved mother-specific effects. The three mother-specific unobserved effects 

are allowed to be correlated to capture the possibility of common unobserved factors driving the 

various processes. The model is estimated with maximum likelihood, accounting for all the 

correlations and for censoring in the birth spacing equation (fertility may be incomplete at the 

end of the observation window). The estimates therefore remain consistent in spite of the 

endogeneity of some of the explanatory variables.  

While Bhalotra and van Soest (2008) used retrospective data from the Indian 

Demographic and Health Survey, we use prospective data from the Demographic and Health 

Surveillance System, Matlab, Bangladesh, following mothers residing in the study area over time. 

This has the advantage that several covariates, such as indicators of socio-economic status and 

environmental factors such as availability of drinking water) are observed at the relevant points 

in time when children are born (rather than at survey time in retrospective data). Moreover, it 
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avoids recall error in, for example, the dates when children were born. A second specific feature 

of our data is that the study area is randomly split into villages with standard government 

provided health services (the “comparison area”) and villages with additional extensive health 

services, such as more health clinics and regular visits of health officers (the “ICDDR,B area” or 

“treatment area”); see Bhatia (1983) or Van Ginneken et al. (1998). Comparing the model 

estimates for the two areas gives insight in how the extensive health services affect birth spacing, 

mortality, fertility, and the various relations between these processes.  

 

2. Background and existing studies  

Many studies have found a strong positive relationship between child mortality and subsequent 

fertility, especially in developing countries. For Bangladesh, Chowdhury et al. (1976) find that 

infant death shortened median birth interval from 37.2 to 24.1 months. Bhalotra and van Soest 

(2008) conclude that for every neonatal death in India, 0.37 extra children are born. 

According to the classical demographic transition theory, child mortality affects fertility 

in two ways: physiological/biological changes and behavioral/replacement effects. The 

physiological effect can be explained by the fact that breastfeeding is interrupted with a child 

death, and consequently, the postpartum infecundable period is shortened (e.g., Van Ginneken 

1974). As a result, under ineffective use or non-use of contraception, the mother is able to 

conceive the next child sooner, leading to a shorter birth interval and, possibly, higher fertility. 

The association between the death of a child and birth intervals or fertility decisions has been 

attributed to two strategies of reproductive behavior: replacement and hoarding (Ben-Porath 

1976; Wolpin 1998). Hoarding refers to the fertility response to expected mortality of offspring, 
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while replacement is the response to an actual child death. Both are closely related to the total 

number of surviving children that parents ultimately wish to have. 

On the other hand, many studies found an association between a short birth interval and 

neonatal or infant death of the next child, particularly when the preceding sibling survived 

(Zenger 1993; Koenig et al. 1990; Alam and David 1998). An explanation for this is that the 

mother has not recuperated physiologically from the previous birth (DaVanzo and Pebley 1993; 

Scrimshaw 1996). Hence vulnerable families can be caught in a death-trap that leads to 

clustering of child deaths within families: the death of a child reduces the interval to the next 

birth and thus increases in the risk of death of the subsequent sibling in the family (Arulampalam 

and Bhalotra 2006). An alternative explanation is that a child death leaves the mother depressed. 

This may affect the mother’s behaviour, compromising the health of her subsequent child in the 

womb and in early infancy (Steer et al. 1992; Rahman et al. 2004).  

Sibling competition may explain why short birth intervals and high fertility increase 

death risk: sources of food and care per head diminish as the number of dependent members of a 

family increases (Cleland and Sathar 1984). This is expected to induce a negative effect of child 

death on the mortality risk of the next child, since the next child competes with fewer siblings 

(Alam and David 1998). A similar negative effect could be induced by learning: If the older 

sibling died due to, for example, diarrhoea or acute respiratory illness (ARI) – two leading 

causes of child death explaining almost half of all deaths in Bangladesh (NIPORT et al. 2005) - 

the mother will want to learn how to prevent a death caused by diarrhoea or ARI.  

There is evidence that son preference exists in societies like Bangladesh, with a strong 

patrilineal family system (Chowdhury et al. 1976). It is therefore likely that a couple wants to 

have another child soon after the death of a son until the desired number of sons is achieved. 
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Sufian and Johnson (1989) show that the median birth interval in Bangladesh is shorter when the 

dead child was a boy or when it was survived by fewer than two brothers. Nyarko et al. (2003) 

show for Ghana that the probability of having a next birth within a given time period is one third 

higher if a male child died than if a female child died. 

Observed clustering in infant or child mortality of successive children may also be due to 

unobserved confounding factors instead of causal mechanisms. Older studies of birth spacing 

and childhood mortality usually do not control for both. More recent studies of Arulampalam and 

Bhalotra (2006) for India and Omariba et al. (2008) for Kenya reveal that the causal effect of 

previous mortality is overestimated when unobserved heterogeneity is not accounted for.  

 

3. Data 
 

Since 1966 ICDDR,B maintained a Health and Demographic Surveillance System (HDSS) in 

Matlab, aiming to support the Bangladesh Health and Family Planning programme. In Matlab, an 

area located in 60 km southeast of Dhaka, all births, deaths, causes of deaths, pregnancy histories, 

migrations in and out of the area, marriages, divorces, and several indicators of socioeconomic 

status are recorded for the complete population of about 220,000 people. The HDSS data on the 

timing of pregnancy outcomes and deaths are considered to be of very high quality because they 

are collected during regular visits (every two weeks until the late 1990s and every month since 

then) by well-trained female community health workers (see, e.g., D’Souza 1981 or van 

Ginneken et al. 1998). We combined the health and demographic surveillance system data from 

70 villages in the ICDDR,B area and 79 villages in the comparison area obtained from 1 July, 

1982 until 31 December, 2005 (the study period). Data from before 1 July 1982 have not (yet) 

been made available for research. 
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 The complete data set has records on about 63,000 mothers, with more than 165,000 child 

births – including live singleton births, multiple births, and still births. For our purposes, we 

selected a subsample of mothers without multiple births
d

 and with complete
e

 live birth 

information who were continuously living in the Matlab area since the birth of their first child. 

This implies that we deleted mothers who migrated out of Matlab during the period under study. 

Moreover, we discarded stillbirths.
f
  Finally, we have excluded the children born in three villages 

that shifted from the ICDDR,B area to the comparison area in 2000. This leads to working 

samples of 31,968 children and 13,232 mothers in the ICDDR,B area and 32,366 children and 

11,856 mothers in the comparison area. 

Table 1 presents sample means (percentages of outcome 1 for dummy variables) by area. 

In the ICDDR,B area, 5.09 percent of all live births resulted in infant death; 10.66  percent of all 

                                                   
d
 We eliminated multiple births as children of a multiple birth face much higher odds of dying. 

This requires a separate analysis, as has been documented in the demographic literature.   

e
 To have a mother’s complete birth information during the study period we have calculated 

parity (total number of live births) from the pregnancy history variables. For example, if a 

mother has parity four, this means she has had four live births, so she will appear four times as 

giving birth, with four recorded birth dates. In all other cases (e.g., if a child was born outside of 

the Matlab area or before study period or deleting multiple births may caused incomplete birth 

information of a mother), we have deleted all children’s records of this mother. 

f
 One reason why we eliminated stillbirths is that gender, an important covariate in our analysis, 

is missing for stillbirths. We define birth intervals as intervals between reported dates of live 

births, ignoring stillbirths in between live births. 



 

 

 

 

8 

families experienced at least one infant death and 0.79 percent lost all their children in infancy. 

The percent of infant death among first born is 6.70, substantially higher than among children of 

higher birth order (3.95 percent). In the comparison area, infant death was more common: 6.82 

percent of all children - 8.90 percent among first born and 5.62 percent among higher order 

births. Of all families, 15.66 per cent experienced at least one infant death and 1.08 per cent lost 

all their children. About 20.6% birth intervals are shorter than or equal to 24 months in the 

comparison area, compared to about 12.9 % in the ICDDR,B area. 

The average number of children born per mother is 2.42 in the ICDDR,B area and 2.73 in 

the comparison area; 19 percent of families had more than three children in the ICDDR,B area, 

compared to 29 percent in the comparison area (not reported in the table). No differences 

between areas are observed in the mother’s average age at birth. In the comparison area, mothers 

less often have access to the more hygienic source of drinking water (tubewell/filter) and live 

much farther away from the nearest health facility (7.1 kilometres on average, compared to 1.9 

km in the ICDDR,B area).  

The non-parametric regressions of infant mortality on the preceding birth interval in 

Figure 1 show a sharp decline in infant mortality rates when birth intervals increase in both areas. 

The probability of infant death falls with birth interval length until an interval length of about 4.5 

years (exp(4)=54 months). Particularly in the ICDDR,B area, the survival chances stabilize or  

even increase somewhat when birth intervals increase beyond 4.5 years. This pattern is in line 

with the extensive literature on this issue; see, e.g., Bhalotra and van Soest (2008, Figure 1). 

Figures 2 and 3 show the distributions of the log birth interval by survival status of the 

previous child and by gender in the two areas. In both areas, there is a large difference between 

the distributions after infant death and infant survival. This difference is much larger than the 
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difference in Uttar Pradesh (India) found by Bhalotra and van Soest (2008, Figure 2). In the 

ICDDR,B area, the median birth intervals are 20 months after an infant death and 48 months 

otherwise (averages are 23 and 51 months). The medians are 17 and 37 months (averages are 22 

and 42 months) in the comparison area. No significant difference by gender is observed.  

 

4. Model Specification 
 

In this section we present the econometric model. This is similar to the model in Bhalotra and 

van Soest (2008; see also their online appendix for details), though we do not incorporate local 

community effects. The sensitivity analysis of Bhalotra and van Soest suggests that this has no 

effect on the point estimates though it may mean that our standard errors are somewhat 

underestimated. The endogenous variables in the model are the following, with i denoting a 

mother and t=1,..,Ti  denoting her consecutive live births: 

itM : Infant mortality dummy: 1 if child t dies; 0 if it survives the first twelve months after birth.  

itF : Decision to have another child (1) or not (0).  

itB : Log birth interval preceding birth of child t (t>1 only) 

The sequence of events is illustrated in the following time line:  

           1iF              2iF                         3iF                  4iF  

---+--------------+--------------+----------------+----- 
      1iM         2iB              2iM           3iB           3iM                  4iB           4iM  

 We do not explain the timing of the first birth; it is taken as given. The first event we 

explain is infant survival of the first born child 1iM . The second is the decision to have more 

children ( 1 1iF  ) or not ( 1 0iF  ). This is never observed directly, but if a second birth is 

observed we know that 1 1iF  . If not, this can be because 1 0iF   or because the next birth 
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interval is too long in the sense that it exceeds the observation window or the woman’s fertile 

age (set to 45 years).    

   If 1 1iF   and if the birth interval is not too long, we observe the birth interval 2iB . The 

second born child can die during infancy or survive, etc.: the sequence of events continues until 

the mother decides not to have more children ( 0iTF  ) or at the end of her fertile period (age 45) 

or the observation window (December 2005).    

The model is recursive in the sense that each dependent variable may depend on 

outcomes realized earlier in the sequence of events, but not on future outcomes. Moreover, each 

outcome may depend on unobserved factors common to all children of a given mother, treated as 

unobserved individual (mother specific) effects. We use probit equations for the binary outcomes 

(infant mortality of each child; fertility decision after each birth) and a regression equation for 

the continuous outcomes (log birth intervals). Below we discuss the equations for the various 

outcomes in detail.    

 

Infant mortality 

For higher birth orders, a dynamic probit equation with (random) mother specific effects is used. 

The explanatory variables include the preceding birth interval and variables related to the 

mother’s age at birth, which is a function of previous birth intervals: For child t (t=2,…,Ti) of 

mother i, the equation is  

Mit
*
 =Xit βm + Zitγm + mi + umit                                (1) 

Mit=1 if  Mit
*
>0 and  Mit=0 if  Mit

*≤0 
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Here itX contains (functions of) the strictly exogenous variables, such as gender of the child, 

socio-economic status indicators of the household (mother’s and father’s education, etc.) and 

characteristics of the village where the household resides. Zit is the vector of explanatory 

variables that are functions of previous outcomes (and are therefore not strictly exogenous), 

including the preceding log birth interval Bit, (functions of) age of the mother at birth t and, 

following the literature on scarring (see, for example, Arulampalam and Bhalotra 2006), survival 

status of the previous child Mit-1. The mother specific unobserved heterogeneity term mi  

captures unobservable time invariant characteristics influencing the infant mortality risk of all 

children in the family. The error term umit captures idiosyncratic health shocks specific to child t. 

We assume that the mitu  follow a standard normal distribution, independent of each other and of 

all covariates, and that mi is normally distributed with mean 0 and variance 2

m  independent of 

all umit and itX  (but not of Zit). 

For mortality of the first child, a separate equation is needed, since there is no preceding 

birth interval or preceding mortality outcome. Age at first birth is assumed to be exogenous and 

included in 1iX . The equation for the first child’s infant mortality is then given by: 

 Mi1
*
 =Xi1 β

1
 + θmi + umi1                                (2) 

Mi1=1 if  Mi1
*
>0 and  Mi1=0 if  Mi1

*≤0 

Here β
1
 and θ are (auxiliary) parameters to be estimated and the error term umi1 is assumed to 

satisfy the same assumptions as the other umit. 

 

Birth-spacing 
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For a mother who has given births to iT  children, we observe the exact log durations in between 

two consecutive births 2ib ,….,
iT ib preceding births 2,....., iT . We model these intervals using the 

following equation: 

 itb  = bitX  + b

it bZ   + bi + bitu                                (3) 

Here itX denotes the vector of strictly explanatory variables, as before.
g
 b

itZ
 
includes survival 

status of the preceding sibling and family composition variables (functions of the numbers of 

surviving girls and boys). The unobserved heterogeneity term bi  captures unobserved time 

invariant characteristics of the mother (or her household or village) influencing the birth interval. 

The error term bitu  captures idiosyncratic errors. We assume that the bitu  follow a normal 

distribution, independent of each other and of all covariates, and that bi  is normally distributed 

independent of all bitu  and itX  (but not of b

itZ ). 

 

Fertility decisions and right censoring 

There is right-censoring in the data since some mothers will not have completed their fertility at 

the time of the survey. After the end of the observation window (ultimo 2005), some mothers 

will still have another birth, and others will not. In principle, this could be captured by the model 

as it is described until now, with a birth interval after the last observed birth that lasts longer than 

until end 2005. Following Bhalotra and van Soest (2008), however, the model fit can be 

improved substantially by adding a separate equation reflecting the possible decisions to stop 

                                                   
g
 Another determinant of birth spacing would be the use of contraceptives. We do not include this 

in Xit since it is not observed in the comparison area and may be endogenous due to correlation 

with unobservables in the model. 
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having children after each birth. This improves the fit since it can explain why some mothers 

who are still of reproductive age have no more births long before the end of the observation 

window. (We assume that women older than 45 years are no longer of reproductive age - an age 

beyond which very few births are observed in our data.) Without the additional equation, this 

would have to be explained by a very long birth interval. 

The equation determining whether the woman continues to have children after birth t 

(Fit=1) or not (Fit=0) is specified as follows:  

*

itF  = fitX  + f

it fZ  + fi + fitu                          (4) 

itF = 1 if *

itF >0 and itF = 0 if 0* itF  

As before, itX denotes the vector of strictly exogenous explanatory variables. The vector f

itZ  

includes survival status of the preceding sibling and family composition variables (based upon 

the number of surviving girls and boys). The mother specific unobserved heterogeneity term fi  

captures unobservable time invariant characteristics influencing the fertility decision after each 

child birth and the term fitu  captures idiosyncratic errors. We assume that the errors fitu are 

standard normally distributed, independent of each other and of the itX . The mother specific 

unobserved heterogeneity terms fi are normally distributed with mean 0 and variance 2

f , 

independent of all fitu  and itX .  

The outcome itF  is observed only partially. If birth t is not the last birth (t<Ti) then we 

know that the mother has decided not to stop having children, so that itF = 1. But if t=Ti, she may 

have decided to stop having children ( itF = 0), but it may also be the case that the next birth 



 

 

 

 

14 

interval extends beyond reproductive age or the end of the observation window ( itF = 1 and right 

censoring).   

Confounding unobserved factors are controlled for by allowing arbitrary correlations 

amongst fi, mi, and bi. We will assume they are drawn from a three-dimensional normal 

distribution with zero mean and an arbitrary covariance matrix, independent of the itX
 
and of the 

idiosyncratic error terms ufit, umit, and ubit. 

Estimation 

The equations of this model (equations (1)-(4)) are estimated jointly using simulated maximum 

likelihood, similarly as in Bhalotra and van Soest (2008); see also their online appendix for 

details. Conditional on the random mother specific effects, the likelihood contribution of a given 

mother can be written as a product of univariate normal probabilities and densities over all births 

following the order of observed events (see the time line) and accounting for the right censoring. 

The actual likelihood contribution is the expected value of the conditional likelihood contribution, 

with the expectation taken over fi, mi, and bi. This three-dimensional integral is approximated 

using (smooth) simulated ML: Independent standard normal errors are drawn, and transformed 

into draws of the random effects using the parameters of the random effects distribution; the 

conditional likelihood contribution is then computed for each set of draws and the mean across R 

independent draws is taken. If R with the number of mothers N, this gives a consistent 

estimator; if draws are independent across households and R faster than N, the estimator is 

asymptotically equivalent to exact ML (see, for example, Hajivassiliou and Ruud 1994). To 

reduce the sampling variance in the simulations, we used Halton draws (see Train 2003). The 

results we present are based on R=100; for larger R, we got very similar results. We have 
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checked the sensitivity of our parameter estimates for the number of the draws (comparing with 

different values of R) and the nature of the draws (using Halton draws with different seeds) and 

always got very similar results.  

 

5. Estimation results 
 

Mortality equation 

The estimates of the mortality equation are given in Table 2.
h
 Figure 4 helps to interpret the 

parameters on lagged mortality, log birth interval and its square, and the interaction of lagged 

mortality with the log birth interval. It presents, for both areas, the estimated mortality risk as a 

function of the birth interval separately for when the previous child died and did not die during 

infancy, with other covariates set to their means. In the ICDDR,B area, the interaction term and 

lagged mortality are both significant. The significantly positive interaction term is in contrast 

with Bhalotra and van Soest (2008), but consistent with other studies (Conde-Agudelo et al. 

2006; Whitworth and Stephenson 2002). For a given length of the birth interval, the “state 

dependence” effect of lagged mortality depends on the magnitude of the interval. For short birth 

intervals, the mortality risk is larger if the previous sibling survived than if it died (negative state 

dependence), but for long birth intervals the difference changes sign (positive state dependence). 

This result is consistent with sibling competition for scarce family resources which are 

particularly needed when children are still very young. For long birth intervals, sibling 

competition plays is less important while other mechanisms such as depression due to the 

previous infant’s death may still matter.  

                                                   
h
 Results of the equation for mortality of the first child are available upon request of authors; 

they are very similar to those reported in Saha and van Soest (2011).  
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In the ICDDR,B area, for the case where the previous sibling did not die, the mortality 

risk falls with the birth interval until about the mean interval length and then remains constant. 

Surprisingly, a quite different pattern is found when the previous sibling died – in this case the 

mortality risk seems to increase with the birth interval length. Perhaps this is due to the relatively 

small number of observations and the rather small mortality risk in this case.    

In the comparison area, the difference between the two curves is smaller and insignificant 

(see Figure 4). The mortality risk is consistently larger if the previous sibling survived than if it 

died (keeping the birth interval and other covariates and unobserved mother specific factors 

constant), consistent with a learning effect. Both mortality risks in the comparison area are 

essentially falling with birth interval length, flattening out only after more than 50 months, much 

beyond the median birth interval length.  

The estimated coefficients on the other covariates are in line with those in Saha and van 

Soest (2011). The mother’s age at birth has a significantly U-shaped effect in the ICDDR,B area 

with a minimum at about 30 years, whereas it is insignificant in the comparison area. Mortality 

risk is U-shaped in birth order, but this is significant in the comparison area only.  The gender of 

the child is insignificant in both areas, implying that there is no evidence of an effect of son 

preference on infant mortality. 

Mother’s schooling is insignificant once the father’s schooling is controlled for (it is 

significant for the mortality risk of the first born child). On the other hand, secondary schooling 

of the father significantly reduces infant mortality of higher birth orders in both areas. The 

dummy indicating whether the father is a day labourer, an index of lower occupational and socio-

economic status, has a significant positive effect on mortality in both areas. The distance to the 

nearest health facility has a significant positive effect on infant mortality in the comparison area 



 

 

 

 

17 

for higher order births, and the effect is even stronger for the first born child. The fact that 

distance plays no significant role in the ICDDR,B area is probably due to the fact that almost all 

families live rather close to a health facility in that area (see Saha and van Soest 2011). 

Those who used tube well or pipe water as a source of drinking water are less likely to 

see their children die in infancy, but this is significant in the ICDDR,B area only. Over the 

various birth cohorts (the reference mother is born before 1966), mortality decreases sharply in 

the comparison area, while in the ICDDR,B area, the decreasing trend seems to level off for the 

younger cohorts.  

 

Birth interval equation 

Table 3 reports the estimates of the birth spacing equation. Since the dependent variable is log 

birth interval, parameters must be interpreted in terms of percentage changes in the expected 

length of the birth interval. Death at infancy of the previous child shortens the subsequent birth 

interval by about 49% (exp(-0.6741)-1) in the ICDDR,B area and 46% in the comparison area, 

consistent with the replacement hypothesis and existing findings (e.g. Chowdhury et al. 1976; 

Bhalotra and van Soest 2008). The size of the effect is much larger than in Bhalotra and van 

Soest. The effects of the surviving boys and girls variables are consistent with son preference: In 

both areas, having at least one boy has a stronger positive effect on the birth interval than having 

a girl. The same applies to each additional boy. For example, in the ICDDR,B area, the ceteris 

paribus difference between the next birth interval of families with one boy and families with one 

girl is 6.5% (exp(0.1726-0.1099)). Comparing families with two boys and one girl and with one 

boy and two girls, it is 6.7% (exp(0.0978-0.0325)).     
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Birth intervals shorten with birth order (as in, for example, Miller et al. 1992). They are 

longer for the younger birth cohorts of mothers, which may explain part of the reduction in 

fertility over time. In the ICDDR,B area, birth-spacing is hump-shaped in maternal age at 

previous birth with a maximum at about 35 years. In the comparison area, birth interval length 

essentially increases with the mother’s age at the previous birth over the whole reproductive age 

range. This is in line with the negative effect of maternal age on the hazard rate of a new 

conception found by Rahman and DaVanzo (1993, Table 2). Birth intervals increase with the 

mother’s education level, in line with the positive relation between birth intervals and 

socioeconomic status. Mothers in more developed villages with drinking water from a tube well 

or pipe water also tend to have longer birth intervals.  

 

Fertility equation 

Table 4 presents the estimates of Equation (4), determining the probability of having another 

child after each birth. In both areas, the most important variables in this equation concern family 

composition. Having at least one son or at least one daughter substantially and significantly 

reduces the probability to have further children, and the size of the effect is much larger in the 

comparison area than in the ICDDR,B area. There is no son preference in this respect. On the 

other hand, if we consider the number of sons and daughters given there is at least one of each, 

we do find evidence of son preference: Additional sons substantially reduces the desire to have 

more children, but additional girls have a much smaller effect (significant in the comparison area 

but insignificant and of the wrong sign in the ICDDR,B area).  

Fertility falls with the level of education of both parents, with a larger effect of mother’s 

education. In both areas, Muslim families show a higher tendency to continue fertility than non-
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Muslims. The desire for continued fertility falls with birth order in both areas and surprisingly, 

younger mothers are less likely to continue fertility than older mothers (keeping family 

composition and other variables constant). There are strong cohort differences in the comparison 

area where the younger cohorts less often want more children, but not in the ICDDR,B area. 

Mothers in villages with access to tube well or pipe water as a source of drinking water are less 

likely to continue their fertility. In the comparison area, families living farther away from a 

health centre have a larger probability to have another child. These results are in line with a 

negative relation between socio-economic status and fertility. This is not the case for the father’s 

occupational status: in both areas day labourers have smaller chances to have more children.     

 

Unobserved heterogeneity 

The estimates of the covariance matrix of the three unobserved heterogeneity terms are given in 

Table 5. The heterogeneity terms in all three equations are statistically significant but smaller 

than the idiosyncratic errors. Mother specific effects in the mortality equation explain about 23% 

(0.3014/(1+0.3014)) in the ICDDR,B area and about 6% (0.0625/(1+0.0625)) in the comparison 

area of the total unsystematic variation in infant mortality. For the birth spacing equation the 

idiosyncratic noise terms have estimated standard deviation 0.442 in the ICDDR,B area and 

0.436 in the comparison area, and the unobserved heterogeneity terms explain 8.1% of the 

unsystematic variation in birth intervals in the ICDDR,B area and only 3.6% in the comparison 

area. The small correlations between unobserved heterogeneity in the mortality and birth interval 

equations suggest that hoarding does not play much of a role – hoarding would predict that 

women who know their children have high mortality risk tend to have shorter birth intervals, in 
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order to attain their desired family size even if some children die; to the extent this is not 

captured by observed covariates, this would imply a negative correlation between mi, and bi.      

The heterogeneity terms in the fertility equation explain about 70% (comparison area) 

and 44% (ICDDR,B area) of total unsystematic variation. In both areas, a large negative 

correlation is observed between unobserved heterogeneity in birth interval and fertility equations, 

suggesting that mothers who desire many children also tend to use shorter birth intervals. This is 

consistent with the target fertility model of Wolpin (1997) and in line with the finding of 

Bhalotra and van Soest (2008). The correlation between the individual effects in the mortality 

equation and the fertility equation is positive but not significant in the ICDDR,B area but 

significantly negative in the comparison area. We do not have a good explanation for this. 

 

6. Simulations 

To illustrate the importance of the various causal mechanisms between birth spacing, fertility, 

and infant mortality, we performed some simulations, in a similar way as Bhalotra and van Soest 

(2008, Table 3). They illustrate the main feature of our joint model: the fact that it incorporates 

various mechanisms that lead to associations between planning, birth spacing, fertility, and 

mortality outcomes, accounting for the effects of endogeneity in the timing of births (and 

therefore also age at birth etc.), birth intervals, and mortality risks.  

The simulations start from the observed covariates (including, for example, date of first 

birth) for the actual sample of mothers. For each mother, we generated unobserved heterogeneity 

terms, error terms, and new outcomes (the dependent variables in our model) using the estimated 

parameters of each equation. The outcomes were generated recursively, using the timing of the 
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events as sketched in Section 4. For example, for a given mother, we take the date of first birth as 

given and first generate the mortality outcome of the first child (using equation (2)). Given 

simulated mortality, we then generated the fertility decision after the first birth (equation (4)). If 

the fertility decision is positive, we then generate a birth interval, and update calendar time and 

age of the mother at her second birth. Given these variables, other covariates, and the previous 

mortality outcome, we then generate the mortality outcome of the second born child, etc. In this 

way we generate complete birth spacing, mortality, and fertility patterns for all mothers in the 

sample. To reduce simulation variance, this is repeated 25 times for each mother.   

Table 6 shows the results of several simulations. Column 1 summarizes the outcomes 

according to the benchmark simulation where all mechanisms that are incorporated in the model 

are active. As expected (unless the model would fit the data quite poorly), this column 

reproduces several features of the raw data, such as the differentials in infant mortality rates and 

median birth intervals between the two areas.   

The other columns present percent deviations from the benchmark for scenarios in which 

some behavioural or non-behavioural mechanisms are “switched off.”  Column 2 switches off 

the replacement effects of infant mortality on both birth intervals and the probability of having 

another child. The estimates imply that families respond to infant mortality by shortening the 

next birth interval and increasing the number of births, and this is incorporated in the benchmark 

simulation in column 1. The simulation in column 2 produces the counterfactual outcomes that 

would arise if families would space their births and plan the number of births as if every child 

survived its infancy. The results show that this increases median birth interval length by 5.9% 

and 6.3% in the two areas, consistent with other studies (see for example Chowdhury et al. 1976, 
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pp. 259; Bhalotra and van Soest 2008, p.286).  In other words, the replacement effect on the birth 

intervals reduces birth interval lengths by 5.9% and 6.3% in the two areas.  

In the comparison area, the total replacement effect as a result of the infant mortality rate 

of 68.5 per 1000 live births is an increase in the number of births by 3.72%, that is, 0.54 births 

for every infant that died (37.2/68.5). In the ICDDR,B area, the replacement effect is an increase 

of the total number of births by 2.20%, or 0.42 births for every infant that died. The larger effect 

in the comparison area is mainly due to the larger response of fertility decisions to the family 

composition variables in that area (Table 4). Because of the longer birth intervals and the 

reduction in fertility, eliminating the replacement effects also has an indirect effect on infant 

mortality: it falls by 0.27% (0.14 per 1000 live births) in the ICDDR,B and by 3.6% (2.45 per 

1000 live births) in the comparison area. In other words, replacement effects are responsible for a 

very small fraction of all infant deaths only, particularly in the ICDDR,B area.  

Column 3 shows what happens if the direct effect of mortality of the previous child on 

survival chances is eliminated. (It does not eliminate replacement effects.) Since this direct effect 

was negative in both areas (Table 2), eliminating it increases infant mortality: by 4.85% (2.51 

infant deaths per 1000 live births) in the ICDDR,B area and by 1.56% (1.07 per 1000 live births) 

in the comparison area. The difference between the two areas is in line with the larger state 

dependence effect in the ICDDR,B area. As discussed in Section 5, learning effects or sibling 

competition can explain this negative state dependence mechanism: Eliminating such a learning 

effect and eliminating the benefits of reduced sibling competition increases infant mortality 

among children whose previous sibling died. Because of replacement behaviour, the larger infant 

mortality rates indirectly also shorten birth intervals and increase total fertility, but Table 6 

shows that these indirect effects are quite small.  
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Hoarding implies that families anticipate a large risk of child mortality by adjusting birth 

spacing and family planning behaviour. In our model this leads to a correlation between 

unobserved heterogeneity terms in the mortality equation on the one hand and the birth spacing 

and fertility equations on the other hand. In the simulation presented in column 4, we eliminate 

these correlations, taking out the part of mother specific unobserved heterogeneity in birth 

intervals and fertility decisions that is correlated with the unobserved heterogeneity term in the 

mortality equation (so that the variance of the unobserved heterogeneity terms fi, and bi is also 

reduced). Since this does not change the average values of mi, and bi, the direct effects on birth 

intervals and total fertility are very small. In the ICDDR,B area, the estimated correlation 

between fi, and mi was positive, implying that mothers with high risk births tend to have higher 

fertility, in line with the theory of hoarding. Eliminating this correlation therefore reduces the 

number of high risk births (and increases the number of low risk births), so that infant mortality 

falls. Column 4 shows that the estimated reduction is 2.26%, or 0.18 infant deaths per 1000 live 

births. In the comparison area, the estimated covariance structure is very different with a 

negative correlation between mi and fi that is not in line with hoarding and the effect on 

mortality has the opposite sign. The increased infant mortality rate also leads to a modest 

increase in total fertility, due to replacement (cf. column 2).   

The final simulation (column 5) illustrates the importance of son preference in family 

planning. We suppress son preference by simulating counterfactual birth spacing and fertility 

decisions assuming that families behave as if all their children were boys. This would lengthen 

the median birth interval by 3.9% in the ICDDR,B area and by 3.1% in the comparison area, and 

it would reduce total fertility by 3.4% in the ICDDR,B area and by 5.7% in the comparison area. 
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Although these behavioural changes would reduce the infant mortality rates for higher order 

births, the ultimate effect on the infant mortality rate is positive. This is due to a composition 

effect: since the number of higher order births is reduced, the weight of relatively risky first 

births in the total infant mortality rate is increased.  Our results are in the line of son preference 

of earlier work by Chowdhury and Bairagi (1990) who estimated that in the absence of sex 

preference fertility will fall by 8% in the ICDDR,B area and by 4% in the comparison area.  

 

7. Discussion 

We analyzed birth spacing, infant mortality, and family planning, distinguishing causal 

mechanisms from unobserved heterogeneity and reverse causality by using dynamic panel data 

techniques, building on recent work by Bhalotra and van Soest (2008). We used prospective data 

covering two rural areas in Matlab, Bangladesh: a treatment area with extensive health services 

and a comparison area with the standard health services provided by the government. 

The main goal was to explore the causal mechanisms between infant deaths and total 

fertility, and how birth spacing shapes this relationship. We compared the pattern of this 

relationship in two areas and found several significant different differences, suggesting that one 

model for both areas would be too restrictive.
i
 The extensive maternal and health interventions in 

the ICDDR,B area help to explain these differences (see Hale et al., 2009). We also tried using 

                                                   
i
 We could also combine the two areas and allow for interactions where necessary (according to 

tests).  In Saha & van Soest (2011) we did this but found hardly any efficiency gain. Since the 

interactions also make interpretation less easy, we did not pursue this here. 
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dummies for whether specific interventions were introduced at the time of birth, but these were 

not significant.  

 Controlling for birth spacing, unobserved heterogeneity, and a large set of socio-economic 

and cultural covariates, we found negative state dependence in both areas and this relationship is 

significant in the treatment area. This finding is unique among studies of infant mortality. For 

example Alam and David (1998) found higher risks in sibling’s death in Matlab if the previous 

sibling died at the same age (either the neonatal or the post-neonatal period). DaVanzo et al. 

(2008) found positive state dependence in the neonatal as well as the post-neonatal period. In 

India, Arulampalam and Bhalotra found that infant death of the previous sibling increases the 

likelihood of infant death by between 2.2 and 9.2 percent points. Similarly, Omariba et al. (2008) 

found a positive scarring effect of 4.8 percent points for Kenya. These studies do not control for 

birth intervals. In Saha and van Soest (2011, Table 5), we also found negative state dependence 

when  keeping preceding birth intervals constant, but the negative effect is about two to three 

times larger in the current study, which emphasizes the importance of allowing for the 

endogeneity of birth-spacing in the model.  

Even though they have shorter birth intervals and higher fertility, Muslims exhibit lower 

mortality in both the ICDDR,B and the comparison area, similar to what was found for India 

(Bhalotra et al. 2010). Cultural beliefs and practices might be a leading cause of the higher 

mortality risks among Hindus. For example, around the time of giving birth, Hindu women in 

rural Bangladesh often reside in poorly constructed (mainly thatches) houses, and are not given  

warm clothes for baby and mother (personal observation).  

We find evidence of causal effects in two directions: a short preceding birth interval 

reduces survival chances of infants, and an infant death increases the probability of a next birth 
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and shortens the time until the next birth (replacement behaviour). We estimate that, as a result 

of replacement, 0.54 children are born for each infant death (and 0.51 births survive the first 12 

months) in the comparison area and 0.42 children in the ICDDR,B area. 

We find that the birth intervals minimizing the mortality risk are about 50 months in 

ICDDR,B area and 60 months in the comparison area for the majority of cases where the previous 

child did not die during infancy. In both areas, higher mortality risks are observed after long birth 

intervals after an infant death, suggesting that after an infant death and a long interval the mother 

may behave as the mother who gives birth to her first child (see Conde-Agudelo et al. 2006).  

Estimates of fertility behaviour are consistent with son-preference: having more surviving 

boys significantly reduces the probability of having a next child and this effect is strongest in the 

comparison area. The latter is somewhat surprising since according to literature, son preference 

in fertility is associated with better access to contraception and higher levels of contraceptive use 

(see Chowdhury and Bairagi 1990; Rahman and DaVanzo 1993). On the other hand it has also 

been suggested that those who already have more daughters may terminate childbearing earlier 

because of the concern that the next birth, if female, will worsen the existing sex composition 

(Chowdhury and Bairagi 1990).   

Those who used tube well or pipe water as a source of drinking water are less likely to 

see their children die in infancy, and this in turn decreases fertility and increases birth spacing. 

This finding is unique in this study and guides policies to enhance safe drinking water. We find 

evidence that mortality risks change with reproductive behaviour and by socio-economic 

indicators, which has implications for the advice that should given about pregnancy spacing. 

Indeed, this advice is more important for women with low socio-economic status.  
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Concerning policies targeted at achieving the fourth millennium development goal to 

reduce under-five mortality, our findings highlight the important role of extensive maternal and 

child health interventions: comprehensive health infrastructure, providing extensive health 

services and health information in the ICDDR,B area, strengthens learning effects that can 

reduce mortality risk.  
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Table 1. Descriptive statistics, Matlab, 1982-2005. 

Variables ICDDR,B area             Comparison area 

Infant deaths (all live-births) (%) 5.09   6.82 

Infant deaths excluding first-borns (%) 3.95   5.62 

Infant deaths among first borns (%) 6.70   8.90  

Families with no infant deaths (%)            89.34 84.34 

Families in which all births die in infancy (%) 0.79   1.08 

Preceding birth interval in months (%)   

<=24 months 12.93 20.65 

25-36 months 19.92 32.73 

>=37 months 67.14 46.63 

Age of mother at first birth*          21.16 (3.23)            21.08 (3.21) 

Age of mother at birth*         24.70 (5.03)            24.58 (4.85) 

Mother’s education level (%):   

No education 48.48  50.50 

Some primary education     24.86  25.51 

At least some secondary education  

 

26.66  23.99 

Mother Muslim (%) 82.71 89.85 

Child male (%) 50.97 51.12 

Birth order (%)   

                                                       1 41.39 36.63 

                                                       2 28.93 26.74 

                                                       3 17.62 18.26 

                                                       4+ 12.06 18.36 

Father’s education level (%):   

No education  55.67 56.28 

Some primary education   22.65 24.15 

At least some secondary education  21.68 19.57 

 
Father day labourer (%) 19.61 20.96 

Drinking water tubewell/piped water (%)  87.76 76.91 

Distance to health facility  (km)
 *

             1.87 (0.98)            7.07(4.04) 

Number of mothers in sample      13,232  11,856 

Number of children in sample        31,968  32,366 

*: Means and standard deviations (in parentheses).  
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Table 2. Estimation Results Mortality Equation, Birth Order > 1 (Equation (1)). 

 

Covariates 

 

ICDDR,B area 

 

Comparison area 

 estimates  s.e estimates      s.e 

Previous sibling died -1.9904** 0.4637 -0.2703 0.3712 

Preceding birth interval (log) -2.7871** 0.4772 -1.7239** 0.4191 

Preceding birth interval square (log)   0.3565** 0.0644  0.2094** 0.0571 

Log birth interval_lagged mortality    0.5471** 0.1384  0.0648 0.1157 

Male    0.0352 0.0399  0.0111 0.0309 

Muslim  -0.0275 0.0604 -0.0503 0.0516 

Birth order   0.0494 0.1091 -0.1512* 0.0583 

Birth order square -0.01327 0.0152  0.0199* 0.0069 

Mother’s birth cohort:     

       1966-1970 -0.0213 0.0548 -0.1516** 0.0400 

       1971-1975 -0.1513* 0.0674 -0.3055** 0.0486 

       1976+ -0.1878* 0.0807 -0.5461** 0.0619 

Mother’s age at birth -0.1260** 0.0371 -0.0321 0.0333 

Mother’s age at birth square  0.0020** 0.0006  0.0004 0.0006 

Mother’s education some primary  -0.0616 0.0537  0.0096 0.0400 

Mother’s education at least some secondary -0.2305** 0.0697  0.0896 0.0543 

Father’s education some primary  0.0604 0.0506  0.0286 0.0393 

Father’s education  at least some secondary -0.2305** 0.0684  0.1312* 0.0500 

Father’s occupation is day labourer  0.1271* 0.0636  0.1239* 0.0452 

Source of drinking water: tubewell /piped  -0.1767* 0.0633  0.0194 0.0395 

Distance to health facility (km) -0.0002 0.0227  0.0064 0.0039 

Constant  5.4656** 0.9774  2.8594** 0.8554 

* 2<t-value<3; ** t-value>3 

Notes: Reference categories of categorical variables used in the model: female, non-Muslim, no 

schooling years, no access to piped water, not day labourer, mother born before 1966.  
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Table 3. Estimation Results Log Birth Interval Equation, Birth Order > 1 (Equation (3)). 

Covariates ICDDR,B area Comparison area 

 estimates  s.e estimates      s.e 

Previous sibling died -0.6741** 0.0178 -0.6107** 0.0147 

First boy surviving  0.1726** 0.0203  0.1226** 0.0160 

First girl surviving  0.1099** 0.0198  0.0723** 0.0161 

After first boy, number of boys surviving  0.0978** 0.0191  0.0764** 0.0143 

After first girl, number of girls surviving  0.0325 0.0186  0.0197 0.0136 

Male  -0.0104 0.0103 -0.0306 0.0092 

Muslim  -0.0145 0.0105  0.0090 0.0111 

Birth order  0.1136** 0.0219  0.0746** 0.0160 

Birth order square -0.0228** 0.0026 -0.0136** 0.0018 

Mother’s birth cohort:     

       1966-1970  0.0659** 0.0098  0.0461** 0.0090 

       1971-1975  0.1556** 0.0116  0.1072** 0.0109 

       1976+  0.2320** 0.0130  0.1554** 0.0131 

Mother’s age at birth  0.0262** 0.0065  0.0207* 0.0082 

Mother’s age at birth square -0.0004* 0.0001 -0.0002 0.0002 

Mother’s education some primary   0.0372** 0.0091  0.0565** 0.0083 

Mother’s education at least some secondary  0.0035** 0.0107  0.1247** 0.0101 

Father’s education some primary -0.0054 0.0088 -0.0171** 0.0081 

Father’s education  at least some secondary  0.0372 0.0098  0.0066 0.0089 

Father’s occupation is day labourer -0.0046 0.0121 -0.0440** 0.0104 

Source of drinking water: tubewell /piped   0.0414** 0.0101  0.0243** 0.0080 

Distance to health facility (km)  0.0042 0.0037 -0.0009 0.0008 

Constant 3.0807** 0.0801  3.0370** 0.0982 

Sigma error in birth interval equation 0.4422** 0.0029  0.4356** 0.0027 

* 2<t-value<3; ** t-value>3;  

Notes: Reference categories of categorical variables used in the model: female, non-Muslim, no 

schooling years, no access to piped water, not day labourer, mother born before 1966.  
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   Table 4. Estimation Results Decision to Have Next Child (Equation (4)). 

Covariates ICDDR,B area Comparison area 

 estimates  s.e estimates      s.e 

Previous sibling died -0.15572 0.1004 -0.2092*  0.0991 

First boy surviving -0.5969** 0.1568 -1.2778**  0.1699 

First girl surviving -0.5211** 0.1537 -1.2930**  0.1641 

After first boy, number of boys surviving -0.3367* 0.1443 -1.1801**  0.1503 

After first girl, number of girls surviving  0.0307 0.1403 -0.6347**  0.1104 

Male  -0.0462 0.0462 -0.0197  0.0485 

Muslim    0.6076** 0.0787  0.3869**  0.1001 

Birth order -0.3857* 0.1640  0.3148**  0.1015 

Birth order square  0.0100 0.0089 -0.0173*  0.0069 

Mother’s birth cohort:     

       1966-1970  0.0418 0.0473 -0.1730*  0.0672 

       1971-1975  0.1051 0.0720 -0.5095**  0.0991 

       1976+  1.2814 0.6862 -0.9052**  0.1573 

Mother’s age at birth  0.0008 0.0333 -0.0613 -0.0613 

Mother’s age at birth square -0.0026 0.0007 -0.0028** -0.0028 

Mother’s education some primary   0.0331 0.0539 -0.1940*  0.0711 

Mother’s education at least some secondary  0.3843** 0.0790 -0.5045**  0.1017 

Father’s education some primary  0.0229 0.0522  0.1156  0.0664 

Father’s education  at least some secondary -0.1248* 0.0603 -0.0957  0.0770 

Father’s occupation is day labourer -0.5451** 0.0790 -0.4155**  0.0862 

Source of drinking water: tubewell /piped  -0.1205* 0.0554 -0.1453*  0.0606 

Distance to health facility (km) -0.0216 0.0181  0.0245**  0.0068 

Constant  4.4781** 0.5415  6.9565**  0.9225 

*2< t-value<3; ** t-value>3; 

Notes: Reference categories of categorical variables used in the model: female, non-Muslim, no 

schooling years, no access to piped water, not day labourer, mother born before 1966.  
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Table 5: Mother specific unobserved heterogeneity. 

 Mortality Birth interval Fertility 

ICDDR,B area    

Covariance matrix    

Mortality 0.301**   

Birth interval      -0.012 0.017**  

Fertility       0.189 -0.099** 0.793** 

Correlation matrix    

Mortality 1   

Birth interval       -0.167 1  

Fertility 0.386 -0.856** 1 

Comparison area    

Covariance matrix    

Mortality 0.063**   

Birth interval -0.0002 0.007**  

Fertility -0.188** -0.088** 2.306** 

Correlation matrix    

Mortality 1   

Birth interval -0.012 1  

Fertility -0.495** -0.698** 1 

** t-value>3 

Table 6. Simulations. 

ICDDR,B area 1 2 3 4 5 

Infant mortality 51.8/1000 -0.27 4.85 -2.26 1.63 

Birth interval (months) a 43.12 5.87 -0.20 0.70 3.87 

Number of births (fertility) 2.43 -2.20 0.01 -0.20 -3.32 

Number of survivors 2.31 -2.18 -0.26 -0.08 -3.40 

Comparison area      

Infant mortality 68.5/1000 -3.57 1.560 2.208 0.43 

Birth interval (months) a 35.95 6.30 -0.20 -0.10 3.15 

Number of births (fertility) 2.75 -3.72 -0.35 0.73 -5.68 

Number of survivors 2.56 -3.47 -0.46 0.57 -5.71 

  Notes: Column 1 presents simulated outcomes for the benchmark model. Columns 2-5 show 

percentage deviations from the benchmark outcomes that arise when selected mechanisms are 

“switched off” as follows: 

 Column 2: no effect of infant mortality on birth interval or probability of having another child 

 Column 3: no direct effect of lagged mortality on mortality 

 Column 4: no correlation between unobserved heterogeneity in mortality equation and other 

equations (no hoarding) 

 Column 5: birth spacing and family planning as if all children are boys (no gender preference in 

birth intervals or probability of having another child) 
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Figure 1: Infant mortality and preceding birth interval 
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Figure 2: Birth intervals by survival status and gender of previous child, ICDDR,B area 

 

 

Figure 3: Birth intervals by survival status and gender of previous child, comparison area. 

 



 

 

 

 

35 

Figure 4: Predicted mortality of index child by survival status of previous child at infancy 

and log birth interval in both areas ICDDR,B and Comparison. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  p0 = fraction of infant deaths among those whose previous sibling survived at infancy. 

P1 = fraction of infant deaths among those whose previous sibling died at infancy. 
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