

MULTIMEDIA STREAMING PLATFORM BANDWITH CONTROLL CONGESTION
DETECTION AND BANDWIDTH ADAPTATION

Ovidiu Răţoi1

Haller Piroska2

Abstract

We propose a platform for distributed multimedia systems. The proposed platform is
implemented using the Netscape Portable Runtime (NSPR) and the Cross-Platform
Component Object Model (XPCOM). This ensures system portability, flexibility and
performance. The platform is equipped with a congestion detection algorithm and a
bandwidth control mechanism thus controlling the transfer rates between the
communication parties. Using this kind of bandwidth management this platform allows
real-time streaming across multiple networks.

Keywords — real-time multimedia platform; XPCOM components; congestion detection;
bandwidth control;

Introduction

Recent years have shown an increased interest towards multimedia rich applications.
Multimedia content ranges from text or simple images to audio and video data or even
animations. The increased availability of broadband Internet connections leads the way
towards applications that offer high quality multimedia streaming over wide area
networks. In this context there is a need for solutions that enable application developers to
quickly and effortlessly develop this kind of applications.

In the same time software components technologies and component based software
engineering are maturing, in fact the use of components is a sign of maturity in any field
of engineering. The usage of software components offers a lot of advantages the most
important of them being reusability, a component once developed may be reused in any
number of applications, depending on how generic are the services it offers. Also the task
of applications developers changes from development of new software to composition of
existing pieces. Another characteristic property of software components is encapsulation.
This property hides the internal structure and exposes a well defined interface through
which the services are accessed. Encapsulation confers high flexibility to component
based software as individual components can be easily replaced with improved ones as
long as their interface remains identical.

Network communication was always an important issue when handling multimedia
content especially when real time streaming was involved. A research team tackled this
problem and proposed a multimedia applications middleware which regulated network

1 Ratoi Ovidiu, drd. prep. ing., “Petru Maior” University of Tg. Mureş, email:
oratoi@engineering.upm.ro
2 Haller Piroska, Conf. dr. ing., “Petru Maior” University of Tg. Mureş,email: phaller@upm.ro

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6552454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traffic, optimized resource usage and offered a high degree of portability to applications
[1].

Recently some groups are proposing a platform for collaboration systems which integrates
mobile devices [2]. It uses the client-server architecture to provide multimedia content
adapted to the capabilities of any devices used clients.

Our goal was to create an interactive Web application based on components that allows
bi-directional, real time communication between the resources and the user. This paper
describes the component based platform proposed and implemented by us for multimedia
transfer.

The paper is structured as follows. In section 2 we provide a short description of the
Mozilla platform. In section 3 we provide a detailed description of the proposed platform.
One adaptive control mechanism is presented in section 4 along with some test results.
We end the paper with a conclusion and future work in section 5.

Mozilla Platform architecture

Mozilla is an open source portable platform, developed and maintained by the Mozilla
Foundation, best suited for rapid development of highly interactive visual applications [3].
Its conceptual architecture is presented in Figure 1.

Figure 1. Mozilla Platform Architecture

Mozilla based applications have three possibilities to access the Operating System: using
the JVM (Java Virtual Machine), using plugging or through an API called NSPR
(Netscape Portable Runtime). NSPR is a portable API designed to provide operating
system level services like threads and synchronization support, file and network I/O,
memory management, time management, atomic operations or process creation.

XPCOM (Cross Platform Component Object Model) is Mozilla’s object management and
discovery system, very similar to Microsoft COM and remotely to CORBA (Common

Object Request Broker Architecture). It was designed to provide greater flexibility to the
platform and to applications developed on top of it. These components can be created in a
variety of languages ranging from C, C++ to JavaScript or Python and are accessed
through a set of interfaces they implement [4]. In order to provide greater portability and
implementation language independence, interfaces are described in a special language
called XPIDL (Cross Platform Interface Definition Language), a variant of CORBA IDL.
Object lifetime management and interface discovery are implemented in a Microsoft
COM style, by reference counting and special methods for querying all implemented
interfaces.

XPConnect is the technology used to expose object interfaces to scripting languages, like
JavaScript. User interfaces for applications are usually described in XUL (Mozilla’s XML
based User interface Language) [5] or HTML the well-known markup language.

Using the Mozilla platform, we focused on the development of streaming components,
capable of receiving multimedia data from different sources, decode it, and deliver it to
the user interface. The modular architecture of the Mozilla platform enables developers to
add or remove modules with little effort, fitting the software to the available hardware and
adjusting functionality to match product requirements. Our components adjust the transfer
rate continuously, monitoring the devices and network capabilities. The need of the self-
managing components was recently introduced in Web technologies [6], but not in
implementations.

Platform for Distributed Multimedia Applications

Platform model description

A well known method for providing a high degree of transparency and portability to
distributed applications is positioning an intermediate layer called by us Multimedia
Platform between the operating system and the application. In Figure 2 the multilayer
structure of a multimedia applications platform is presented.

Figure 2. Multimedia Platform

Architecture

XChannelHandler

Channel

Channel

Channel

Channel

Incoming
Message
Queue

Band
Management

Control

User Interface

XChannelHandler

Channel

Channel

Channel

Channel

Incoming
Message
Queue

Band
Management

Control

User Interface

connection

connection

connectionconnection

connectionco
nnectio

n

Figure 3. Platform Connection

Model

The bottom layer in this architecture is represented by the network which provides host
computer interconnection and basic data transmission services. On the following level we
have the operating system which provides services ranging from process management or
memory organization to communication and synchronization. Above the operating system
we can find the Multimedia Platform which is divided into two sections: a channel layer
(described later in this paper) and a service layer.

On top of the Multimedia Platform there is the application layer which contains
multimedia sources or multimedia consumers. The Multimedia Platform offers a service
for data streaming between multimedia sources and consumers. Whenever a consumer
needs data from a source a stream between them has to be established. The
communication is based on the concept of channels.

A channel, as mentioned in the previous section, is a logical communication link between
two software entities, like presented in Figure 3. The communication requires the
existence of a connection between each pair of communicating applications. Channels
embody communication protocols, while access is provided through one single interface.

The Multimedia Platform provides an interface for using the channels. By using this
interface we can create or destroy a channel, send messages to one specific channel and
get the received messages from opened channels. Each newly created channel is given a
unique channel ID. All operations involving channels are done through this ID. This
interface exposes four functions used for creating and destroying channels, sending
messages to one channel or receiving messages from the opened channels.

The platform was designed for usage in Mozilla web based client application also. In this
case some elements, like receiving channel events from the platform, had to be taken into
consideration. Due to restrictions imposed by the XPConnect technology notifications

cannot be sent asynchronously from the component to the user interface thus an
alternative solution had to be found. One feasible option would be to implement a waiting
queue in the component for stream data or events, and then at regular time intervals the
user interface would query the object. To prevent memory allocation overflow this queue
had to be limited to a maximum size.

A more detailed description of the channel architecture provided by the Multimedia
Platform it is provided in a previous article [7]

Channel traffic load

Once the platform was operational we tested it for maximum traffic load. For this
purpose, one client and one server application was designed based on the proposed
platform. Both applications ware developed as standalone applications and neither of
them had a graphical interface. The purpose of those two applications was to exchange
messages at maximum speed. Once the messages ware received, they were extracted from
the platform and erased as quickly as possible, with no other processing made.

The tests were made over the internet using two Windows machines on a period of 160
minutes with a 1 minute sampling time. For testing purposes we used the TCP type of
channels. The results are shown in Figure 4 and Figure 5.

The differences between the two tests are in the size of the packages send through the
channels. The first test used 1024 B packets and the second one used packets 10 times
bigger. The spikes on the graph appeared when the internal queue size reached the
maximum value and, as a failsafe measure, the platform stopped reading data from the
channels. In this case, as we can see on the graph also, the channel traffic load showed a
decrease until some of the incoming messages were processed. After the internal queue
size had dropped under that critical value the channel data reading started again and the
measured band has increased again. As we can see from the graphics the maximum traffic
load over the internet using the current architecture of the platform is in the range of 4000
to 5000 Kb of data. This value is a satisfying one for a client-site application used in real
time multimedia streaming, and especially for a web-based client application.

Figure 4. Test results for 1024 B

packets with 1 minute time interval

Figure 5. Test results for 10024 B

packets with 1 minute time interval

Video streaming application test results

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160

Time (minutes)

S
iz

e
(K

B
)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160

Time (minutes)

S
iz

e
(

K
B

)

For testing the platform in a multimedia environment we had created a stream server
running in XULRunner and a web-based client application running in “Mozilla Firefox
2.0.0.20”. Both of them used the proposed multimedia platform. For the client
application, the interaction between the browser and the platform was made using Java
Script. For testing purposes we opened several instances of the client application that
were connected to the stream server. Several sources were also connected to the stream
server and the client applications received frames from them.

Using the model presented above, the video streaming application was tested on several
platforms with variable number of cameras. Three parameters were measured, Incoming
Bandwidth resulting from data received on the communication channel established with
the stream server, Outgoing Bandwidth resulting from the total size of the video frames
transmitted to and displayed by the user interface and Queue Size representing the
number of video frames stored in the object’s waiting queue. All tests were conducted
with the same application, stream server and cameras on a period of 10 minutes with a 4
seconds sampling interval. Once again the TCP based channels were used again. The
results are presented in the following figures.

Test results show that the application performs well on both Windows and Mac OS
environments and although there are oscillations in bandwidth, the waiting queue never
grows bigger than two frames which, considering a data rate of 7-10 fps from each
camera, translates into a very small delay, even when receiving stream from three
different cameras. The performance of the same application is significantly worst in the
Linux environment especially when video stream is received from more than one camera.

The operating systems are not responsible for the different performances of the platform.
As a matter of fact, the Incoming Bandwidth on all of the tested platforms was in the
same range. The differences were because of the Outgoing Bandwidth. Mozilla Firefox
has a different behavior on those environments when rendering frames.

Figure 8 shows that when displaying images from three different cameras the difference
between incoming and outgoing bandwidth is quite high, which produces an abrupt
accumulation of frames in the waiting queue, as it can be seen from Figure 9. From this
increase of the waiting queue size results an unacceptable delay in the video stream.

In Band - Out Band (Bps)

-60000

-40000

-20000

0

20000

40000

60000

80000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

In Bound - Out Bound (Bps)

-15000

-10000

-5000

0

5000

10000

15000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

Figure 6. Controlled bandwidth on
Linux

Figure 7. Bandwidth on Mac OS
X

Figure 8. Bandwidth on Linux

Figure 9. Queue size on Linux

Adaptive controll mechanism

For using an adaptive stream control, the stream servers need to have a mechanism for
setting the prescribed value for client bandwidth. Some of them accomplish this by
recompensing the multimedia stream accordingly to the prescribed value. Other servers
accomplish this by dropping some of the frames that should be sent to the client.

Exploiting this facility could improve application’s performance on some platforms by
reducing delays in stream, especially when a large number of devices are observed.
Because the internet bandwidth can vary in time and the application is an interactive one
where the number of devices from which stream is received could also vary in time, an
adaptive control mechanism has to be implemented. A possible solution would be to
introduce a new XPCOM component responsible for gathering parameter values measured
by the channels and taking control decisions according to them. In the proposed platform
model this component has a passive role. Every active channel will report periodically to
it some parameters.

One version of the adaptive control mechanism is presented in a previous paper of the
authors [8]. In the previous presented algorithm the channels reported periodically 3
parameters: Incoming Bandwidth, Outgoing Bandwidth and Queue Size. This approach
could not prevent the line congestion, but once the congestion was there the adaptive
algorithm will decrease the prescribed value thus trying to end the congestion.

A new approach was developed that implements one congestion detection algorithm.

Congestion detection algorithm

The algorithm developed for the detection of the line congestion is using the Ping-Pong
strategy. One exchange of messages is taking place between the two endpoints engaged in
a communication. The messages exchanged between them are short messages containing
only the timestamp of the messages as described Figure 10

In Bound - Out Bound (Bps)

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

Elemnts In Queue

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

Figure 10. Ping-Pong message exchange

As shown in Figure 10 the PING message has t1 timestamp. This timestamp value will be
appended to the PONG message which in turn has t2 timestamp value. The moment on
which the PONG message is received is given the t3 timestamp.

Based on this type of message exchange, the Ping-Pong congestion detection algorithm
has two stages.
• The first stage computes the average RTT (Round Trip Time) and the ΔT value,

which represents the time difference between the two computers. This stage is
finished when a certain number of epochs are accomplished.

• The second stage of the algorithm uses the RTT and the ΔT values for detecting the
collision on the communication link

The first stage

The average round trip time is the time difference between the moment the PING message
was send (t1) and the moment the PONG message was received (t3).

The current value of RTT (Round Trip Time) can easily be calculated as t3-t1 for every
acknowledge packet received, where t1 represents the moment the PING message was
send and t3 represents the moment the PONG message was received. To determine its
average value, an exponentially weighted moving average (EWMA) filter was applied:

𝑅𝑇𝑇𝑘 = 𝛼 𝑅𝑇𝑇𝑘−1 + (1 − 𝛼)(𝑡3 − 𝑡1)

One small value of α corresponds to an agile filter while large values of α corresponds to
a more stabile filter. The most recent TCP-friendly rate control protocol specification
(Handley, Floyd, Padhye, & Widmer, 2003) recommends a default value of 0.9.
The current value of ΔT can easily be calculated as the absolute value of (t1+t3)/2 – t2.

𝛿𝑇𝑖 = 𝑎𝑏𝑠 �
𝑡1 + 𝑡3

2
− 𝑡2�

To determine the ΔT value representing one accurate time difference between the two
computers the minimum value should be taken into consideration:

Δ𝑇 = min
𝑖=1..𝑛

(𝛿𝑇𝑖)

The seccond stage

The second stage is using the same Ping-Pong exchange of messages. Once the RTT and
the ΔT values are computed we can compute the ST and RT values, where:

• ST – represents the time needed by one message to be send
ST = abs(t2 − t1) − ΔT

• RT – represents the time needed by one message to be received.
𝑅𝑇 = 𝑎𝑏𝑠(𝑡3 − 𝑡2) − Δ𝑇

Based on those values we can predict if the communication link is starting to be congested
or if the bandwidth could be increased. The congestion control algorithm is formulated as

follows:

If the ST or the RT values are negative ones, than the ΔT and the RTT should be
recalculated because the time difference between the two endpoints has changed or the
last computed value of ΔT was not exact.

Bandwidth control mechanism.

The bandwidth control algorithm is working in correlation with the Congestion detection
algorithm. Based on some parameters provided by the channels the prescribed bandwidth
values are computed. Those parameters are: Incoming Bandwidth, Outgoing Bandwidth,
Queue Size, the ST value and the RT value.

If the current ST value is much greater than 0 (zero) than congestion was detected on the
send line. If this happens than the prescribed value for the outgoing bandwidth must be
decreased.

If the current RT value is much greater than 0 (zero) than congestion was detected on the
receive line. If this happens than the Maximum Incoming Bandwidth is decreased. This

if ((ST < 0) || (RT < 0))

{

 // the computed ΔT is wrong

 // recalculate ΔT value by going to STEP 1

}

if (ST >> 0)

{

 // there is congestion detected on the send line

}

value is send to the other entity engaged in the channel communication link. This entity
will set the prescribed value for Outgoing Bandwidth accordingly to the received value,
but less than the older value.

Because some multimedia servers accomplish this by dropping some frames, video
quality will decrease but there will not be any delays, thus maintaining the real-time
quality of the stream.

If the ST value is near 0 (zero) then the Outgoing Bandwidth could be increased if
needed. If the RT value is near 0 (zero) then the Incoming Bandwidth could be increased.
In case this action could be made possible, meaning the Queue Size permits it, the
increased value of the Maximum Incoming Bandwidth is send to the other entity engaged
in the channel communication link.

Some test results are presented in Figure 11 and Figure 12.

Figure 11. Controlled bandwidth on

Linux

Figure 12. Queue size on Linux with

bandwidth control present

Conclusion and future work.

In this paper we proposed a component based, real time streaming, portable, Web
platform for distributed multimedia applications, developed on the Mozilla Platform.
Based on this model we implemented a set of components that can be used in any kind of
multimedia streaming application.

Furthermore a monitoring and control mechanism was presented, which allows the
application to dynamically change transfer rates in order to reduce delays in the stream
caused by slow presentation rates. One congestion detection algorithm is presented and
the bandwidth control mechanism that works in correlation with the congestion detection
algorithm.

As future work we intend to extend the adaptive stream control mechanism and to prepare
the multimedia platform for usage in a dynamic QoS environment. This means that
applications could fine tune the adaptive control mechanism in such a way that different
types of multimedia content should be treated different. What this means is the fact that

In Band - Out Band (Bps)

-60000

-40000

-20000

0

20000

40000

60000

80000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

Elements In Queue

0

10

20

30

40

50

60

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

1 Camera 2 Cameras 3 Cameras

audio streams could be preferred over video ones or even the other way around if
necessary.

References

[1] M. Lohse, M. Repplinger, P. Slusallek, “An Open Middleware Architecture for

Network-Integrated Multimedia”, Proceedings of the Joint International Workshops
on Interactive Distributed Multimedia Systems and Protocols for Multimedia
Systems: Protocols and Systems for Interactive Distributed Multimedia, Portugal,
pp. 327-338, 2002.

[2] X. Su, B. S. Prabhu, C. C. Chu, R. Gadh, “Middleware for Multimedia Mobile
Collaborative System”, Proceedings of IEEE ComSoc Third Annual Wireless
Telecommunications Symposium (WTS 2004), USA, pp. 112-119, 2004.

[3] Alan Grosskurth, Ali Echihabi, “Concrete Architecture of Mozilla”.
[4] Doug Turner, Ian Oeschger, “Creating XPCOM Components”, Brownhen Publishing,

2003.
[5] Nigel McFarlane, “Rapid Application Development with Mozilla”, Prentice Hall,

2003.
[6] H. Liu and M. Parashar, „Rule-based Monitoring and Steering of Distributed

Scientific Applications”, International Journal of High Performance Computing and
Networking (IJHPCN), issue 1, 2005.

[7] Ovidiu Ratoi, Haller Piroska, Ioan Salomie, Genge Bela, “Component based platform
for multimedia applications”, Proceedings of the 7th RoEduNet International
Conference, pp.40-43, 2008

[8] Ovidiu Ratoi, Haller Piroska, Genge Bela, “Multimedia streaming platform based on
components”, The 4 edition of the Interdisciplinarity in Engineering International
Conference, pp 289-296, 2009.

	Introduction
	Mozilla Platform architecture
	Platform for Distributed Multimedia Applications
	Platform model description
	Channel traffic load
	Video streaming application test results

	Adaptive controll mechanism
	Congestion detection algorithm
	The first stage
	The seccond stage

	Bandwidth control mechanism.

	Conclusion and future work.

