ON NEWTON-RAPHSON METHOD

Mircea Cirnu ${ }^{1}$
Irina Badralexi ${ }^{2}$

Abstract

Recent versions of the well-known Newton-Raphson method for solving algebraic equations are presented. First of these is the method given by J. H. He in 2003. He reduces the problem to solving a second degree polynomial equation. However He's method is not applicable when this equation has complex roots. In 2008, D. Wei, J. Wu and M. Mei eliminated this deficiency, obtaining a third order polynomial equation, which has always a real root.

First of the authors of present paper obtained higher order polynomial equations, which for orders 2 and 3 are reduced to equations given by He and respectively by Wei-Wu-Mei, with much improved form.

In this paper, we present these methods. An example is given.

1. Newton-Raphson method

Given a nonlinear equation

$$
f(x)=0,
$$

the approximations x_{n} of an exact real root x of the equation has the following from:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \ldots
$$

2. He's method

Using second order Taylor's expansion, He [3] developed a faster convergent iteration method, obtaining for the variation $t_{n}=x_{n+1}-x_{n}$, the second order polynomial equation

$$
\frac{1}{2} f^{\prime \prime}\left(x_{n}\right) t_{n}^{2}+f^{\prime}\left(x_{n}\right) t_{n}+f\left(x_{n}\right)+g\left(x_{n}\right)=0, n=1,2, \ldots,
$$

[^0]where x_{0} and x_{1}, hence $t_{0}=x_{1}-x_{0}$ are given and
$$
g\left(x_{n}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)-f^{\prime}\left(x_{n-1}\right) t_{n-1}-\frac{1}{2} f^{\prime \prime}\left(x_{n-1}\right) t_{n-1}^{2} .
$$

He's method is indeed faster convergent than Newton's method, but it does not have solutions for all initial values, for the following condition must be fulfilled at every step:

$$
B^{2}-4 A\left(C+g\left(x_{n}\right)\right) \geq 0
$$

where $\left\{\begin{array}{l}A=\frac{1}{2} f^{\prime \prime}\left(x_{n}\right) \\ B=f^{\prime}\left(x_{n}\right)-f^{\prime \prime}\left(x_{n}\right) x_{n} \\ C=f\left(x_{n}\right)-f^{\prime}\left(x_{n}\right) x_{n}+\frac{1}{2} f^{\prime \prime}\left(x_{n}\right) x_{n}{ }^{2}\end{array}\right.$

3. Wei, Wu and Mei method

Following He's example, Wei, Wu and Mei, [4], proposed an even more quickly convergent method under the form of a third order polynomial equation:

$$
\frac{1}{3!} f^{\prime \prime \prime}\left(x_{n}\right) t_{n}^{3}+\frac{1}{2} f^{\prime \prime}\left(x_{n}\right) t_{n}^{2}+f^{\prime}\left(x_{n}\right) t_{n}+f\left(x_{n}\right)+g\left(x_{n}\right)=0, n=1,2, \ldots
$$

where

$$
g\left(x_{n}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)-f^{\prime}\left(x_{n-1}\right) t_{n-1}-\frac{1}{2} f^{\prime \prime}\left(x_{n-1}\right) t_{n-1}^{2}+\frac{1}{3!} f^{\prime \prime} '\left(x_{n-1}\right) t_{n-1}^{3} .
$$

Being a cubic equation it will have at least one real solution for any initial values, thus being more convenient than He's method.

4. Improvements of Newton-Raphson type methods

If $x_{0}=x_{1}$, hence $t_{0}=0$, in [2] was obtained for variations t_{n} of the approximations x_{n} of an exact real solution of the algebraic equation $f(x)=0$, the polynomial equations of order m,

$$
\sum_{k=0}^{m} \frac{f^{(k)}\left(x_{1}\right)}{k!} t_{1}^{k}=0
$$

$$
\sum_{k=1}^{m} \frac{f^{(k)}\left(x_{2}\right)}{k!} t_{2}^{k}+2 f\left(x_{2}\right)=0
$$

where $x_{2}=x_{1}+t_{1}$,

$$
\sum_{k=1}^{m} \frac{f^{(k)}\left(x_{n}\right)}{k!} t_{n}^{k}+2 f\left(x_{n}\right)+\sum_{j=2}^{n-1} f\left(x_{j}\right)=0, n=3,4, \ldots
$$

where $x_{j}=x_{j-1}+t_{j-1}, 3 \leq j \leq n, n=3,4, \ldots$
For $m=2$, are obtained the improved He's equations

$$
\begin{aligned}
& \frac{f^{\prime \prime}\left(x_{1}\right)}{2} t_{1}^{2}+f^{\prime}\left(x_{1}\right) t_{1}+f\left(x_{1}\right)=0 \\
& \frac{f^{\prime \prime}\left(x_{2}\right)}{2} t_{2}^{2}+f^{\prime}\left(x_{2}\right) t_{2}+2 f\left(x_{2}\right)=0
\end{aligned}
$$

where $x_{2}=x_{1}+t_{1}$,

$$
\frac{f^{\prime \prime}\left(x_{n}\right)}{2} t_{n}^{2}+f^{\prime}\left(x_{n}\right) t_{n}+2 f\left(x_{n}\right)+\sum_{j=2}^{n-1} f\left(x_{j}\right)=0,
$$

where $x_{j}=x_{j-1}+t_{j-1}, 3 \leq j \leq n, n=3,4, \ldots$
For $m=3$, are obtained the improved Wei-Wu-Mei equations

$$
\begin{aligned}
& \frac{f^{\prime \prime \prime}\left(x_{1}\right)}{6} t_{1}^{3}+\frac{f^{\prime \prime}\left(x_{1}\right)}{2} t_{1}^{2}+f^{\prime}\left(x_{1}\right) t_{1}+f\left(x_{1}\right)=0, \\
& \frac{f^{\prime \prime \prime}\left(x_{2}\right)}{6} t_{2}^{3}+\frac{f^{\prime \prime}\left(x_{2}\right)}{2} t_{2}^{2}+f^{\prime}\left(x_{2}\right) t_{2}+2 f\left(x_{2}\right)=0,
\end{aligned}
$$

where $x_{2}=x_{1}+t_{1}$,

$$
\frac{f^{\prime \prime \prime}\left(x_{n}\right)}{6!} t_{n}^{3}+\frac{f^{\prime \prime}\left(x_{n}\right)}{2} t_{n}^{2}+f^{\prime}\left(x_{n}\right) t_{n}+2 f\left(x_{n}\right)+\sum_{j=2}^{n-1} f\left(x_{j}\right)=0,
$$

where $x_{j}=x_{j-1}+t_{j-1}, 3 \leq j \leq n, n=3,4, \ldots$
The improvement of these equations consists in replacing of $g\left(x_{n}\right)$ from constant term with simpler expressions.

5. Numerical example

We give an example, taken from [6], in which He's method does not apply.
Consider equation $f(x)=x^{3}-e^{-x}=0$. Newton's formula (11) gives recurrence relation $\quad x_{n+1}=x_{n}-\frac{x_{n}^{3}-e^{-x_{n}}}{3 x_{n}^{2}+e^{-x_{n}}}$. Taking $x_{0}=0$, we obtain $x_{1}=1, x_{2}=0.8123$, $x_{3}=0.7743$ and $x_{4}=0.7729$.

For $m=2$, taking $x_{0}=x_{1}=0$, He's method give quadratic equation $t_{1}^{2}-2 t_{1}+2=0$, which has complex roots, therefore this method is not applicable.

For $m=3$, taking $x_{0}=x_{1}=0$, the improved $\mathrm{Wei}, \mathrm{Wu}$ and Mei method give cubic equation $7 t_{1}^{3}-3 t_{1}^{2}+6 t_{1}-6=0$, with real root $t_{1}=0.7673$, hence $x_{2}=x_{1}+t_{1}=0.7673$. Continuing recurrence process, we get

$$
1.0774 t_{2}^{3}+2.0698 t_{2}^{2}+2.2305 t_{2}-0.025=0, \quad t_{2}=0.0111, \quad x_{3}=0.7784
$$

and

$$
1.0765 t_{3}^{3}+2.1056 t_{3}^{2}+2.2769 t_{3}+0.0125=0, t_{3}=-0.0055, x_{4}=0.7729
$$

References.

[1] R. L. Burden, J. D. Faires, Numerical Analysis, 8 ${ }^{\text {th }}$ edition, Brook/Cole, 2004.
[2] M. Cîrnu, Generalized Newton type method (submitted)
[3] M. Cîrnu, I. Badralexi, New methods for solving algebraic equations, Journal of Information Systems and Operations Managements, vol. 4, no. 1, May 2010, 138-141
[4] J. H. He, Improvement of Newton Iteration Method, Int. J. Nonlinear Sci. Numer. Simulation, 1(2000), 239-240.
[5] J. H. He, A New Iteration Method for Solving Algebraic Equations, Appl. Math. Comput., 135 (2003), 81-84.
[6] D. Wei, J. Wu, M. Mei, A More Effective Iteration Method for Solving Algebraic Equations, Appl. Math. Sci. 2(2008), 28, 1387-1391.

[^0]: ${ }^{1}$ Mircea Cirnu, Phd, professor, Faculty Of Applied Sciences, University "Politehnica" Of Bucharest
 ${ }^{2}$ Irina Badralexi, Student, Faculty Of Applied Sciences, University "Politehnica" Of Bucharest

