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Abstract 

In this paper we present some models and algoritms for solving some typical production 
planning and scheduling problems. We present the Resource-Constrained Project 
Scheduling Problem (RCPSP) and algorithms for the determination of maximal couplings 
with minimal arch length in the graph attached to an allocation problem, and for the 
determination of the solution of Dirichlet problem and of the potential-voltage problem 
which appear in a production planning. We develop a model for allocating work among 
potential VO partners, taking into account fixed and variable work costs and 
transportation costs.  
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Introduction 

Due to the variance of products and the fluctuation of production load, the aims is 
difficult be achieved by traditional planning logic. The improvement techniques look at 
scheduling as a combinatorial optimization problem, start with any solution, and try to 
fiind an optimal or near-optimal solution by iterative improvements. Neural networks too 
have been investigated for solving scheduling problems. Also, a large number of 
developed heuristic search techniques. Task rescheduling plays an important role in the 
performance and robustness of distributed manufacturing systems with dynamic failure 
patterns. 
Today, the virtual organizational structure is emerging. A virtual organization (VO) can 
be defined as a temporary network of companies quickly coming together to exploit fast-
changing opportunities. Several factors are driving businesses toward the use of the 
virtual organizational structure. First, the pace of business is continually increasing with 
shorter product life cycles requiring quicker response to market opportunities. Second, the 
cost of market entry is often smaller than previously, especially in the information 
services and other technology-driven industries. Third, corporations are now driven more 
by customer demands than by internal needs. And finally, there is an increased need for 
globalization to remain competitive. Here, we attempt the problem of selecting VO 
partners in a virtual organization breeding environment (VBE). 
Also, we present some models for production planning problems and industrial 
scheduling applications, and also, some algorithms for solving some typical problems. 
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The different models for production planning problems can broadly be classified into two 
distinct categories: Monolithic Production Planning (MPP) and Hierarchical Production 
Planning (HPP) models [1]. The major difference between these models is the existence 
of structural levels in the HPP models which reduce the variance of data, the complexity 
of production planning problem, and split it up into more or less independent subproblems 
integrated by several interfaces. The Resource-Constrained Project Scheduling Problem 
(RCPSP) is interesting for two reasons: 1) it is the core problem of many real-life 
industrial scheduling applications, where resources can handle several tasks at a time; 2) it 
is an academic problem for which there exists a variety of algorithms and benchmarks, 
and new algorithms can be tested. For solving the RCPSP and for optimization of 
nonlinear functions was developed the algorithm Particle Swarm Optimization (PSO) [see 
Kennedy (1999)]. 
The end-to-start precedence constraints between the activities can be modeled by an 
acyclic graph. In this context we will use the following notations and theoretical results on 
graphs. Let ( ),G X U=  be a finite and conex graph, where X is the set of knots and U is 

the set of arches. For , we denote by  the subset of the arches  with 

, , and by  the subset of the arches  with , . The 

function  is a flow compatible to the surpluses  in the 

graph G if  and . Let 

 be a cycle in G with the arches separated in two sets  and 
, as their sense (direction) coincides or does not coincide with the sense of crossing the 
graph. The real valued function  defined on U is a tension or potential difference in G if 
the following condition is fulfilled . By analogy to 

the theory of electric networks, we consider a function r defined on U, where the value 

 is called the resistance of the arch , and the value  is called 

capacity (capability,power) of the arch . Because the flow can be assimilated with the 

intensity, for each arch  we have , where  and . 
For  the given tension in G, we will define on X a function p called the graph potential: 
we choose an arbitrary knot  and we associate to it the number , then we move 

to an adjacent knot  and we associate to it the number , and the 

procedure continues through all the knots in X and we define  

Too as well, a potential function is  defined in a similar way to p by  and 

. We denote by S the matrix of incidences of the graph G, by R the 
diagonal matrix of the resistances, and by C the diagonal matrix of the capacities. The 

A X⊂ Aω+ ( ),i jx x

ix A∈ jx A∉ Aω− ( ),i jx x ix A∉ jx A∈

:Uϕ → R ( )1 2, , , mσ σ σ σ= 

( ) 0,u u Uϕ ≥ ∀ ∈ ( ) ( ) ,i i
u ux xi i

u u x X
ω ω

ϕ ϕ σ
− +∈ ∈

− = ∀ ∈∑ ∑

( )1 2, ,...u uγ = ( )1A γ ( )2A γ

π
( )

( )
( )

( )1 2

0,
u A u A

u u
γ γ
π π γ

∈ ∈
− = ∀∑ ∑

( )j jr r u= ju 1
j

j
c

r
=

ju

ju j j jr ϕ π⋅ = ( )j juϕ ϕ= ( )j juπ π=
π

ix 0ip =

kx ( ),k i i kp p x xπ= −

( ) , .k k kp x p x X= ∀ ∈

'p ' 0ip =

( )' ' ,k i i kp p x xπ= +



   
 

matrix S has the elements , where . The matrix R has the 

elements , and C has the elements . 

Theorem 1. The following statements hold true:  
(a)  ;        (b)  ; 

(c)  ;        (d)   and .  
If G is a transportation network, i.e. it has a first vertex (the entry) and a last vertex (the 
exit), then . If in a finite, conex and without loops graph, these vertexes 
do not exist, they can be introduced fictitiously being conjoined to the entry and exit 
vertexes of the graph by infinite resistance arches. The mathematical model of the 
materials (primary objects) distribution leads to the following problem, the so called 
Dirichlet’s problem: for  a conex and without loops graph,  the array of 

surpluses having the coordinates in the vertexes  and r a resistance on U, one 

looks for a flow  compatible to  such that  is a tension in G. If , then 
the solution exists and it is unique [7]. 

Partner selection in a virtual organization 

When a VBE identifies a business opportunity, it has to determine a ‘good’ VO 
configuration for meeting the identified customer need; this is essentially an optimization 
problem that can be formulated as a mixed integer linear programming model. We 
develop a model for allocating work among potential VO partners, taking into account 
fixed and variable work costs, transportation costs etc. Let  denote the 
set of candidate partners in the VO. The project tasks are denoted by . We 

note:  capacity of candidate i on task j (more general  is distribution of capacity, 

 k-th element of , without loss of generality, it can be assumed that  are sorted 

in descending order so that );  fixed cost of candidate i work on the 

project;  fixed cost of candidate i work on task j of the project;  unit 

transportation cost between candidates a and b;  variable cost of candidate i work on 

task j;  workload of task j which is measured in relevant units (e.g. person days); 

 denote a pair of tasks such that the output of task  must be at the same 

location where task  is carried out; R denote the set of all such pairs,  quantity of 

transportation required between tasks  and . Variables:  candidate i work 
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allocation on task j;  takes value one if i is selected into the VO, zero otherwise;  

takes value one if i performs work on task j, zero otherwise, the matrix ;  

takes value one if both candidates a and b are selected into the VO, zero otherwise;  

takes value one if candidates a and b perform tasks  and , respectively, and 
transportation is required between tasks  and , zero otherwise (where ). 

Therefore, for any given pair of tasks , we have: 

 ,  and , 

where this definition applies for all pairs of candidates a, b such that a is capable of 
performing task  and b can perform task . The total transportation costs can be 
written as  (the third term of the our objective function). 

 In the objective function, the first term ( ) is the sum of fixed costs due to the 

addition of partners to the VO, while the second term ( ) 

covers the fixed and variable costs due to the work that the partners perform on their 
respective tasks. This function is flexible in that some costs can be ignored if they are 
irrelevant. The decision variable is the work-allocation matrix  having the elements

.  
Our optimization model is 

.   

     subject to  , , 

     , , , 

    , ,  

Production planning and scheduling problems 

In the detailed production scheduling problem, there is a set of projects  to be 
executed within the scheduling horizon. Each project  is characterized by an 
earliest start time  and a latest finish time . The project P comprises a set of non-
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preemptive tasks . Resource-Constrained Project Scheduling Problem (RCPSP) is 
defined by a set of tasks T and a set of resources R. Each task  has a fixed duration 

. Each task t requires one unit of the renewable cumulative resource  during 

the whole length of its execution. The capacity of the resource r is denoted by , 

which means that r is able to process at most  tasks at a time. Tasks that belong to 
the same project can be connected by end-to-start precedence constraints. The precedence 
constraint  states that task i must end before the start of task j, i.e. . The 

solution of a RCPSP instance consists of determining valid start times  for the tasks 
such that all temporal, precedence, and resource constraints are satisfied and some 
objective function is minimized. We assume that all the raw materials of a project have to 
be on stock by the start time of the project. Each task i is performed on some resources k 
of which it requires a given amount . Each resource k is available in a given quantity 
Rk. The problem is solved when one has found a set of starting dates Si such that: 
for all precedence constraints with : Si + di ≤ Sj                                 (1) 

for all resources k, and all time t:                                   (2) 

The purpose is to minimize the latest end time (Si + di) over all tasks i.  
The problems of transfer and allocation are very important in distribution 

production. There are ways of solving the transfer problem: methods based on graphs (in 
particular, we have the Hitchcock’s problem for the existence of a flow compatible with 
the given surpluses in a graph). 

I). The transfer problem can be stated as: given the surpluses  

located in the vertexes  and the numbers , assigned to the 

arches , where  is the graph that models the transfer, one requires the 

potential  satisfying the conditions: (i)  for 

 and (ii) the scalar product > should be minimal. 

For  we replace the number  by  in order to point out the 

vertexes. The potential p is said to be compatible if < . Modeling through a 
transportation network allows to find a maximal flux saturating the exit arches. The graph 
G can be transformed into a transportation network  in this way: 

- add an entry  and an exit ; 
- introduce the entry arches , where  has >0, and we denote 

by P their set; 
- introduce the exit arches , where  has <0, and we denote 

by Q their set; 
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Let  be the flow which extends in R the one defined on G, where  for 

. Consequently, we have  where  and  

when . The network is chosen such that the sought flow will saturate its 

entry and exit arches, so . 

The problem of transfer is stated, in its canonical form, like: given a 
transportation network with entry a and exit b, with capacities  on the entry arches and 

 on the exit arches, one seeks for a maximal flow  such that: 

(i) ; 

(ii)  for  and  for ; 

(iii) ; 

(iv)  must be minimal when the numbers  assigned to the arches 

 are known. 

Eliminating the arches for which <  one gets from R a partial network . 

Theorem 2. If the compatible potential p in the associated partial network  
induces the fact that the maximal flow does not saturate the exit arches, then it can be 
found in G another compatible potential  such that σσ ,,' pp < . If in  the 
maximal flux saturates the exit arches, then the scalar products < > and < > are 
minimal. 

According to Theorem 2, the next algorithm (ALG1) solves the general transfer 
problem: 
Step 1. Introduce in G a tension whose components verify the inequalities , 
j=1,2,…,m, almost with quality. From this tension it is deduced a potential p. 
Step 2. The graph G is transformed into a transportation network R in which the arches 
with <  are suppressed, obtaining a network . 

Step 3. Looks for the maximal flux  in . 
Step 4. If  does not saturate the exit arches, the potential must be improved and the 
algorithm resumes to Step 2. So, in G we have that  is the solution of the transfer 
problem and < > is the solution of the conex problem on the potential. 
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The transfer problem can be brought to a Hitchcock’s problem which is modeled by a 
simple graph (the set of vertexes is , X and Y disjoint, and the set of arches is 

). Any subset of U which does not skip over a vertex is called 
coverage of the graph. A problem is to find a minimal coverage (according to cardinality, 
the number of arches in the coverage).  

II). The allocation problem: in a distributed production process (environment) 
composed of m units  are to be performed n manufacturing processes 

. Each unit can execute only certain work processes and to each unit a single 

work is allocated. We denote by G the set of arches  associated to the possibility of 

assigning work process  to unit . To every arch , a constant number  

is attached (  can be regarded as a cost or a profit) together with a variable ,  is 

one , zero . 
The mathematical model of the allocation problem is 

 

   subject to , ,  

One looks for the values  which satisfy the above constraints. The solution is 

placed on the arches of a coupling within the simple associated graph , where 

, . If < , then the number of the arches for 
the coupling is m (maximal coupling of P in L). If , then the number of the arches 
for the coupling is n (maximal coupling of L in P). If , the coupling is of L on P 
and it is maximal. Therefore, the allocation problem is equivalent to the problem of 
choosing among the maximal couplings within the graph those for which the sum of the 
numbers  attached to their arches are minimal. If in the objective function we look for 

the maximum, putting  and , then 

 and the 

maximum problem comes to a minimum problem. We will consider that the relationship 
defined by G is surjective ( ), hence the inequalities from the constraints become 
equalities. 

The solution of the problem can be done by attaching a simple graph and 
determining a maximal coupling with minimal lengths of the arches. This solution uses 
the following heuristic procedure (ALG2). 

Step 1. The set of arches of the graph which models the problem is divided into 
classes with the same , ordered in ascending order. 
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Step 2. We start with an arch from the first class, we exclude its adjacent arches 
from the next classes, and then we continue choosing the arches for  in 
ascending order and excluding the adjacent arches from the next classes to form a 
maximal coupling  with n arches. 

Step 3. We compute  and we keep the couplings with minimum 

sum (they represent the solutions of the problem. 
The algorithm for determining all maximal couplings (ALG3): 
Step 1. Construct the tree containing the maximal couplings attached to Y: 
- From the root knot (denoted by 0 and forming level 1) we set arches connecting level 1 
knots (arches , where the knots j verify ); 
- The construction of the tree for the levels 2,3,...,n is done as follows: for i from 2 to n, 
for every knot k on level  and for every j with , which is not a knot on the 
branch from the root 0 to the knot k, one adds in the tree the knot j on level i and the arch 

. 
Step 2. Run through all the branches (root 0 – final knot) of the tree constructed at Step 1. 
Each branch of length n defines a maximal coupling composed of the arches (level, knot), 
starting with level 1 and finishing with level n. 
Thus, solving the allocation problem means generating the graph that models the problem, 
determining all the maximal couplings (using ALG3) and selecting those with minimal 
sum of the values, obtaining in this way all the solutions of the problem. 

Numerical illustration and final remarks 

     For optimal selection partners (four partners and six tasks) in VO, we have fixed cost 

matrix (in monetary units) , variable cost matrix 

, capacity matrix  

 and the workload vector  
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The optimal selection is , the minimal cost is  

4616 monetary units. 
Also, we present three short examples in which the solutions are obtained using 

the algorithms ALG1-3 described above. 
Example 1. Let us consider the graph given by 

. With ALG2 we get , 

, ,  the maximal 

couplings, with  , , . 
Example 2. Let us consider the graph given by 

. Applying ALG3 we get the following 

12 maximal couplings: 
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, with . 

Applying algorithm ALG2 we obtain the coupling with the minimal sum . 
Example 3. For the Dirichlet’s problem, let us consider the entries 

,  and . We 

get the potential , the tension  and the flux 

. 
If for the Dirichlet’s problem we have that: the surpluses are given only in certain 
vertexes of the graph, the number of given components of the vectors  and  is equal 
to the power of the set of vertexes, and the resistances  of the arches are nonnegative 
for every j, then the problem has a unique solution for graphs which are or can be brought 
to transportation networks. A conclusion for such a problem is that the given potentials 
are not necessarily settled in the vertexes in which the surpluses are not known. The flows 
and the tensions do not have necessarily all components integer numbers. 
For partner selection in VO under normal conditions, we can assume that infrastructure is 
reliable and therefore a transportation partner is available. However, if selecting the right 
transportation partner is crucial to the success of the project, then each  can be 
associated with a new task of the project. Thus, the selection of partners for these tasks is 
done similarly to other tasks. In this way, the decision maker can also cater for possible 
risks related to transportation. Nevertheless, work performed in collaboration causes 
transaction costs that would not exist if one entity performed the job. At the partner 
selection phase of VO creation it is unrealistic to estimate the transaction costs that arise 
during the VO life-cycle. Therefore, it is more practical to study non-monetary indicators 
that influence the size of transaction costs over the VO life-cycle. One such indicator is 
the number of past collaboration activities between partner candidates. It is reasonable to 
assume that the more the companies have collaborated earlier, the better they know each 
other’s ways of action, which reduces the transaction costs of collaboration. When used as 
partner selection criteria in VO configuration, we refer to these indicators as network 
preparedness criteria. The network preparedness criteria differ from traditional selection 
criteria. The measurement of inter-organizational performance is more viable in the 
management of a VBE than in an “open universe” of organizations. This is because the 
VBE members collaborate repeatedly, which permits the collection of data about inter-
organizational performance. Thus, considerations such as trust, success of past 
collaboration, and congruence between organizational culture and objectives can be 
employed as potentially useful criteria for VO partner selection.   

( ) ( ) ( ) ( ) ( ){ }9
0 1,5 , 2,1 , 3,2 , 4,3 , 5, 4W =

9 16S =

( ) ( ) ( ) ( ) ( ){ }10
0 1,5 , 2,2 , 3,3 , 4,1 , 5,4W = 10 12S =

( ) ( ) ( ) ( ) ( ){ }11
0 1,5 , 2,4 , 3,2 , 4,1 , 5,3W = 11 16S =

( ) ( ) ( ) ( ) ( ){ }12
0 1,5 , 2,4 , 3,2 , 4,3 , 5,1W = 12 15S =

2
0W

1 0 1 1 0
1 1 0 0 0
0 1 1 0 1
0 0 0 1 1

S

 
 − =
 − −
  − − 

1 1 11 1
2 4 3

r  =  
 

( )38 2 16 20σ = − − −

( )6 4 2 0p = ( )2 2 4 6 2π =

( )4 2 16 18 2ϕ =

σ p

jr

r R∈
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