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Abstract

Quotas for special groups of students often apply in school or university admis-
sion procedures. This paper studies the performance of two mechanisms to implement
such quotas in a lab experiment. The first mechanism is a simplified version of the
mechanism currently employed by the German central clearinghouse for university
admissions, which first allocates seats in the quota for top-grade students before allo-
cating all other seats among remaining applicants. The second is a modified version
of the student-proposing deferred acceptance (SDA) algorithm, which simultaneously
allocates seats in all quotas. Our main result is that the current procedure, designed
to give top-grade students an advantage, actually harms them, as students often
fail to grasp the strategic issues involved. The modified SDA algorithm significantly
improves the matching for top-grade students and could thus be a valuable tool for
redesigning university admissions in Germany.
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1 Introduction

When matching students to schools or universities, quotas for certain groups of students

are often applied. For example, schools may want to admit a diverse student body that is

representative of the overall population.1 Or certain groups of students receive preferential

treatment over others, e.g., to make up for past discrimination. The German central clear-

inghouse for university admissions reserves seats for top-grade students. Similar quotas,

such as a quota for siblings or handicapped students or a racial quota, are used in many

school choice programs.2

How should quotas be implemented in a centralized admissions procedure? To our

knowledge, this paper is the first experimental study on this question, complementing

the theoretical literature starting with Abdulkadiroglu and Sönmez (2003).3 We investi-

gate two mechanisms to implement quotas, namely a simplified version of the mechanism

currently used by the German central clearinghouse in which quotas are filled sequen-

tially, and a modified version of the student-proposing deferred acceptance (SDA) algo-

rithm, which simultaneously allocates seats in all quotas and was proposed by Westkamp

(2011). While the SDA algorithm is strategy-proof for students, the German mechanism

creates incentives for applicants to misrepresent their preferences over universities (Braun

et al. 2010, Westkamp 2011). Our main result is that the current sequential procedure,

designed to work in favor of top-grade students, actually harms them. The reason is that

top-grade students often fail to use the sequential system to their benefit. In particular,

these participants often accept a relatively undesirable match early in the procedure when

a better match could have been obtained in later parts of the procedure. The modified SDA

mechanism, which distributes all available places simultaneously, significantly improves the

matching outcome of top-grade students.

1The New York City High School Match, for instance, uses quotas for the so-called EdOpt School.
These schools can fill 50 % of their seats according to their own criteria, but have to reserve quotas for
top, middle, and bottom performers. The rest of the seats are allocated randomly among students, again
within the quotas for the three groups of students (Abdulkadiroglu et al. 2005).

2For more examples see Abdulkadiroglu and Sönmez (2003).
3See also Abdulkadiroglu (2010), Ehlers (2010), Kamada and Kojima (2010), as well as Westkamp

(2011).
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The German central clearinghouse for university admissions allocates seats in medicine

and related subjects with a sequential admission procedure.4 The procedure consists of a

priority-based part where a fraction of total capacity is allocated among“special applicants”

on the basis of their preferences and exogenous admission criteria, and a two-sided part in

which the remaining seats are allocated among remaining applicants on the basis of the

preferences of applicants and universities. In the priority-based part, 20% of all available

university seats are reserved for applicants with very good grades (top-grade quota) and

20% for those with the longest waiting time since completing high-school. These seats

are allocated using the well-known Boston mechanism that was studied, among others,

by Abdulkadiroglu and Sönmez (2003). Only applicants who do not get a seat in the

priority-based part can participate in the subsequent two-sided part, where all remaining

seats are allocated using the university-proposing deferred acceptance algorithm (Gale and

Shapley 1962). Importantly, applicants submit separate preference lists for each part of

the procedure.

In the current procedure, top-grade applicants can often benefit from manipulating

their submitted rank-order lists. This is not surprising as it is well known that the Boston

mechanism is not strategy-proof (Abdulkadiroglu and Sönmez 2003). Yet, the sequen-

tial application of mechanisms generates additional incentives for preference manipulation.

Relative to truthful revelation, top-grade applicants often have an incentive to truncate

their preference list for the first part of the procedure in order to participate in the second

part. By submitting a shorter list in the first part, top-grade students can often avoid being

matched to a lower-ranked university in the top-grade quota and instead get a seat at a

higher-ranked university in the regular quota. These incentive properties are well known

to the clearinghouse that advises applicants to make strategic choices.5 Using the actual

data of the German central clearinghouse, Braun et al. (2010) present evidence that some

applicants indeed behave strategically and misrepresent their preferences.

4The clearinghouse allocates all seats in medicine, pharmacy, veterinary medicine and dentistry at
public universities in Germany. In the winter term 2010/2011, there were 56 000 applicants for 13 000
places in the four subjects.

5Top-grade applicants are advised that the chance of being assigned to a university in the priority-based
part decreases significantly if it is not ranked first, that it may be beneficial to truncate preference lists for
the first part, and that they lose their guaranteed priority over others in the two-sided part (see Section
3.1 for further details).
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Top-grade applicants thus face a difficult trade-off between securing a match in the top-

grade quota, but possibly at a lower ranked university, and competing without priority for

a seat in the regular quota. Beyond the specific German context, such a trade-off generally

arises if quotas for special and regular applicants are filled sequentially and special appli-

cants can sometimes get a better match in the regular than in the special quota.6 No such

trade-off arises in the modified version of the SDA mechanism with constraints and capac-

ity redistribution as proposed by Westkamp (2011).7 The key feature of this mechanism

is that it allocates all seats simultaneously and redistributes free capacity instantaneously

from the quota for top-grade students to the quota for regular students. Each student sub-

mits one preference list only, and it is a weakly dominant strategy for students to reveal

their preferences truthfully. This algorithm produces the student optimal stable matching

(as characterized in Roth 1984) and is group strategy-proof for applicants (Hatfield and

Milgrom 2005, Kojima and Pathak 2009).

We compare the performance of the two mechanisms in a controlled laboratory exper-

iment. The experiment allows us to assess the performance of the two mechanisms with

respect to induced, i.e., true, rather than stated preferences.8 To analyze how the perfor-

mance of the two mechanisms depends on the preferences of students and universities, we

designed four different markets that differ in their degree of correlation of university and

student preferences. For each of the four markets, the student optimal stable matching is

the unique equilibrium outcome of both mechanisms when attention is restricted to ap-

plication strategies that are not weakly dominated. Thus, the two mechanisms yield the

same outcome if the top-grade applicants fully understand the strategic properties of the

sequential mechanism. Our experimental results suggest, however, that they often do not.

6Suppose, for instance, that there is a quota for members of an ethnic group and the remaining seats
are allocated among all students. Then a sequential procedure can harm those members of the ethnic
group who also have a good chance of being admitted under the regular procedure.

7This mechanism initially reserves a fraction of capacity for special student groups instead. This should
be contrasted to Abdulkadiroglu and Sönmez (2003), where constraints take the form of upper bounds
for the numbers of students from certain groups. For a discussion of the differences between these two
approaches see Westkamp (2011).

8In their field study, Braun et al. (2010) make a number of (non-testable) assumptions to infer true from
stated preferences. Their simulations which use these inferred preferences indicate that a sizable number
of top-grade students would be better off if they had truncated their rank-order list for the top-grade quota
or if the top-grade quota was dropped altogether.
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The student optimal stable matching is more often reached in the modified SDA mecha-

nism than in the current mechanism. Consequently, top-grade students are significantly

better off in the modified SDA mechanism than in the current mechanism. The differences

between the two mechanism persist also in later rounds of the experiment although they

become smaller over time due to learning effects. Our findings suggest that the modified

SDA mechanism could be a valuable tool for redesigning university admissions in Germany.

Furthermore, as shown in Westkamp (2011), a generalization of the modified SDA can han-

dle much more complex constraints than those of the German system.9 Our experimental

results suggest, that this type of mechanism might be well suited to address matching

problems with complex constraints more generally.

Our paper is related to the growing experimental literature on matching mechanisms.

Many of these papers share our basic experimental setup: all experimental subjects play

the role of students and are asked to submit a rank-order list of their experimenter-assigned

preferences to a centralized clearinghouse. In Chen and Sönmez (2006), experimental sub-

jects play a one-shot game of incomplete information in which each participant is only

informed about his own preferences, schools’ capacities, and the matching mechanism.

They find that that from the perspective of students, the student-optimal mechanism out-

performs both the Boston and the top-trading cycles mechanism.10 Pais and Pinter (2008)

compare the SDA, Boston, and top-trading cycles mechanisms under various informational

settings ranging from the zero information setting of Chen and Sönmez (2006) to the com-

plete information setup that we employ in our experiment. For all three mechanisms the

rate of truthful preference revelation is highest in the zero-information setting.11

To the best of our knowledge, our paper is the first to study experimentally the perfor-

9For example, the mechanism can be used to implement the constraints that (1) x% of total capacity
at a university/school should initially be reserved for a special group of applicants (e.g., siblings of existing
students in case of school choice) and (2) any remaining capacity should be distributed equally among
sexes. This is not possible with the type of affirmative action constraints considered in Abdulkadiroglu
and Sönmez (2003).

10The top-trading cycles mechanism was introduced in Shapley and Scarf (1974) as a mechanism to find
a core allocation in house exchange models. The mechanism was extended to school choice problems by
Abdulkadiroglu and Sönmez (2003).

11Without being exhaustive, other experimental studies of matching mechanisms are Kagel and Roth
(2000), Calsamigla et al. (2010), Pais et al. (2011), Guillen and Kesten (2011) as well as Echenique et al.
(2009).
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mance of a two-stage matching mechanism combining the Boston and the student-optimal

stable matching mechanism. Note that this sequential application of the two mechanisms

differs fundamentally from the so called proposal refusal mechanisms studied by Chen and

Kesten (2011). In these mechanisms, in each round (1) students always apply to the best

school that has not rejected them in any previous round, and (2) schools tentatively ac-

cept the highest ranked applicants. Importantly, assignments are finalized every e rounds,

where e is a fixed parameter. The polar cases of this family of mechanisms are the Boston

(e = 1) and student-optimal stable (e =∞) mechanisms. For intermediate values of e, one

gets a hybrid of these two mechanisms. The strategic properties of these hybrid one-stage

mechanisms are entirely different from the incentives created by the sequential application

of the two mechanisms. In particular, truncations of preference lists can never be beneficial

in a proposal refusal mechanism, whereas they are often optimal in the first stage of our

sequential mechanism.

The paper is organized as follows: Section 2 presents the theoretical results concerning

the two mechanisms. In Section 3, we describe the experimental procedures before pre-

senting the results from the experiments in Section 4. Section 5 summarizes the findings

and concludes.

2 Theory

We are concerned with the problem of assigning a finite set of students S to a finite set

of universities U . For each university u, a fixed number of seats qu ∈ N is available. Each

student s has a strict preference relation Ps on U ∪{s} and the associated weak preference

ordering is denoted by Rs. Similarly, each university u has a strict preference relation Pu

over the set of students and the option of leaving a seat unfilled.12 We assume throughout

that universities’ preferences and capacities are exogenously given and that universities do

not act strategically. Consequently, we will often suppress dependency on these variables

12More formally, we assume that u’s preferences over groups of students are responsive with respect
to Pu (Roth 1985), i.e., the desirability of any individual student to u does not depend on which other
students it is able to attract.
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in the following.

Quotas. Each university has to reserve a significant number of seats for students

with excellent average grades from high-school. To make this requirement precise, let the

average grade of student s be given by a(s) ∈ R+. Student s has a better average grade

than student s′ if a(s) < a(s′) (in Germany grades range from 1.0 to 4.0, with 1.0 being the

best possible grade). We assume throughout that no two students have the same average

grades, i.e., a(s) 6= a(s′) whenever s 6= s′. Each university u has to reserve q1u ≤ qu seats for

top-grade students. We refer to these seats as the top-grade quota and let q1 :=
∑

u∈U q
1
u

denote the total number of seats in the top-grade quota. A student s is eligible for a seat

in the top-grade quota if she has one of the q1 best average grades. In this case, s is called

a top-grade student. The set of all top-grade students is denoted by SA.

To formulate the constraint that seats in the top-grade quota can only be allocated

among other students if there is insufficient demand from top-grade students, we first

define the concept of a matching (of students to universities). Each university has two

types of seats, those initially reserved for top-grade students and those it can award on

basis of its own preferences. For this reason, a matching has to specify both the university

a student is matched to and the type of seat she receives. More formally, a matching is a

pair of mappings µ = (µ1, µ2) such that

(i) µ1 assigns each top-grade student to some university or leaves her unmatched (or

matched to herself), i.e., µ1 : SA → U ∪ SA and µ1(s) ∈ U ∪ {s} for all s ∈ SA,

(ii) µ2 assigns each student to some university or leaves her unmatched, i.e., µ2 : S →
U ∪ S and µ2(s) ∈ U ∪ {s} for all s ∈ S,

(iii) each student is assigned at most one place, i.e., |(µ1(s)∪µ2(s))∩U | ≤ 1 for all s ∈ S,

and

(iv) each university u is assigned at most q1u students under µ1 and at most qu students

in total, i.e., |(µ1)−1(u)| ≤ q1u and |(µ2)−1(u)| ≤ qu − |(µ1)−1(u)| for all u ∈ U .

Given a matching µ = (µ1, µ2), we let µt(u) := (µt)−1(u) denote the set of students

assigned to u under µt (with part t ∈ {1, 2}), and µ(u) = µ1(u) ∪ µ2(u) denote the set

of students assigned to u under µ1 and µ2. Similarly, for all students s ∈ S, we let µ(s)
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denote the assignment of s under µ, that is, µ(s) = s if µ1(s) = µ2(s) = s, and otherwise

µ(s) = µt(s) for the unique t such that µt(s) ∈ U . We say that s receives a seat in the

top-grade quota of university u if µ1(s) = u, and receives a seat in the regular quota of

university u if µ2(s) = u. Note that for each university u, the number of students who can

be assigned a seat in the regular quota of u depends on the number of students who receive

a seat in the top-grade quota of u.

Next, we specify students’ preferences over matchings. While there are two types of

seats at each university, we assume throughout that students do not care about which

particular seat they obtain at a given university, i.e., whether they receive a seat in the

top-grade or the regular quota of a given university. Hence, a student’s preference relation

over matchings coincides with her preference over the set of universities and the option of

remaining unmatched. With these preparations, we can now formulate the constraint that

seats in the top-grade quota are initially reserved for top-grade students and can only be

allocated to others if there is insufficient demand from these students:

Constraint (A). Let µ = (µ1, µ2) be a matching, s be a top-grade student,

and v := µ(s). There should not be a university u such that

(a) s strictly prefers u over v, and

(b) less than q1u top-grade students were assigned to u, i.e., |µ1(u)| < q1u.

Note that the number of top-grade students equals the number of seats in the top-grade

quota. This implies in particular that in any matching mechanism satisfying constraint

(A), a top-grade student can guarantee herself a place in the top-grade quota if she ranks

all universities as acceptable.

Mechanisms. The main focus of our experiment is to compare two mechanisms imple-

menting Constraint (A): (1) a stylized version of the current assignment procedure for seats

in medical subjects at public universities in Germany, and (2) an alternative mechanism

based on the student-proposing deferred acceptance algorithm of Gale and Shapley (1962)

(more precisely, on a modification of this algorithm that is able to deal with the specific
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constraints of the German admissions system and was introduced in Westkamp (2011)).

We now describe these mechanisms in detail.

Mechanism 1: Sequential Assignment

Our stylized version of the current German assignment procedure consists of two parts that

are conducted sequentially. To participate in the procedure, each student simultaneously

submits two preference lists – one for the first and another for the second part of the

procedure. In the first part, seats in the top-grade quota are allocated among top-grade

students on the basis of these students’ preferences and their average grades. In the second

part, all remaining seats are allocated among students left unassigned in the first part of

the procedure based on students’ and universities’ preferences.

Part I: Assignment for top-grade students (Boston mechanism)

In the first round, each top-grade student applies to her most preferred

university (according to the ranking submitted for the first part). Each

university admits students one at a time in order of their average grades

until either its top-grade quota is exhausted, or there are no more top-grade

students who have ranked it first.

In the kth round, each unassigned top-grade student applies to her kth

most preferred university. Each university with remaining top-grade seats

admits students one at a time in order of their average grades until either

its residual top-grade quota is exhausted, or there are no more top-grade

students who have ranked it kth.

The first part ends when all unassigned top-grade students have applied to all uni-

versities they have declared acceptable for the first part. The second part allocates

all remaining seats among all remaining students. Letting µ1 denote the matching

produced in the first part of the procedure, the residual capacity of university u is

qu − |µ1(u)| and the set of remaining students is S \ (∪u∈Uµ
1(u)).
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Part II: Assignment according to universities’ preferences (student-proposing de-

ferred acceptance algorithm)

In the first round, each student applies to her most preferred acceptable

university (with respect to the ranking submitted for Part II). Each univer-

sity u temporarily admits students one at a time in order of their position

in Pu until either its residual capacity is exhausted, or there are no more

acceptable students, and rejects all other applicants.

In the kth round, each unassigned student applies to her most preferred

acceptable university among those that have not rejected her in previous

rounds. Each university u temporarily admits students one at a time in

order of their position in Pu until either its residual capacity is exhausted,

or there are no more acceptable students, and rejects all other applicants.

The algorithm ends after a round in which no rejections are issued. Only at this

point temporary assignments become final.

In the following, we will refer to the above mechanism as MSEQ to emphasize its

sequential structure. Given a profile of student reports (Q1, Q2) = (Q1
s, Q

2
s)s∈S, where Qt

s

is the list submitted by student s for part t ∈ {1, 2}, let fSEQ(Q1, Q2) denote the matching

chosen by MSEQ. Note that if students submit preferences truthfully for both parts of the

procedure, MSEQ satisfies constraint (A): in the first part, a top-grade student is rejected

by a university u only if q1u top-grade students have already been assigned to u. However, it

is clearly not always beneficial for top-grade students to report preferences truthfully. On

the one hand, a top-grade student may find it in her best interest to truncate, i.e., shorten,

her true preference list for the first part of the procedure. A top-grade student who does

not submit a truncated list always obtains a seat in the first part of the procedure and

may thus forsake her chances of obtaining a better seat in the second part (where more

capacity becomes available). On the other hand, a top-grade student may find it beneficial

to overreport her preferences for some universities in the first part of the procedure if she
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cannot obtain a preferred assignment in the second part. The reasons are that (i) top-grade

students lose their guaranteed priority over regular students if they are left unmatched in

the first part of the procedure, and (ii) a top-grade student is guaranteed priority over

other top-grade students with worse average grades only if she ranks a university first.

Strategic misreporting may lead the outcome chosen by MSEQ to violate (A) with respect

to students’ true preferences. We study equilibria of the game induced by MSEQ below.

Mechanism 2: Simultaneous Allocation (student-proposing deferred acceptance)

The second mechanism we consider allocates all seats simultaneously using an algorithm

with instantaneous capacity redistribution in each round. To participate in the procedure,

each student submits only one preference list.

In the first round, each student applies to her most preferred acceptable uni-

versity. Out of the set of students applying to it, a university u

(1) temporarily admits top-grade students one at a time in order of average

grades until either its top-grade quota is exhausted, or there are no more

top-grade students applying to it,

(2) temporarily admits remaining students one at a time in order of their

position in Pu until either its residual capacity is exhausted, or there are

no more acceptable students, and

(3) rejects all other students applying to it.

In the kth round, each student applies to her most preferred acceptable univer-

sity among those that have not rejected her in any earlier round. Out of the

set of students applying to it, a university u

(1) temporarily admits top-grade students one at a time in order of average

grades until either its top-grade quota is exhausted, or there are no more

top-grade students applying to it,

(2) temporarily admits remaining students one at a time in order of their

position in Pu until either its residual capacity is exhausted, or there are

no more acceptable students, and
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(3) rejects all other students applying to it.

The algorithm ends after a round in which no rejections are issued by univer-

sities.

We will refer to this mechanism as MSIM to emphasize that it allocates all seats si-

multaneously. Given a profile of student reports Q = (Qs)s∈S, let fSIM(Q) denote the

matching chosen by MSIM.13 Note that this algorithm also implements Constraint (A) if

students submit preferences truthfully: throughout the algorithm, a top-grade student is

rejected by a university u only if at least q1u other top-grade students with better average

grades also apply to u. Before proceeding to the equilibrium analysis of MSEQ and MSIM,

we illustrate the two mechanisms by means of a simple example. The setting of the example

corresponds to one of our experimental markets.

Example 1. There are eight students s1, . . . , s8 and four universities W,X, Y, Z. Students

are indexed in increasing order of average grades, so that s1 is the student with the best and

s8 the student with the worst average grade. Each university has a capacity of two seats.

One seat at each university is reserved for top-grade students. Hence, students s1, . . . , s4

are the top-grade students in this example.

Students’ and universities’ preferences can be summarized by the following preference

profiles:

Psi : W � X � Y � Z, ∀i = 1, 2, ..., 8,

Pu : s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8, ∀u = W,X, Y, Z.

We now compute the outcomes of MSEQ and MSIM for this example under the as-

sumption that all students (always) submit their preferences truthfully. The outcome of

13Formally, fSIM (Q) = (µ1, µ2), where µ1 is the matching of students to universities in the top-grade
quota and µ2 is the matching of students to universities in the regular quota.
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MSEQ is then given by 14

µ =

 W X Y Z

s1|s5 s2|s6 s3|s7 s4|s8

 ,

and the outcome of MSIM is given by

ν =

 W X Y Z

s1|s2 s3|s4 ∅|s5, s6 ∅|s7, s8

 .

Note that µ cannot be the outcome of an equilibrium of the revelation game induced

by MSEQ. All top-grade students apart from s1 could have obtained a strictly preferred

assignment by ranking only their true first choice for the first and their full true preference

ranking for the second part of the procedure (conditional on knowing universities’ prefer-

ences, these strategies are actually weakly dominant in this example): for these reports the

outcome of MSEQ coincides with the outcome of MSIM under truth-telling.

Equilibrium outcomes. Next, we describe the equilibrium outcomes of the revelation

games induced by the two mechanisms above. Note that in MSEQ, a strategy for student

s is a pair of preference lists (Q1
s, Q

2
s), where Qt

s is the list submitted for part t ∈ {1, 2} of

the procedure. For MSIM a strategy for student s is simply one submitted preference list

Qs. As a first step, we analyze the incentives for truthful revelation in the second part of

MSEQ and in MSIM.

Theorem 1. Let s be an arbitrary student and Ps be an arbitrary preference relation for

s.

(i) For MSEQ, any strategy (Q1
s, Q

2
s) such that Q2

s 6= Ps is weakly dominated by (Q1
s, Ps).

(ii) For MSIM, any strategy Qs such that Qs 6= Ps is weakly dominated by Ps.

The first part of this theorem follows directly from the classical results on the incentive

14Here and below,
W
s1|s5

means that s1 receives a place in the top-grade quota of W and s5 receives a

place in the regular quota of W .
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properties of the student deferred-acceptance mechanism by Dubins and Freedman (1981)

and Roth (1982). The second part follows from a general result on the incentive properties

of the student deferred-acceptance mechanism with substitutable and cardinally monotonic

preferences by Hatfield and Milgrom (2005) and a result on the implementation of complex

constraints in matching problems by Westkamp (2011). Thus, for the second part of MSEQ

and for MSIM, students should always submit preferences truthfully. However, for the first

part of MSEQ truth-telling is rarely an equilibrium: a recent study by Pathak and Sönmez

(2011) shows that truth-telling is an equilibrium of the Boston mechanism if and only

if (true) preferences are so dispersed that every student can be assigned his first choice.

We now characterize complete information Nash-equilibrium outcomes by means of the

following stability notion which is also used in Westkamp (2011).

Definition 1. A matching µ = (µ1, µ2) is stable with respect to P = (Ps)s∈S, if

(i) no student is matched to an unacceptable university, i.e., µ(s)Rsu for all s,

(ii) no university assigns a seat in its regular quota to an unacceptable student, i.e., sPuu

for all s ∈ µ2(u) and all u,

(iii) no top-grade student could be matched to a better university in the top-grade quota,

i.e., for all s ∈ SA and all u such that uPsµ(s), |µ1(u)| = q1u and a(s′) < a(s) for all

s′ ∈ µ1(u),

(iv) no student-university pair blocks the matching in the regular quota, i.e., for all s and

all u such that uPsµ(s) as well as sPuu, |µ2(u)| = qu − |µ1(u)| and s′Pus for all

s′ ∈ µ2(u).

A matching µ = (µ1, µ2) matches students as early as possible if for all universities u

and all top-grade students s ∈ µ2(u), |µ1(u)| = q1u and a(s′) < a(s) for all s′ ∈ µ1(u).

A matching µ = (µ1, µ2) is strongly stable if it is stable and matches students as early

as possible.

With this preparation, we have the following.

Theorem 2. Let P = (Ps)s∈S be an arbitrary profile of student preferences.

(i) The outcome of MSIM under truth-telling is the unique student optimal strongly stable
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matching with respect to P .

(ii) Let (Q1, Q2) be a Nash-equilibrium of the game induced by MSEQ such that Q2
s = Ps

for all students s.

(1) The outcome of MSEQ under (Q1, Q2) is stable with respect to P .

(2) If fSEQ(Q1, Q2) matches students as early as possible, then fSEQ(Q1, Q2) =

fSIM(P ).

This theorem shows that if we restrict attention to equilibria that do not involve the

use of weakly dominated strategies, then equilibrium outcomes of MSEQ have to be stable

(part (ii.1)) and the only strongly stable equilibrium outcome of MSEQ is the student

optimal one (part (ii.2)). For the proof see Appendix A.1. The theory thus suggests

that the two mechanisms should yield similar outcomes. While this is true for all our

experimental markets (see Appendix A.2), some caveats apply in the general case (see the

Online Appendix).

3 Experimental Design

We implemented the sequential assignment mechanism employed by the central clearing-

house (treatment MSEQ) as well as the simultaneous assignment mechanism (treatment

MSIM) in a laboratory experiment. In the experiment, eight students (s1, . . . , s8) applied

to four universities (W,X, Y, Z) with two seats each. One seat per university was reserved

for top-grade students, the other seat was allocated according to the preferences of the uni-

versity (regular quota). Applicants were ordered by their average grades so that student s1

was the best student, s2 the second best etc. Thus, students s1, s2, s3, and s4 were eligible

under the quota for top-grade students in the experiment as half of the eight seats were

reserved for this group.

Preferences, roles, and information. Participants in the experiment always took

the role of students. Each student was assigned a strict ranking of available universities.

Students received a payoff of EUR 22 when matched to their first choice, EUR 16 when

matched to their second, EUR 10 when matched to their third, and EUR 4 when matched
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to their fourth choice. The universities were played by the computer, i.e., their strict

preferences were exogenously given, and the computer acted truthfully according to these

preferences. All relevant information was common knowledge among the students. In

particular, participants were informed about the preferences of all other applicants and of

universities.

Markets. In order to understand how the functioning of the two mechanisms depends

on the preferences of students and universities, we designed four different markets. Table

1 provides an overview of the market characteristics. A detailed description of the markets

and an analysis of the equilibrium outcomes can be found in Appendix A.2. In the four

markets, we vary the degree of correlation of university and student preferences. The first

market features perfectly correlated preferences of students and universities (‘fully aligned’

preferences). This market has already been analyzed in some detail in Example 1. Market

2 retains perfectly correlated student preferences (‘student aligned’), but reduces the cor-

relation among university preferences. In particular, only two out of the four universities

share the same preferences over students, while the other two universities have slightly dif-

ferent preferences. We refer to this preference pattern of the universities as ‘split aligned’.

Market 3 has perfectly aligned university preferences but split aligned student preferences

(‘university aligned’). Finally, market 4 features split aligned preferences on both sides of

the market (‘split aligned’).15 The specific market setting determines which types of top-

grade students have an incentive to strategically misrepresent their preferences in order to

improve their matching (see the second to last column of Table 1). Some but not all of

these students have a weakly dominant strategy at hand (last column).

Implementation, payoffs and observations. The experiment was conducted with

students at the experimental lab of Technical University Berlin and on computers using z-

Tree (Fischbacher 2007). For each treatment MSIM and MSEQ, independent sessions were

15In practice, preferences of universities are highly positively (and in part even perfectly) correlated
as all universities have to use the final average grade from school as the main criterion (due to legal
constraints) and some universities even base their ranking of applicants solely on the final grade. Because
some universities use interviews, tests etc. as additional admission criteria, the ‘student aligned’ and
‘split aligned’ markets are also relevant benchmarks. From the students’ perspective, some universities are
regularly over-demanded. That is to say, a large number of applicants want to study at a famous university
or in an attractive university town. We therefore consider both, markets with perfectly and split aligned
student preferences, as important reference cases.
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Table 1: Overview of market characteristics

Preferences of Students with Of which with
students universities incentive to misrepresent1 WD strategies2

Market 1: Fully aligned aligned aligned s2, s3, s4 s2, s3, s4
Market 2: Student aligned aligned split aligned s2, s3, s4
Market 3: University aligned split aligned aligned s2, s4 s2, s4
Market 4: Split aligned split aligned split aligned s3, s4

Notes: 1 Top-grade students who can improve their payoffs by misrepresenting their true preferences in
the first stage of MSEQ. 2 WD = weakly dominant. A detailed description of the four markets is provided
in Appendix A.2.

carried out. In the beginning of the experiment, printed instructions were given to partic-

ipants (see Online Appendix). Participants were informed that the experiment’s aim was

to analyze decision making processes in university admission procedures, that they took

on the role of student applicants, and that their payoff depended on their own decisions

and the decisions of the other participants. The instructions, which were identical for all

participants of a session, explained in detail the experimental setting and the assignment

mechanism. Questions were answered privately and all individuals answered a comput-

erized quiz to make sure that everybody understood the main features of the particular

mechanism.

Subjects played the four markets in changing roles, i.e., in each round they were ran-

domly chosen to take on the role of one of the eight students. Each subject participated

in a total number of 12 rounds and played each market three times to allow for learning.

The ordering of markets was determined randomly, but each market had to occur exactly

once in rounds 1-4, once in rounds 5-8, and once in rounds 9-12 (random draw without

replacement).

In treatment MSIM, subjects had to submit one rank order list of universities in each

round. In treatment MSEQ, subjects had to submit two lists, one for each part, in each

round. Once all decisions were made, the matching was determined by the computer ac-

cording to the algorithms described in Section 2. After each round, subjects were informed

about their own matching and that of their co-players. At the end of the experiment, one

round was chosen at random to determine the payoffs of the participants. The average

payment for the matching was EUR 14.25 per participant (with a standard deviation of
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EUR 7.19). In addition, students received a fixed show-up fee of EUR 5 and a fixed bonus

of EUR 5 for correctly answering the computerized quiz which queried the main principles

of the mechanism.

For each treatment, 10 sessions were carried out. Each session hosted three groups of

eight participants, so that per treatment 240 (= 10 × 3 × 8) subjects participated in the

experiment (or 480 in total). Each subject participated in only one session and played 12

rounds. Due to a computer problem, 24 observations were not recorded. This leaves us

with a total of (480× 12)− 24 = 5736 observations.

3.1 Strategic coaching

An important part of the implementation of a matching scheme concerns the advice on

application strategies that is given to the participants. Matching authorities often provide

applicants with information about strategic issues. For instance, the German central clear-

inghouse advises applicants on its homepage to “Think twice about whether you are willing

to accept a university below your first preference rank [in the first part of the procedure].

[...] If you want to maintain your chance of being admitted in the second part of the pro-

cedure, you should only list your favorite universities [...]. [...] However, keep in mind that

there is also a possibility of rejection [in the second part of the procedure], since there can

be no guarantee for acceptance.”16

We provided participants with as much information as possible about optimal strate-

gies. First, participants in treatment MSEQ were informed that truth-telling would not

always be optimal for them in the first stage of the mechanism. They were told that it

could be optimal for them to truncate their submitted preference list or to re-order their

university preferences on the list. The instructions illustrated these properties with the

help of an exemplary market (which did not correspond to one of our experimental mar-

kets). Second, participants were informed that truth-telling would always be optimal for

them in MSIM and in the second stage of MSEQ.17 Together with the instructions, we

16See http://hochschulstart.de/index.php?id=683 (accessed on January 5, 2012, translation by the au-
thors).

17Similar advice is given to students and their parents by Boston public schools (BPS), which have
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provided participants with an explanation of this incentive property on a separate piece of

paper.

Giving explicit advice to experimental subjects is relatively unusual. However, advice

on application strategies is an important part of the implementation of matching schemes

in the real world. As we are interested in practical implications, we chose to mimic such

advice in our experimental setting.

3.2 Differences to the German admissions procedure

In this section, we discuss how our experimental setting differs from the actual assign-

ment procedure for German universities and argue that these differences do not bias the

performance of top-grade students in favor of MSIM.

First, our experimental markets are of much smaller size than the real markets we are

interested in. Yet, also in larger markets will the number of top-grade students equal the

number of seats in the top-grade quota. Given the high degree of correlation in students’

preferences that is characteristic of the German market (Braun et al. 2010),18 there is no

reason to expect less competition in large markets.

Second, we implemented a setting of complete information among students. In practice,

the German central clearinghouse does indeed provide detailed information on past runs

of the assignment procedure and grade distributions are very stable over time. Assuming

stationary distributions of students’ and universities’ preferences, this allows applicants to

infer other applicants’ preferences. Hence, complete information is a reasonable approx-

imation of the actual information setting. Furthermore, complete information makes it

relatively straightforward for top-grade students to identify profitable manipulation strate-

gies in our experimental markets. If anything, we thus expect our setting of complete

recently adopted the strategy-proof student-proposing deferred acceptance algorithm. The answer to the
frequently asked question whether BPS has adopted a new formula to assign students to schools says that
“the new formula enables parents to list their true choices of schools, in true order of preference, without
having to ‘strategize’ about the rank order.” (see http://www.bostonpublicschools.org/frequently-asked-
questions, accessed on January 5, 2012).

18Individual preferences are also likely correlated in other environments as preferences are also deter-
mined by institutional quality and proximity, see Chen and Sönmez (2006).

18



information to favor the performance of top-grade students in MSEQ.

Third, in the experiment MSEQ is sequential only in the sense that seats in the top-

grade quota are allocated before seats in the regular quota are assigned. In the actual

assignment procedure, assignments in the regular quota are determined about one month

after seats in the top-grade quota are assigned.19 Thus, in reality applicants can be expected

to have a strict preference for being matched as early as possible (in the sense of Definition

1), given that an earlier match means more time to search for an apartment, prepare to

move, etc. This difference to the real world setting should again work to the benefit of

MSEQ in the experiment, since it makes it less risky for a top-grade student to wait for

the second part of the procedure in the lab (and may thus make it more likely for students

to submit a truncated preference list).

Finally, in the experiment the student-proposing deferred acceptance algorithm (SDA)

is applied in the second part of MSEQ. In the actual German assignment procedure, in

contrast, the university-proposing deferred acceptance algorithm (UDA) is used. We chose

to apply the SDA in the second stage of MSEQ to make the two treatments, MSIM and

MSEQ, as symmetric as possible in their allocation of regular seats. Furtheremore, in a

large market there are only minor differences in the matching outcome of SDA and UDA,

and the incentives for manipulation diminish with increasing market size (Kojima and

Pathak 2009, Azevedo and Leshno 2011). Thus, in our small experimental market the

UDA might have provided students with substantial incentives for manipulations and we

might have overestimated the degree of preference manipulation in MSEQ.

4 Results

This section contains our experimental results. First, we present results on the application

strategies used. Second, we compare the pay-offs that students realize under each mech-

anism and across the different markets. We then turn to the analysis of learning effects.

Finally, we compare the two mechanisms from the point of view of the universities.

19The reason for this is to give universities enough time to evaluate those students who remain unassigned
after the first part of the procedure.
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4.1 Application strategies

Table 2 describes the application strategies used in our experiment. Here, we distinguish

between four classes of application strategies: (1) truthful preference revelation, i.e., re-

porting a preference ordering that corresponds exactly to the ranking induced by monetary

payoffs; (2) truncating, i.e., submitting an ordering that corresponds to the ranking induced

by monetary payoffs, but that contains less than four universities; (3) over-reporting, i.e.,

ranking a university first that is not the true first choice; and (4) other strategies.

In MSIM, 81.02% of all reports are truthful. For the second part of MSEQ, where

truthful revelation is also weakly dominant, this share drops to 75.35%. The difference

in truth-telling rates is significant at the 1%-level. This suggests that when subjects are

exposed to a combination of manipulable and non-manipulable mechanisms, they are less

likely to follow advice on the optimality of truth-telling in the non-manipulable part of the

mechanism. However, in both cases the rate of truthful preference revelation is significantly

higher than in comparable experiments where such advice was not given.

The share of applicants playing truthfully is much lower for the first stage of MSEQ,

where top-grade students can often benefit from misrepresenting their preferences. Here,

only 13.68% of top-grade students’ reports are entirely truthful. This share is significantly

lower than in the Boston mechanism with full information studied by Pais and Pinter

(2008), where 46.7% of all applicants reveal their preferences truthfully. The lower share

in our experiment could be attributed to (1) our advice about the potential value of mis-

representing the preferences, and to (2) the fact that applicants in MSEQ have a second

chance of obtaining a place after the termination of the Boston mechanism.

Table 2 also reveals significant differences between the mechanisms in the way applicants

misrepresent their preferences. Many top-grade students truncate (52.08%) their preference

list in the first stage of MSEQ, presumably because they are afraid of being matched “too

early” to a lower ranked university. A significant fraction of top-grade students also over-

reports (10.49%) or over-reports and truncates (22.08%) their preference list, presumably

to increase their chances of being matched to a relatively high ranked university already

in the first part of the procedure. However, only about a quarter of top-grade students
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submits a complete preference list, which would guarantee a match in the first part. In

contrast, for MSIM and the second stage of MSEQ, more than 90% of all applicants submit

a full preference list containing four universities.20

Table 2: Proportion of truthful preference revelation and misrepresentation, by mech-
anism

Mechanism Truth-telling Misrepresentation of preferences
Over- Over-reporting

All pref. 1st pref Truncation2 reporting & truncation Other

MSIM 81.02% 87.82% 2.38% 11.55% 0.60% 4.45%
MSEQ, first stage1 13.68% 60.83% 52.08% 10.49% 22.08% 1.67%
MSEQ, second stage 75.35% 85.42% 5.63% 11.67% 2.15% 5.21%

Notes: 1In the first stage of MSEQ, we only consider the choices of students s1 to s4 who are
eligible under the quota for top-grade students. 2Entries refer to individuals who are exclusively
truncating (over-reporting). Individuals who do both are considered in column 6.

4.2 Performance of Mechanisms: Student Perspective

We now analyze the performance of the mechanisms with respect to the students’ prefer-

ences. We will compare the performance of the two mechanisms relative to each other as

well as relative to the theoretical benchmark of the student-optimal stable matching.21

Equilibrium outcomes and aggregate performance. Table 3 reports on how often

the theoretical benchmark is reached as a fraction of the total number of rounds. It shows

that the equilibrium matching is much more often realized in MSIM than in MSEQ. Across

all four markets, the equilibrium matching is reached in 77.31% and 22.78% of all rounds

in MSIM and MSEQ, respectively. The difference is highly statistically significant both

overall and for each of the four markets individually. While the equilibrium outcomes of

20Comparing the second stage of MSEQ to MSIM we find that the share of truncated prefer-
ence lists is considerably larger in the second stage of MSEQ (7.78%=5.63%+2.15%) than in MSIM
(2.98%=2.38%+0.60%). Being exposed in the first stage of MSEQ to a mechanism in which trunca-
tion may pay off thus seems to encourage some applicants to also truncate their preference list in the
second stage (where truncation does not pay off).

21In all four experimental markets, all equilibria of the game induced by MSEQ yield the student-optimal
stable matching that is also the outcome of MSIM under truth-telling if we restrict attention to strategies
that are not weakly dominated (see Appendix A.2).
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Table 3: Share of rounds in which the realized matching coin-
cides with the equilibrium matching, by mechanism and mar-
ket

MSIM MSEQ MSIM − MSEQ

Market 1: Fully aligned 0.9111 0.2778 0.6333∗∗∗

(0.2862) (0.4504) [0.0563]
Market 2: Student aligned 0.7701 0.3333 0.4368∗∗∗

(0.4232) (0.4740) [0.0676]
Market 3: University aligned 0.8333 0.1667 0.6667∗∗∗

(0.3748) (0.3748) [0.1667]
Market 4: Split aligned 0.5778 0.1333 0.4444∗∗∗

(0.4967) (0.3418) [0.0636]

Markets 1–4 0.7731 0.2278 0.5453∗∗∗

(0.4194) (0.4200) [0.0313]

Notes: *** denotes statistical significance at the 1%-level, respec-
tively. Entries are based on the mean of a dummy that takes on a
value of one if the realized matching coincides with the equilibrium
matching. Standard deviations are in round and standard errors in
squared brackets. The unit of observation is a round.

MSIM and MSEQ coincide in theory, the equilibrium outcome is thus reached much less

frequently in treatment MSEQ than in treatment MSIM.22

Next, we analyze how deviations from the equilibrium matching are reflected in the

aggregate performance of the two mechanisms over all eight students. As a measure of the

aggregate performance, we use the average difference between equilibrium assignments and

assignments realized in our experiment (where differences are measured in rank points).

We group observations according to the rounds in which they were observed in the

experiment. For mechanism M ∈ {MSEQ,MSIM}, let yMij be the preference rank that

the participant in the role of student type i ∈ {1, . . . , 8} was assigned to in the jth round

of the experiment.23 Let kM(j) ∈ {1, . . . , 4} denote the market that was played in the jth

22 We can also study how far the actual matching outcome deviates from the equilibrium matching
outcome by looking at the average share of students who realize their equilibrium outcome by mechanism
and market (irrespective of whether the equilibrium matching is reached for all eight students in a round).
The results (reported in the Online Appendix) indicate that a considerable share of students receive their
equilibrium outcome in MSEQ although the equilibrium outcome is only rarely reached for all eight students
at once. However, the share of students who receive their equilibrium outcome under MSIM is significantly
higher than the corresponding share under MSEQ.

23For each mechanism we had 30 groups of participants. Each group played for 12 rounds, so that
j ∈ {1, . . . , 360}.
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round of mechanism M . Finally, let yeikM (j) denote the preference rank that student type

i obtains in equilibrium of market kM(j). The aggregate performance measure of M in

round j is then defined as

Magg
j =

∑8
i=1(y

e
ikM (j) − y

M
ij )

8
. (1)

This performance measure takes on positive values if the realized preference ranks under

mechanism M are on average lower than those in the outcome of MSIM under truth-

telling, i.e., if M outperforms the theoretical equilibrium in our experiment. Negative

values, in contrast, mean that M underperforms relative to the theoretical equilibrium

outcome. In the following, we study the mean of Magg
j , denoted by M

agg
, across all

experimental rounds. If, say, M
agg

= −0.2, the realized matching is on average 0.2 rank

points higher than the equilibrium matching. This means that, on average, in every fifth

observation on mechanism M a student then obtains an assignment that is one preference

rank higher/worse than in equilibrium.

Table 4 shows how the aggregate performance measure differs across the two mecha-

nisms and across the different markets. Differences between realized and theoretical out-

comes are statistically significant but small (i.e., M
agg

is close to zero) in MSIM, and

realized rank points are slightly higher in MSIM than in MSEQ. Across all markets, the

aggregate performance measure is 0.0411 rank points higher in MSIM than in MSEQ and

the difference is statistically significant at the one percent level.

The finding of relatively small differences in aggregate performance between the two

mechanism is not surprising as the preferences of students are strongly and in two markets

even perfectly correlated. Gains for one applicant thus often come at the expense of

another applicant.24 Table 4 further shows that MSEQ outperforms MSIM in market 3 in

particular. In this market, in which only the preferences of universities but not those of

students are perfectly correlated, the performance measure is 0.1319 rank points higher in

MSIM than in MSEQ.

24With perfectly correlated preferences, differences in average rank points between the two mechanisms
can only occur if an applicant is not matched in one of the two mechanisms.
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Table 4: Aggregate performance measure, mean value by
mechanism and market

MSIM MSEQ MSIM − MSEQ

Market 1: Fully aligned 0.0000 -0.0111 0.0111∗∗∗

(0.0000) (0.0358) [0.0038]
Market 2: Student aligned -0.0029 -0.0125 0.0096∗

(0.0188) (0.0421) [0.0049]
Market 3: University aligned -0.0319 -0.1639 0.1319∗∗∗

(0.0984) (0.1662) [0.0204]
Market 4: Split aligned -0.0639 -0.0764 0.0125

(0.1203) (0.1460) [0.0199]

Markets 1–4 -0.0249 -0.0660 0.0411∗∗∗

(0.0824) (0.1296) [0.0081]

Notes: ***,* denotes statistical significance at the 1%- and 10%-level,
respectively. Entries in columns two and three are the cell-specific
mean values (over all rounds) of the aggregate performance measure in
MSIM and MSEQ, respectively. Entries in column four are the mean
differences between the performance measure in MSIM and MSEQ.
The aggregate performance measure is defined in equation (1). Stan-
dard deviations are in round and standard errors in squared brackets.

We summarize the above findings in:

Result 1: Equilibrium outcomes and aggregate performance. The equilibrium

matching is significantly more often realized in MSIM (77.31% of all rounds) than in MSEQ

(22.78%). Realized ranks are, on average, close to the equilibrium outcomes in MSIM.

Realized rank points are statistically significantly higher in MSIM than in MSEQ. Overall,

the average difference is 0.0411 rank points per student.

Individual performance. We now turn to differences between the two mechanisms in

the matching outcomes for individual student types. Analogous to the aggregate perfor-

mance measure, we define the performance of M ∈ {MSEQ,MSIM} for student type

i ∈ {1, . . . , 8} in round j as

Mij = yeikM (j) − y
M
ij . (2)

As for the aggregate performance measure, this performance measure takes on posi-

tive (negative) values if the outcome for student type i under M in our experiment is on
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average better (worse) than in the theoretical equilibrium. As in the case of aggregate per-

formance, we will concentrate on the mean of the individual performance measure, denoted

by M i, across all experimental rounds. If, say, M i = −0.2, in every fifth observation on

student type i under mechanism M , i obtains an assignment that is one preference rank

higher/worse than in equilibrium.

Table 5 provides the average individual performance measure by student type and

mechanism. It documents that the relatively small differences between the two mechanisms

that we observed at the aggregate level hide considerable differences at the individual level.

In MSIM, matching outcomes are generally very close to equilibrium outcomes (i.e., the

performance measure is close to zero). In MSEQ, in contrast, matching outcomes for most

student types differ considerably from equilibrium outcomes.

As shown in the last column of Table 5, MSIM generally benefits top-grade students and

harms regular students relative to MSEQ. For students s2 and s3, for instance, the actual

matching outcomes are 0.3278 and 0.3833 rank points below the equilibrium in MSEQ but

only 0.0701 and 0.0644 rank points below the equilibrium in MSIM. Both students have to

strategize to obtain their equilibrium profits in MSEQ,25 and they gain from a replacement

of MSEQ by MSIM. In contrast, the actual matching outcomes of students s5 and s7 in

MSEQ are, on average, 0.3141 and 0.1662 rank points higher than in equilibrium.

Only for top-grade student s1 and regular student s8 do realized and equilibrium match-

ing outcomes largely coincide in MSIM and in MSEQ. For s1, the strategic decision problem

in MSEQ is rather simple as she just needs to reveal her preferences truthfully in order

to obtain her first choice. Student s8, in turn, has little to gain from the mistakes of top-

grade students in MSEQ, as she is consistently ranked at the bottom of the universities’

preference lists.

We summarize the above in:

Result 2. Individual performance by student type. The two mechanisms differ

significantly in the actual matching outcome for the different types of students. In general,

top-grade students benefit from replacing MSEQ by MSIM, while regular students are worse

25Student s2 must manipulate her list in markets 1 to 3, student s3 in markets 1, 3, and 4 (see Table 1).
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Table 5: Individual performance measure,
mean value by mechanism and student

MSIM MSEQ MSIM − MSEQ

Student 1 -0.0084 -0.0639 0.0555∗∗∗

(0.0126) (0.0125) [0.0178]
Student 2 -0.0701 -0.3278 0.2577∗∗∗

(0.0302) (0.0301) [0.0426]
Student 3 -0.0644 -0.3833 0.3189∗∗∗

(0.0324) (0.0323) [0.0458]
Student 4 -0.0812 -0.2694 0.1882∗∗∗

(0.0384) (0.0382) [0.0541]
Student 5 -0.0308 0.2833 -0.3141∗∗∗

(0.0283) (0.0281) [0.0399]
Student 6 -0.0112 0.0306 -0.0418

(0.0278) (0.0276) [0.0392]
Student 7 0.0588 0.2250 -0.1662∗∗∗

(0.0311) (0.0309) [0.0439]
Student 8 0.0084 -0.0222 0.0306∗∗

(0.0099) (0.0098) [0.0139]

Notes: ***,** denotes statistical significance at
the 1%- and 5%-level, respectively. Entries in
columns two and three are the cell-specific mean
values (over all rounds) of the individual perfor-
mance measure in MSIM and MSEQ, respectively.
Entries in column four are the mean differences
between the performance measure in MSIM and
MSEQ. The individual performance measure is de-
fined in equation (2). Standard deviations are in
round and standard errors in squared brackets.

off under MSIM than under MSEQ.

The individual benefit or loss from introducing MSIM does not only differ across stu-

dents, but also depends on the market characteristics. Table 6 provides for each student

type and each market the difference in the individual performance measure between MSEQ

and MSIM. The results show that student s2, for instance, benefits significantly from the

introduction of MSIM in markets 1 and 3, but her gains are not statistically significant in

markets 2 and 4. Student s4, in contrast, benefits significantly from switching to MSIM in

markets 1, 3, and 4, but loses from such a switch in market 2.

Choice of weakly dominant strategies. Depending on the preferences of students and

universities, it can be more or less difficult to reach the student optimal stable matching
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Table 6: Difference in individual performance measure between MSIM and MSEQ,
by market and student

Market 1: Market 2: Market 3: Market 4: Markets 1-4
Fully aligned Student aligned University aligned Split aligned

Student 1 0.0778∗∗ 0.1000∗∗ 0.0444 0.0000 0.0555∗∗∗

[0.0361] [0.0456] [0.0270] [0.0312] [0.0178]
Student 2 0.4444∗∗∗ 0.0663 0.3889∗∗∗ 0.1333 0.2577∗∗∗

[0.0736] [0.0815] [0.0917] [0.0857] [0.0426]
Student 3 0.0222 0.7084∗∗∗ 0.1111 0.4333∗∗∗ 0.3189∗∗∗

[0.0773] [0.1122] [0.0696] [0.0810] [0.0458]
Student 4 0.3667∗∗∗ −0.4870∗∗∗ 0.4778∗∗∗ 0.4000∗∗∗ 0.1882∗∗∗

[0.0867] [0.1023] [0.0870] [0.1033] [0.0541]
Student 5 −0.6667∗∗∗ −0.1126∗∗ -0.1778∗∗ −0.3000∗∗∗ −0.3141∗∗∗

[0.0793] [0.0526] [0.0731] [0.0900] [0.0399]
Student 6 −0.0667 −0.0778 0.3556∗∗∗ −0.3778∗∗∗ −0.0418

[0.0412] [0.0606] [0.0802] [0.0945] [0.0392]
Student 7 −0.1111∗∗ −0.1314∗ −0.2000∗ −0.2222∗∗ −0.1662∗∗∗

[0.0508] [0.0705] [0.1035] [0.1111] [0.0439]
Student 8 0.0222 0.0111 0.0556 0.0333∗ 0.0306∗∗

[0.0273] [0.0254] [0.0368] [0.0190] [0.0139]

Notes: ***,**,* denotes statistical significance at the 1%-, 5%- and 10%-level, respectively.
Each entry is the average cell-specific difference between the value of the individual performance
measure in MSIM and MSEQ. The performance measure is defined in equation (2). Standard
errors are in squared brackets.

under MSEQ. In general, for all top-grade students but s1, who is always guaranteed

her reported top choice, the optimal application strategy for MSEQ will depend on the

application strategies of others. However, in two out of four experimental markets there

are other top-grade students who have weakly dominant strategies that are not truthful. In

the following, we provide a detailed discussion of market 1 where all top-grade students have

a weakly dominant strategy. The Online Appendix contains the same analysis for market 3

where top-grade students s2 and s4 have non-truthful weakly dominant strategies. Before

proceeding, we should emphasize that the notion of“weak dominance”used in the following

refers to a fixed game of complete information. In order to infer that these strategies are

always optimal, students need detailed information about universities’ preferences. This

should be contrasted with the weak dominance of truth-telling for MSIM and the second

part of MSEQ, which does not require any information about universities’ or other students’

preferences.

In market 1, it is a weakly dominant strategy for top-grade students s2 to s4 to rank
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only their (truly) most preferred university for the first and submit preferences truthfully

for the second part of MSEQ. The reason is that all universities rank applicants exclusively

on basis of their average grades/indices. With the just mentioned strategies, (1) s2 can

guarantee herself a place at her most preferred university, irrespective of the behavior of

s1, and (2) s3 and s4 can guarantee themselves a place at their second most preferred

university, while maintaining an option of being matched to their first choice if s1 and/or

s2 make a mistake.

Table 7 provides the shares of students s2 to s4 in market 1 who are matched to their

first, second, third, and fourth preference in MSEQ. These shares are calculated separately

for students who play their weakly dominant strategy (upper panel) and for those who do

not (lower panel). Cells shaded in gray indicate equilibrium outcomes. Participants who

play the weakly dominant strategy are a minority among students s2, s3, and s4, and their

share decreases with grade rank. In only 34 out of 90 observations (37.78%) do participants

in the role of s2 play their weakly dominant strategy (see last column in the upper panel of

Table 7). This fraction shrinks to 23/90 (25.56%) and 13/90 (14.44%) for students s3 and

s4, respectively, when counting both truncations after the first and after the second rank.

The lower ranked among the top-grade students thus seem to be less inclined to truncate

their preferences.

The failure of students to play their weakly dominant strategy leads to a significant

reduction in their realized payoffs: For instance, only 39.29% of s2 students who do not

play their weakly dominant strategy receive their top choice (the equilibrium outcome)

compared to 100% of those who choose the weakly dominant strategy. Similar results also

hold for students s3 and s4.

For market 3, we find similar results for student 2 and student 4 who choose their

weakly dominant strategy in 40 out of 90 (44.4%) and 20 out of 90 (22.2%) cases (see the

Online Appendix for more details). We can summarize these findings in:

Result 3. Weakly dominant strategies. The majority of top-grade students fails

to choose the weakly dominant truncation strategy when it is available.

Of course most real markets are more complex than our experimental market 1 and
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applicants often do not have a weakly dominant strategy. Thus, successful preference

manipulations in MSEQ are likely to be more difficult in reality. The improvement in

performance due to mechanism MSIM compared to MSEQ found in the experiment should

therefore provide a lower bound for the possible improvement in real markets.

Table 7: Preference received in market 1 in MSEQ, by student type
and strategy

Preference 1 Preference 2 Preference 3 Preference 4 N

Weakly dominant strategy played

Student 2 100.00% 0.00% 0.00% 0.00% 34

Student 3 47.83% 52.17% 0.00% 0.00% 23

Student 4 15.38% 84.62% 0.00% 0.00% 13

Weakly dominant strategy not played

Student 2 39.29% 44.64% 16.07% 0.00% 56

Student 3 10.45% 61.19% 25.37% 2.99% 67

Student 4 9.09% 46.75% 32.47% 11.69% 77

Notes: Entries are the share of students matched to the corresponding
(induced) preference in each cell. Cells shaded in gray indicate equilibrium
outcomes.

Finally, Table 7 for market 1 illustrates that students may not only end up with below-

but also with above-equilibrium payoffs in MSEQ. Consider, for instance, student s3. If

student s2 does not play her weakly dominant strategy, s3 can secure herself a seat at

her most preferred university by playing her weakly dominant strategy – and can thus

realize above-equilibrium payoffs. In fact, 47.83% of s3 students who play their weakly

dominant strategy are matched to their first preference and are thus better off than in

equilibrium. If, in contrast, s3 fails to play her weakly dominant strategy, she might end

up with below-equilibrium payoffs. Thus, MSIM eliminates both the up- and the down-side

risks of MSEQ.

4.3 Learning

Our experimental setting allows participants to learn over time. Each market was played

three times (once in rounds 1–4, once in rounds 5–8, and once in rounds 9–12) and partic-

ipants were informed about the actual matching of all players in previous rounds. Thus,

participants had the opportunity to learn about the strategic properties of each market. It
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can be expected that the difference between the two mechanisms diminishes over time as

this difference is due to the failure of top-grade students to misrepresent their preferences

optimally. This is what we test in this section.

Table 8 shows, by student type, the difference between MSIM and MSEQ in the in-

dividual performance measure of top-grade students separately for rounds 1–4, 5–8, and

9–12. We find that the difference between the two mechanisms decreases significantly in

later rounds of the experiment. The individual performance measure of student s3, for

instance, is 0.5167 rank points higher in MSIM than in MSEQ in the first four rounds.

This difference shrinks to just 0.2316 rank points in the last four rounds. Likewise, the dif-

ference for student s2 declines from 0.4417 to just 0.0720 rank points. Thus, players learn

over time. Nevertheless, significant differences between the two mechanisms do persist in

later rounds, with an average rank difference of 0.1231 for rounds 9-12. Detailed results

for the learning behavior of students by market can be found in Appendix A.4.

Table 8: Difference in individual performance measure between
MSIM and MSEQ, by student and round

Student Rounds 1–4 Rounds 5–8 Rounds 9–12 All rounds

Student 1 0.1167∗∗ 0.0250 0.0250 0.0555∗∗∗

[0.0457] [0.0184] [0.0188] [0.0178]
Student 2 0.4417∗∗∗ 0.2583∗∗∗ 0.0720 0.2577∗∗∗

[0.0826] [0.0655] [0.0693] [0.0426]
Student 3 0.5167∗∗∗ 0.2083∗∗∗ 0.2316∗∗∗ 0.3189∗∗∗

[0.0893] [0.0707] [0.0742] [0.0458]
Student 4 0.2167∗∗ 0.1833∗∗ 0.1639∗ 0.1882∗∗∗

[0.1071] [0.0888] [0.0837] [0.0541]

Students 1–4 0.3229∗∗∗ 0.1688∗∗∗ 0.1231∗∗∗ 0.2051∗∗∗

[0.0427] [0.0333] [0.0336] [0.0214]

Notes: ***,**,* denotes statistical significance at the 1%-, 5%-, and
10%-level, respectively. Each entry is the average cell-specific difference
between the value of the performance measure in the MSIM and MSEQ.
The performance measure is defined in equation (2). Standard errors
are in squared brackets.

We therefore conclude:

Result 4: Learning. There is some learning of top-grade students over time, as

reflected in smaller differences between matching outcomes in MSIM and MSEQ in later

rounds of the experiment. However, even in the last four rounds of the experiment (9-12),
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top-grade students receive significantly better matches in MSIM than in MSEQ.

4.4 Performance of Mechanisms: University Perspective

So far, our analysis has exclusively focused on the preferences of students. But as the

evaluation of students by universities is relevant for more than half of the seats allocated,

we also compare the two mechanisms from the point of view of the universities. Recall

that in our experiment, universities were played by a computer which truthfully revealed

their preferences.

To analyze how universities fare in the two mechanisms, we will employ an approach

that is analogous to the one we used to compare outcomes from the student perspective.

Here, we directly evaluate the performance of the two mechanisms from the perspective of

the individual universities. The reason is that our analysis from the perspective of students

shows that there is little difference in the aggregate performance of the two mechanisms.

For mechanism M ∈ {MSEQ,MSIM}, let yMuj be the sum of the positions of the two

students who were assigned to university u ∈ {W,X, Y, Z} in round j in university u’s

preferences, i.e., the aggregate student quality assigned to u in round j under M . Each

place at u that is left unassigned is counted as being assigned a student of position 9, so

that yMuj ∈ {3, . . . , 18}. As above, kM(j) ∈ {1, 2, 3, 4} denote the market that was played in

the jth round of mechanism M . Finally, let yeukM (j) denote the aggregate student quality

of u in the outcome of MSIM under truth-telling in market kM(j). The performance of M

for university u in round j is then defined as

MU
uj =

yeukM (j) − y
M
uj

2
. (3)

As for the students, these performance measures take on positive (negative) values if

outcomes under M in our experiment are better (worse) than in equilibrium. We will

again look at the average of this measure, denoted by M
U

uj, across all experimental rounds.

Note that our measure do not condition on how many students receive their assignment

through the regular quota in equilibrium and the experiment. Rather, we always compare

the average quality of the student(s) assigned to a university with the equilibrium quality.

31



Table 9: Mean of university performance mea-
sure, by mechanism and university

MSIM MSEQ MSIM−MSEQ

University W -0.0602 -0.5292 0.4689∗∗∗

(0.2949) (0.6981) [0.0401]
University X -0.2731 -0.6125 0.3394∗∗∗

(0.6892) (0.8866) [0.0593]
University Y 0.1120 0.6236 -0.5116∗∗∗

(0.4858) (0.6415) [0.0425]
University Z 0.0420 0.1833 -0.1413∗∗∗

(0.3039) (0.7138) [0.0410]

Notes: *** denotes statistical significance at the 1%-
level. Entries in columns two and three are the cell-
specific mean values (over all rounds) of the univer-
sity performance measure in MSIM and MSEQ, re-
spectively. Entries in column four are the mean dif-
ferences between the performance measure in MSIM
and MSEQ. The university performance measure is
defined in equation (3). Standard deviations are in
round and standard errors in squared brackets.

Table 9 shows the university performance by university type and mechanism. Differ-

ences between realized and theoretical outcomes are on average smaller (i.e., M
U

uj is closer

to zero) in MSIM than in MSEQ for all four universities. This is not surprising and mirrors

our previous findings that the equilibrium matching is significantly more often realized in

MSIM than in MSEQ (see Result 1). More interesting are the substantial differences in the

performance measure between the two mechanisms for the four universities. The perfor-

mance measure for university W , for instance, is 0.4689 rank points higher in MSIM than

in MSEQ. University W thus prefers, on average, the students that it admits in MSIM

over those that it admits in MSEQ. The same applies to university X. In contrast, the two

universities Y and Z, which are generally less preferred by students, on average prefer the

matching under MSEQ over the matching under MSIM. We thus find

Result 5: University performance. On average, universities W and X admit more

preferred and universities Y and Z less preferred students in MSIM relative to MSEQ. The

most popular universities thus fare better in MSIM than in MSEQ, while the two other

universities are better off in MSEQ than in MSIM.

This result mirrors our previous findings for top-grade and regular students. As top-
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grade students often fail to optimally manipulate their preference lists in MSEQ, they are

frequently matched to lower ranked universities. This does not only harm the top-grade

students themselves, but also the most popular universities that usually prefer top-grade

over regular students. Lower ranked universities, in contrast, can benefit from the mistakes

made by the top-grade students, as they might be able to admit top-grade instead of regular

students.

5 Conclusions

Quotas can be implemented in centralized matching procedures in a number of ways.

We have tested two possibilities of giving priority to certain groups of students. The

first mechanism is sequential and fills the quota for students with priority first and then

the remaining seats. This procedure mimics the mechanism in Germany for university

admissions in medicine and related subjects, where 20% of available university seats are

reserved for top-grade students (top-grade quota). The other mechanism, proposed by

Westkamp (2011), is a modification of the student-proposing deferred acceptance algorithm

(SDA). It simultaneously fills the seats reserved for students with priority and all other

students and redistributes capacity in each round.

In theory, both mechanisms lead to the same matching outcome when restricting atten-

tion to equilibria in strategies that are not weakly dominated. The experimental results,

however, show that the equilibrium matching is significantly more often realized in the si-

multaneous than in the sequential mechanism. The modified SDA mechanism significantly

improves the matching outcome for top-grade students relative to the current, sequential

mechanism. The current mechanism harms top-grade students, as they often fail to grasp

the strategic issues involved. We therefore conclude that quotas for top-grade students

should be implemented in a simultaneous mechanism in order reach the goal of giving

priority to them.

The experiment allows us to identify the reasons for why the student-optimal stable

matching is not reached in the sequential mechanism although it is an equilibrium of the

revelation game. We find that participants fail to use truncation strategies optimally,
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which is supported by previous empirical evidence provided by Braun et al. (2010). Their

analysis of the actual data of the clearinghouse shows that only about one quarter of top-

grade students truncate their rank-order list submitted in the first part of the procedure.

Analyzing the admission data, however, does not allow us to (unambiguously) infer that

applicants commit mistakes as their choices can always be rationalized by unobserved

preferences. In the laboratory, we can overcome this weakness by incentivizing preferences

and can thus unambiguously identify certain choices as violations of weak dominance.

More generally, the sequential assignment of places via multiple algorithms creates

incentives for misrepresentation of preferences as long as the groups of students assigned

in each algorithm are not totally disjoint. Thus, even if the central clearinghouse changed

the mechanism used in the top-grade quota to a version of the strategy-proof deferred

acceptance algorithm, strategy proofness would be destroyed by the sequential nature of

the overall procedure.

Our experiment shows that a very good substitute for the current German mechanism

exists. The replacement of the simultaneous mechanism by the modified SDA mechanism

would in fact help top-grade students to get a seat at their preferred university instead of

putting them into a complex strategic situation with an uncertain outcome.
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A Appendix

A.1 Proof of Theorem 2

(i) Follows from Theorem 2 in Westkamp (2011).
(ii) Part (1) can be established using a simple variation of the arguments in the proof of

Theorem 1 in Westkamp (2011). We omit the details.
To prove Part (2), let (Q1, Q2) be a Nash-equilibrium of the game induced by MSEQ
such that Q2

s = Ps and such that fSEQ(Q2, Q2) matches students as early as possible.
By (1), µ must be strongly stable. Hence, if we let µS = (µ1

S, µ
2
S) denote the student

optimal strongly stable matching, we must have µS(s)Rsµ(s) for all students s.
We show first that for all top-grade students s, µ1(s) = µ1

S(s). We already know
that no student s can get a better university than µS(s), so that µS(s)Rsµ(s). Let s∗

be the top-grade student with the best average grade among the top-grade students
s such that µ1(s) 6= µ1

S(s). We claim that v := µS(s∗)Ps∗µ(s∗). Since µS is the
student optimal strongly stable matching, this is true if µ1(s) ∈ U . So suppose
that µ1(s) = s 6= v = µ1

S(s) and that µ2(s) = v. But then (µ1, µ2) cannot match
students as early as possible. To see this, note that otherwise µ1(v) must consist of
q1v top-grade students with better average grades than s. This is impossible, since
µ1
S(v) contains at most q1v − 1 top-grade students with better average grades than
s∗ and since s∗ is the student with the best average grade among those for whom
µ1
S(s) 6= µ1(s). Hence, we must have vPs∗µ(s∗). Now consider a deviation of s∗ where

she only ranks v for both parts of the procedure. If she is not matched to v, there
must be q1u top-grade students with better average grades who are matched to v in
the first part of MSEQ. But by assumption all top-grade students who obtain a seat
at v in the first part of MSEQ under µ but not under µS must have a worse average
grade than s∗, a contradiction.
This yields the result: Only students in S \∪(∪u∈U(µ1

S(u))) participate in the second
part of MSEQ. Since all students submit preferences truthfully in the second part of
the procedure, the second part of the procedure must yield exactly the matching µ2

S.
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A.2 Experimental markets

A.2.1 Experimental market 1: Fully aligned

Students’ and universities’ preferences are as follows:

Psi : W � X � Y � Z, ∀i ∈ {1, 2, ..., 8},
Pu : s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8, ∀u ∈ {W,X, Y, Z}.

The outcome of MSIM under truth-telling is

µ1 =

(
W X Y Z
s1|s2 s3|s4 ∅|s5, s6 ∅|s7, s8

)
.

For this market, all equilibrium outcomes of the game induced by MSEQ have the same
structure:

• s1, s2 are matched to W ,

• s3, s4 are matched to X,

• s5, s6 are matched to Y ,

• s7, s8 are matched to Z.

This can be shown as follows: first, given the preferences of universities it is easy to see that
s1 and s2 must be matched to W in any equilibrium. Given this, s3 and s4 must both end
up matched to X. But then, the best university that s5 and s6 can obtain in equilibrium is
Y . By the previous arguments, they are guaranteed a place at Y (in equilibrium) as long as
they rank it higher than Z. Finally, for s7 and s8 the only possible equilibrium allocation
is to receive a place at Z. Given that for both of them this is better than remaining
unmatched, they must end up matched to Z in any equilibrium.

One equilibrium of MSEQ that yields the outcome of MSIM under truth-telling is the
following: let all top-grade students rank only their most preferred university for the first
part of the procedure. For the second part, let all students submit their true preferences.

The only arbitrariness in equilibrium outcomes of MSEQ lies in exactly which type of
place students get at their assigned universities. For example, there exists an equilibrium
outcome in which s2 gets the top-grade place at W , while s1 gets the regular place at W . In
our experiment, however, students were indifferent as to which type of place they received.
In particular, all equilibrium outcomes were equivalent from students’ perspectives. Similar
comments apply to the other experimental markets below.
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A.2.2 Experimental market 2: Student aligned

Students’ and universities’ preferences are as follows:

Psi : W � X � Y � Z ∀i ∈ {1, 2, ..., 8}
PW : s1 � s3 � s2 � s4 � s5 � s6 � s7 � s8,

PX : s1 � s5 � s2 � s3 � s4 � s6 � s7 � s8,

Pu : s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8, ∀u ∈ {Y, Z}

The outcome of MSIM under truth-telling is

µ2 =

(
W X Y Z
s1|s3 s2|s5 s4|s6 ∅|s7, s8

)
.

There are two types of equilibria of the game induced by MSEQ:

(Type 1) s1 matched to W in the top-grade quota
In this case, s3 must be matched to W in the regular quota, s2, s5 must be matched
to X, s4, s6 to Y , and s7, s8 to Z.
(Type 2) s1 matched to W in the regular quota
In this case, s2 must be matched to W in the top-grade quota, s3, s5 must be matched
to X, s4, s6 to Y , and s7, s8 to Z.

Note that equilibria of the second type involve s1 playing the weakly dominated strategy
of ranking no university for the first part.

One equilibrium that implements the outcome of MSIM under truth-telling is the one
where s3 ranks only W for the first part, s2 ranks X first, and all other submitted rankings
correspond to true preferences.

A.2.3 Experimental market 3: University aligned

Students’ and universities’ preferences are as follows:

Psi : W � Y � X � Z ∀i ∈ {1, 2, 5, 6},
Psi : X � Y � W � Z ∀i ∈ {3, 4, 7, 8},
Pu : s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8, ∀u ∈ {W,X, Y, Z}.

The outcome of MSIM under truth-telling is
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µ3 =

(
W X Y Z
s1|s2 s3|s4 ∅|s5, s6 ∅|s7, s8

)
.

It is straightforward to show that all equilibrium outcomes of the game induced by
MSEQ must yield the same matching of students to universities. One equilibrium which
implements the outcome of MSIM under truth-telling is obtained if all top-grade students
list only their true first choice for the first part of the procedure and all students submit
their true preferences for the second part of the procedure.

A.2.4 Experimental market 4: Split aligned

Students’ and universities’ preferences are as follows:

Psi : W � Y � X � Z ∀i ∈ {1, 3, 5, 7},
Psi : X � Y � W � Z ∀i ∈ {2, 4, 6, 8},
PX : s1 � s5 � s2 � s3 � s4 � s6 � s7 � s8,

Pu : s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8, ∀u ∈ {W,Y, Z}.

The outcome of MSIM under truth-telling is

µ4 =

(
W X Y Z
s1|s3 s2|s4 ∅|s5, s6 ∅|s7, s8

)
.

It is again straightforward to show that all equilibrium outcomes of the game induced
by MSEQ must yield the same matching of students to universities. As in Markets 1 and
3, one equilibrium which implements the outcome of MSIM under truth-telling is obtained
if all top-grade students list only their true first choice for the first part of the procedure
and all students submit their true preferences for the second part of the procedure.
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A.3 Individual performance by student type for markets 1 to 4

Table A1: Preference received in market 1, by mechanism and student
type

Preference 1 Preference 2 Preference 3 Preference 4 No match

MSIM

Student 1 100.00% 0.00% 0.00% 0.00% 0.00%

Student 2 96.67% 3.33% 0.00% 0.00% 0.00%

Student 3 2.22% 94.44% 3.33% 0.00% 0.00%

Student 4 1.11% 96.67% 2.22% 0.00% 0.00%

Student 5 0.00 % 5.56% 93.33% 1.11% 0.00%

Student 6 0.00% 0.00% 100.00% 0.00% 0.00%

Student 7 0.00% 0.00% 1.11% 98.89% 0.00%

Student 8 0.00% 0.00% 0.00% 100.00% 0.00%

MSEQ

Student 1 94.44% 3.33% 2.22% 0.00% 0.00%

Student 2 62.22% 27.78% 10.00% 0.00% 0.00%

Student 3 20.00% 58.89% 18.89% 2.22% 0.00%

Student 4 10.00% 52.22% 27.78% 10.00% 0.00%

Student 5 13.33 45.56% 40.00% 1.11% 0.00%

Student 6 0.00% 10.00% 87.78% 1.11% 1.11%

Student 7 0.00% 2.22% 11.11% 83.33% 3.33%

Student 8 0.00% 0.00% 2.22% 93.33% 4.44%

Notes: Entries are the share of students matched to the corresponding (induced)
preference in each cell. Cells shaded in gray indicate equilibrium outcomes.
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Table A2: Preference received in market 2, by mechanism and student
type

Preference 1 Preference 2 Preference 3 Preference 4 No match

MSIM

Student 1 100.00% 0.00% 0.00% 0.00% 0.00%

Student 2 6.90% 86.21% 5.75% 1.15% 0.00%

Student 3 93.10% 5.57% 1.15% 0.00% 0.00%

Student 4 0.00% 9.20% 87.36% 3.45% 0.00%

Student 5 0.00% 96.55% 2.30% 1.15% 0.00%

Student 6 0.00% 2.30% 95.40% 2.30% 0.00%

Student 7 0.00% 0.00% 6.90% 91.95% 1.15%

Student 8 0.00% 0.00% 1.15% 97.70% 1.15%

MSEQ

Student 1 93.33% 4.44% 1.11% 1.11% 0.00%

Student 2 13.33% 68.89% 14.44% 3.33% 0.00%

Student 3 56.67% 13.33% 24.44% 5.56% 0.00%

Student 4 22.22% 14.44% 58.89% 4.44% 0.00%

Student 5 12.22% 82.22% 5.56% 0.00% 0.00%

Student 6 1.11% 13.33% 78.89% 5.56% 1.11%

Student 7 1.11% 2.22% 15.56% 76.67% 4.44%

Student 8 0.00% 0.00% 1.11% 96.67% 2.22%

Notes: Entries are the share of students matched to the corresponding (induced)
preference in each cell. Cells shaded in gray indicate equilibrium outcomes.
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Table A3: Preference received in market 3, by mechanism and student
type

Preference 1 Preference 2 Preference 3 Preference 4 No match

MSIM

Student 1 100.00% 0.00% 0.00% 0.00% 0.00%

Student 2 93.33% 2.22% 4.44% 0.00% 0.00%

Student 3 95.56% 3.33% 0.00% 1.11 % 0.00%

Student 4 93.33% 3.33% 2.22% 1.11% 0.00%

Student 5 4.44% 93.33% 1.11% 1.11% 0.00%

Student 6 0.00% 94.44% 4.44% 1.11% 0.00%

Student 7 0.00% 3.33% 0.00% 95.56% 1.11%

Student 8 1.11% 0.00% 0.00% 98.89% 0.00%

MSEQ

Student 1 96.67% 2.22% 1.11% 0.00% 0.00%

Student 2 62.22% 28.89% 5.56% 3.33% 0.00%

Student 3 87.78% 8.89% 1.11% 2.22% 0.00%

Student 4 50.00% 43.33% 4.44% 2.22% 0.00%

Student 5 30.00% 58.89% 11.11% 0.00% 0.00%

Student 6 5.56% 52.22% 37.78% 3.33% 1.11%

Student 7 6.67% 5.56% 0.00% 82.22% 5.56%

Student 8 0.00% 0.00% 0.00% 97.78% 2.22%

Notes: Entries are the share of students matched to the corresponding (induced)
preference in each cell. Cells shaded in gray indicate equilibrium outcomes.
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Table A4: Preference received in market 4, by mechanism and student
type

Preference 1 Preference 2 Preference 3 Preference 4 No match

MSIM

Student 1 96.67% 3.33% 0.00% 0.00% 0.00%

Student 2 92.22% 3.33% 4.44% 0.00% 0.00%

Student 3 91.11% 7.78% 1.11% 0.00% 0.00%

Student 4 74.44% 25.56% 0.00% 0.00% 0.00%

Student 5 6.67% 74.44% 17.78% 1.11% 0.00%

Student 6 14.44% 78.89% 1.11% 5.56% 0.00%

Student 7 0.00% 6.67% 0.00% 91.11% 2.22%

Student 8 0.00% 0.00% 0.00% 100.00% 0.00%

MSEQ

Student 1 97.78% 1.11% 1.11% 0.00% 0.00%

Student 2 84.44% 8.89% 3.33% 3.33% 0.00%

Student 3 54.44% 41.11% 1.11% 3.33% 0.00%

Student 4 53.33% 35.56% 3.33% 7.78% 0.00%

Student 5 31.11% 55.56% 12.22% 1.11% 0.00%

Student 6 47.78% 45.56% 5.56% 1.11% 0.00%

Student 7 4.44% 12.22% 0.00% 78.89% 4.44%

Student 8 0.00% 0.00% 0.00% 96.67% 3.33%

Notes: Entries are the share of students matched to the corresponding (induced)
preference in each cell. Cells shaded in gray indicate equilibrium outcomes.
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A.4 Learning Behavior by Market

Table A5: Difference in individual performance measure be-
tween MSIM and MSEQ, by market, student and round

Student Rounds 1-4 Rounds 5-8 Rounds 9-12 All rounds

Market 1
Student 1 0.2000∗ 0.0333 0.0000∗∗∗ 0.0778∗∗

[0.1006] [0.0333] [0.0000] [0.0361]
Student 2 0.6667∗∗∗ 0.4667∗∗∗ 0.2000∗∗ 0.4444∗∗∗

[0.1345] [0.1376] [0.0884] [0.0736]
Student 3 0.2333 −0.1667 0.0000 0.0222

[0.1774] [0.1195] [0.0830] [0.0773]
Student 4 0.6667∗∗∗ 0.3000∗∗ 0.1333 0.3667∗∗∗

[0.1938] [0.1215] [0.1107] [0.0867]

Market 2
Student 1 0.2000 0.0667 0.0333 0.1000∗∗

[0.1213] [0.0463] [0.0352] [0.0456]
Student 2 0.2000 0.0667 −0.0741 0.0663

[0.1319] [0.1511] [0.1424] [0.0815]
Student 3 0.8333∗∗∗ 0.5333∗∗∗ 0.7630∗∗∗ 0.7084∗∗∗

[0.1993] [0.1733] [0.2139] [0.1122]
Student 4 −0.5667∗∗∗ −0.4333∗∗ −0.4667∗∗∗ −0.4870∗∗∗

[0.1982] [0.1820] [0.1495] [0.1023]

Market 3
Student 1 0.1000 0.0333 0.0000∗∗∗ 0.0444

[0.0735] [0.0333] [0.0000] [0.0270]
Student 2 0.5333∗∗∗ 0.3667∗∗∗ 0.2667 0.3889∗∗∗

[0.1733] [0.1363] [0.1645] [0.0917]
Student 3 0.3000 0.1000 −0.0667 0.1111

[0.1854] [0.0714] [0.0463] [0.0696]
Student 4 0.4333∗∗ 0.5333∗∗∗ 0.4667∗∗∗ 0.4778∗∗∗

[0.1919] [0.1333] [0.1178] [0.0870]

Market 4
Student 1 −0.0333 −0.0333 0.0667 0.0000

[0.0571] [0.0333] [0.0667] [0.0312]
Student 2 0.3667∗ 0.1333∗ −0.1000 0.1333

[0.1982] [0.0768] [0.1391] [0.0857]
Student 3 0.7000∗∗∗ 0.3667∗∗ 0.2333 0.4333∗∗∗

[0.1233] [0.1407] [0.1492] [0.0810]
Student 4 0.3333∗ 0.3333∗ 0.5333∗∗∗ 0.4000∗∗∗

[0.1817] [0.1764] [0.1815] [0.1033]

Notes: ***,**,* denotes statistical significance at the 1%-, 5%-,
and 10%-level, respectively. Each entry is the average cell-specific
difference between the value of the performance measure in the
MSIM and MSEQ. The performance measure is defined in equation
(2).
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