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A Term Structure Model with Level Factor Cannot be
Realistic and Arbitrage Free

Abstract

A large part of the term structure literature interprets the first underlying factors as a
level factor, a slope factor, and a curvature factor. In this paper we consider factor models
interpretable as a level factor model, a level and a slope factor model, respectively. We
prove that such models are compatible with no-arbitrage restrictions and the positivity of
rates either under rather unrealistic conditions on the dynamic of the short term interest
rate, or at the cost of explosive long-term interest rates. This introduces some doubt on
the relevance of the level and slope interpretations of factors in term structure models.

Keywords : Interest Rate, Term Structure, Affine Model, No Arbitrage, Level Factor,
Slope Factor.
JEL Classification : E43, E44, G12.

Un Modèle de Courbe de Taux avec Facteur Niveau ne
peut être Réaliste en Absence d’Opportunités d’Arbitrage

Résumé

Une grande partie de la littérature sur les modèles de courbe de taux d’intérêt interprète
les premiers facteurs comme des facteurs niveau, pente, et courbure. Dans ce papier,
nous considérons des modèles de courbe de taux où les facteurs s’interprètent comme un
facteur niveau (modèle à 1 facteur), ou comme des facteurs niveau et pente (modèle à 2 fac-
teurs). Nous démontrons que, pour ces modèles, les hypothèses d’absence d’opportunités
d’arbitrage et de positivité des taux d’intérêt impliquent soit une dynamique irréaliste du
taux d’intérêt de court-terme, soit une explosion des taux de long-terme. Nos résultats
mettent donc en question l’interprétation habituelle des facteurs dans les modèles de
courbe de taux.

Mots-clés : Taux d’intérêt, Structure par Terme, Modèle Affine, Absence d’Opportunités
d’Arbitrage, Facteur Niveau, Facteur Pente.
Codes JEL : E43, E44, G12.
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1 Introduction

The dynamic analysis of the term structure of interest rates reveals the existence of a
limited number of underlying factors. It is usual to interpret sequentially these factors as
a level factor, a slope (or steepness) factor, a curvature (or butterfly) factor, and so on,
even if these notions have not been precisely defined in the literature [see e.g. Litterman,
Scheinkman (1991), Jones (1991)].3 This factor interpretation has also been extended to
the field of option pricing [see Rogers, Tehranchi (2008) for a study of parallel shifts in
the term structure of implied volatilities].
The aim of this paper is to consider an arbitrage-free factor model of the term structure
of interest rates, where one of the factors has a level interpretation (loosely speaking, any
shock on the factor X will imply a parallel shift in the whole term structure). The compli-
ance with no-arbitrage is of great importance for asset pricing modeling. In particular, it
is crucial for market makers to rely on arbitrage-free asset pricing models for their quotes,
to avoid the market participants to benefit from unlimited free lunches opportunities.
Let us first consider a single factor model :

r(t, h) = g(Xt, h), ∀t ≥ 0, h ≥ 0,

where r(t, h) is the continuously compounded rate at date t for time-to-maturity h, and
X is the single factor. A level factor is such that any shock δx, say, affecting the factor
impacts the term structure by a drift independent of time-to-maturity. Thus we have :

g(Xt + δx, h) = g(Xt, h) + d(Xt, δx), ∀Xt, h, δx,

where d(Xt, δx) denotes the drift, which can depend on the state Xt and of the magnitude
of the shock. Without loss of generality, we can assume that Xt can take the value zero.
Thus, we deduce that :

g(Xt + δx, h) = g(0, h) + d(0, δx), ∀h, δx,

or equivalently that g can be decomposed as :

g(Xt + δx, h) = g(0, h) + d(0, Xt).
3”Level, slope and curvature factor loadings at the core of (term structure) models have their origin in

the somewhat arbitrary and atheoretical field of yield curve fitting” [Krippner (2009)].
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It admits an additive decomposition into a function of the factor and a function of the
time-to-maturity. Since the level factor is defined up to a nonlinear transformation, any
1-factor model with a level factor can always be written as4 :

r(t, h) = Xt + c(h), (1.1)

In Section 2, we consider a discrete time term structure model with a single factor in-
terpretable as a level factor. Then we introduce buy and hold strategies based on two
zero-coupon bonds and derive the necessary and sufficient conditions for no-arbitrage: the
sequence [c(h)] has to be a sequence of Cesaro means of a nonnegative increasing function.
In Section 3, we discuss the implications of this result on the behavior of the long-term
interest rate. Section 4 exhibits all risk-neutral dynamics compatible with parallel shifts
of the yield curve. We prove that they correspond to strong random walks and we ex-
plain how the behavior of the long-term interest rate depends on the distribution of the
innovation of this random walk 5. Section 5 extend our results to 2-factor models, by
adding a slope factor to the term structure model with level factor. Section 6 concludes.
The history of parallel and affine shifts of the term structure in the financial literature is
presented in Appendix 1, and technical derivations are gathered in the other appendix.

2 No-Arbitrage Condition for Buy-and-Hold Strategies Based

on Two Zero-Coupon Bonds.

In Sections 2-4, we consider a discrete time term structure model, i.e. t ∈ N, h ∈ N− {0}.
with a single level factor [see (1.1)]. In decomposition (1.1), the factor is defined up to an
additive constant. Therefore, without loss of generality, we can always assume :

Assumption A.1 : c(1) = 0.
4Model (1.1) has been written for the continuously compounded rate. If we denote by r∗(t, h) the

rate which is not continuously compounded, we have : exp[−hr(t, h)] = [1 + r∗(t, h)]−h, or equivalently

r∗(t, h) = exp[r(t, h)] − 1 = exp[Xt + c(h)] − 1. Thus the notion of level factor depends on the definition

of the rate. We keep the continuously compounded definition in the rest of the paper, which is compatible

with the existing literature.
5The main result of this Section contradicts Theorem 4 in Ingersoll, Skelton, Weil (1978). We will see

later on why their result is incomplete.
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Under Assumption A.1, the factor coincides with the short term interest rate : Xt = r(t, 1).

We also assume that model (1.1) really is a single factor model :

Assumption A.2 : The support of the conditional distribution of (Xt) given X0 is not
reduced to a single point.

Finally, we assume nonnegative rates, with a short term interest rate, which can reach
value zero.

Assumption A.3 :

i) The lower bound of the support of the distribution of Xt given X0 is zero;

ii) c(h) ≥ 0,∀h ∈ N− {0}.

Let us consider at date t a portfolio of two zero-coupon bonds with time-to-maturity h1

and h2, h2 > h1, respectively. Its price at date t is :

Πt(h1, h2, α) = α1B(t, h1) + α2B(t, h2),

where B(t, h) = exp[−hr(t, h)] denotes the price of the zero-coupon bond, and (α1, α2)
the allocations.

The value of this portfolio at date t+ k, k ≤ h1, is :

Πt+k(h1 − k, h2 − k, α) = α1B(t+ k, h1 − k) + α2B(t+ k, h2 − k).

The no-arbitrage condition is the impossibility to ensure a positive future value with zero
or negative initial endowment . This is equivalent to :

{min
t+k

[Πt+k(h1 − k, h2 − k, α] ≥ 0}

⇒ {min
t

Πt(h1, h2, α)] ≥ 0}, ∀α,∀k ≤ h1, h2, (2.1)

where mint is the minimum taken over the admissible values of the state variable of date
t.
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Condition (2.1) provides a restriction on zero-coupon prices, only if α1 and α2 have op-
posite sign. Thus, without loss of generality, we can choose α1 = 1, α2 = −α, α > 0, say.

Proposition 1 : Under model (1.1) and Assumptions A.1-A.3, the buy and hold strategies
based on two zero-coupon bonds do not feature arbitrage opportunity if and only if the
function c∗(h) = hc(h) is such that : c∗(h+ 1)− c∗(h) is a nonnegative increasing function
of h.

Proof : We have :

Πt+k(h1 − k, h2 − k, α) = exp[−(h1 − k)Xt+k − c∗(h1 − k)]
− α exp[−(h2 − k)Xt+k − c∗(h2 − k)]

= B(t+ k, h1 − k)
{[1− α exp[−(h2 − h1)Xt+k] exp[−c∗(h2 − k) + c∗(h1 − k)]}.

Since α ≥ 0, h2 ≥ h1, we deduce that :

min
t+k

Πt+k(h1 − k, h2 − k, α) ≥ 0 if and only if 1− α exp[−c∗(h2 − k) + c∗(h1 − k)] ≥ 0.

Therefore, mint+k Πt+k(h1 − k, h2 − k, α) is nonnegative if and only if α ≤ exp[c∗(h2 −
k) − c∗(h1 − k)]. Similarly, mint Πt(h1, h2, α) is nonnegative positive if and only if α ≤
exp[c∗(h2)− c∗(h1)].

Thus the no-arbitrage condition is satisfied if and only if,

{α ≤ exp[c∗(h2 − k)− c∗(h1 − k)]} ⇒ {α ≤ exp[c∗(h2)− c∗(h1)]},

which is equivalent to :

c∗(h2 − k)− c∗(h1 − k) ≤ c∗(h2)− c∗(h1),∀k ≤ h1 ≤ h2. (2.2)

i) It is easily checked that condition (2.2) above is equivalent to the fact that the function
c∗(h2 + k)− c∗(h1 + k) is increasing in k for any h2 ≥ h1.
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ii) Finally, by noting that :

c∗(h2 + k)− c∗(h1 + k) = [c∗(h2 + k)− c∗(h2 − 1 + k)] + [c∗(h2 − 1 + k)− c∗(h2 − 2 + k)]
+ . . .+ [c∗(h1 + 1 + k)− c∗(h1 + k)],

we get the increasingness condition.

To prove the nonnegativity, we have to check that c∗(2) − c∗(1) = 2c(2) is nonnegative
(since c∗(1)− c∗(0) = 0). This is a direct consequence of Assumption A.3.

QED

Corollary 1 : The no-arbitrage condition of Proposition 1 is satisfied if and only if the
sequence [c(h)] is a sequence of Cesaro means of a nonnegative increasing function.

Proof : We have :

c(h) = c∗(h)/h =
1
h

h∑
l=1

∆c∗(l),

with ∆c∗(l) = c∗(l)− c∗(l − 1).

The result follows from Proposition 1.

QED

Corollary 2 : Under model (1.1), Assumption A1-A3 and no-arbitrage, function c∗ is
superadditive, that is,

c∗(h1) + c∗(h2) ≤ c∗(h1 + h2),∀h1, h2 ∈ N− {0}.

Proof : Indeed, let us consider the special case of inequality (2.2) for k = h1. We get :

c∗(h2 − h1) ≤ c∗(h2)− c∗(h1), ∀h1 ≤ h2.

QED



7

This condition was expected. Indeed, under Assumption A.3 the lower bound of the sup-
port of r(t, h) is equal to c(h). It has been proved in Gourieroux-Monfort (2011) that
h times this lower bound, that is, c∗(h) = hc(h) is necessarily superadditive under no-
arbitrage condition.

No-arbitrage requires the function ∆∗(h) = c∗(h)− c∗(h−1) to be non negative increasing
for all h ∈ N−{0}. Let us for instance assume that c∗(h̄)−c∗(h̄−1) > c∗(h̄+1)−c∗(h̄) > 0
for a single time-to-maturity h̄. Then, the portfolio composed at time t by α1 = 1 zero-
coupon bond with maturity h̄ and α2 = − B(t,h̄)

B(t,h̄+1)
bond with maturity h̄+ 1 is worthless

at time t, but have a positive value Πt+1 at time t+ 1 with probability 1 :

Πt+1 = B(t+ 1, h̄− 1)
[
1− α2

α1
exp

(
−Xt − c∗(h̄) + c∗(h̄− 1)

)]
= B(t+ 1, h̄− 1)

[
1− exp

(
−Xt+1 +

[
c∗(h̄+ 1) + c∗(h̄)

]
−
[
c∗(h̄) + c∗(h̄− 1)

])]
> 0, for all Xt+1 ≥ 0.

3 Behavior of the Long-Term Interest Rate

In this section, we investigate the implication of level factor for the modeling of long-term
rates under no-arbitrage.

Proposition 2 : Under model (1.1) and Assumptions A.1-A.3, we get one of the two
following cases :

i) r(t,∞) = +∞ :

ii) r(t,∞) = Xt + c∞, where c∞ is a given positive constant.

Proof : Since ∆c∗(h) is nonnegative increasing, we have either lim inf
h→∞

∆c∗(h) = ∞, or

lim inf
h→∞

∆c∗(h) = lim sup
h→∞

∆c∗(h) = c∞ < ∞ say. Since ∆c∗(h) is a nonnegative increasing

function, we deduce that the Cesaro mean [c(h)] is such that :



8

c(h) =
1
h

h∑
l=1

∆c∗(l) ≤ ∆c∗(h), ∀h,

and c(h) ≥ 1
h

h∑
l=k+1

∆c∗(l) ≥ h− k
h

∆c∗(k), ∀k ≤ h.

These two inequalities explain why the sequences [c(h)] and [∆c∗(h)] have the same asymp-
totic behavior. For instance, let us assume that lim

h→∞
∆c∗(h) = +∞. Then, from the second

inequality, we get :

lim inf
h→∞

c(h) ≥ ∆c∗(k),∀k,

which implies lim inf
h→∞

c(h) ≥ +∞. We deduce that lim
h→∞

c(h) = +∞. When lim
h→∞

∆c∗(h) =

c∞, the joint use of the two inequalities shows that lim inf
h→∞

c(h) and lim sup
h→∞

c(h) exist and

are equal to c∞.

QED

Proposition 2 shows that the case, where the long-term interest rate does not exist due,
for instance, to a periodic asymptotic behavior of function c, has been eliminated.

Proposition 2 concerns the limiting behavior of the long run spot interest rate when the
whole term structure moves by parallel shifts. The instantaneous forward interest rate is
given by :

f(t, h) = hr(t, h)− (h− 1)r(t, h− 1).

Under model (1.1), the instantaneous forward rate is equal to :

f(t, h) = Xt + c∗(h)− c∗(h− 1), ∀t, h.

It is not a constant function of time. In particular, if lim
h→∞

∆c∗(h) exists, the long run
instantaneous forward interest rate also exists and is stochastic.
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4 Risk-Neutral Factor Dynamic

Let us now analyze the factor dynamics.

Proposition 3 : Under model (1.1), no-arbitrage opportunities and Assumptions A.1-
A.3, the factor process is a Markov process under the risk-neutral probability Q and we
have :

Q
Et [exp(−hXt+1)] = exp[−hXt + c∗(h)− c∗(h+ 1)].

Proof : Under no-arbitrage, we have :

B(t, h+ 1) =
Q
Et {exp[−r(t, 1)]B(t+ 1, h)}, ∀h,

or, equivalently :

exp[−(h+ 1)r(t, h+ 1)] = exp[−r(t, 1)]
Q
Et {exp[−hr(t+ 1, h)]}, ∀h.

By decomposition (1.1), we deduce :

exp[−(h+ 1)Xt − c∗(h+ 1)] = exp(−Xt)
Q
Et {exp[−hXt+1 − c∗(h)]},

or :
Q
Et [exp(−hXt+1)] = exp[−hXt + c∗(h)− c∗(h+ 1)],∀h.

For a nonnegative variable, the knowledge of the Laplace transform for negative integer

characterizes the distribution 6. We deduce that the conditional distribution of Xt+1 given
its past depends on the past by means of the most recent observation. This is the Markov
property and Proposition 3 follows.

QED
6Indeed, let us denote Z = exp(−X). Variable Z takes values in (0, 1). Thus, for any argument u, the

series Σ∞h=0

E(Zh)(iu)h

h!
is uniformly absolutely convergent. We deduce that the characteristic function

ψ(u) = E[exp(iuZ)] exists [see Feller (1971), Vol2, p430].
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The conditional log-Laplace transform is an affine function of the current value of the
process. This is exactly the definition of a Compound Autoregressive (CaR) process [see
Darolles, Gourieroux, Jasiak (2006)], also called Affine process in continuous time [Duffie,
Kan (1996), Duffie, Filipovic, Schachermayer (2003)].

Proposition 4 7 : Under model (1.1), no-arbitrage opportunities, and Assumptions A.1-
A.3, the level factor process is a strong random walk under Q :

Xt+1 = Xt + εt+1,

where (εt) is under Q a sequence of nonnegative i.i.d. variables with Laplace transform :

ψε(h) =
Q
E [exp(−hεt)] = exp[c∗(h)− c∗(h+ 1)].

Proof : Let us denote εt+1 = Xt+1 − Xt. From Proposition 3, we deduce that :
Q
Et

[exp(−hεt+1)] = exp[c∗(h) − c∗(h + 1)]. This shows that the conditional distribution of
εt+1 is independent of the past and provides the form of its Laplace transform. Moreover,
ε is nonnegative, since by Assumption A.3, Xt can be arbitrary close to zero. In this case
εt+1 = Xt+1, which is nonnegative.

QED

Since ε is nonnegative, ψε(h) is smaller than 1 and a decreasing function of h. We deduce
that c∗(h + 1)− c∗(h) is a nonnegative increasing function of h (which is Proposition 1).
We also get the following Corollaries :

Corollary 2 : Model (1.1) is compatible with the no-arbitrage condition if and only if
function c∗ is such that : exp[c∗(h) − c∗(h + 1)] is the Laplace transform of a positive
variable.

7Proposition 4 contradicts Theorem 4 in Ingersoll, Skelton, Weil (1978), where it is said that any

parallel shift in a term structure is not arbitrage free. The random walk models in Proposition 4 are

both compatible with parallel shift and no-arbitrage. This contradiction is due to a misleading proof in

ISW (1978), p635, l3, where the effect of diminishing time-to-maturity is omitted when computing the

future value of the portfolio of zero-coupon bonds. In some sense, they have implicitly assumed a flat term

structure c(h) = 0 [see the discussion in Appendix 1].
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Corollary 3 : Under model (1.1), no-arbitrage opportunities, and Assumptions A.1-A.3,
the factor process is a non decreasing function of time: the term structure cannot make
uniform downward move.

Let us now come back to the behavior of the long-term interest rate. We have the following
proposition :

Proposition 5 : For a strong random walk under Q, the long-term interest rate exists,
if and only if :

lim
h→∞
{− logE[exp(−hε)]} = − logP [ε = 0] = c∞ <∞;

then the long run interest rate is equal to :

r(t,∞) = Xt + c∞.

Proof : The first condition concerning lim
h→∞
{− logE[exp(−hε)]} = c∞ < ∞ is a direct

consequence of Proposition 4 and the proof of Proposition 2.

Moreover, we have

E[exp(−hε)] = P [ε = 0] +
∫

1lx>0 exp(−xh)dF (x).

But lim
h→∞

exp(−hx) = 0,∀x > 0, and since exp(−hx) ∈ (0, 1), we deduce by Beppo-Levi

theorem that lim
h→∞

∫
1lx>0 exp(−hx)dF (x) = 0. The result follows.

QED

In this framework, the long-term rate exists, is stochastic and provides the same informa-
tion as the underlying factor. This contradicts Lemma 3 in El Karoui, Frachot, Geman
(1998), which asserts that the long-term yield (if it exists) cannot be stochastic in a one-
factor model.
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The need for an innovation with point mass at zero explains the strange behavior of the
long run interest rate, in affine models with a level factor following a Gaussian random
walk, even if this factor is not positive [see e.g. Christensen, Diebold, Rudebusch (2010)].
In this framework, the long run interest rate is equal to −∞.

To illustrate Corollary 2, let us consider a random walk with a Poisson distributed inno-
vation εt ∼ P(λ). We have :

ψε(h) = exp{−λ[1− exp(−h)]},

− logP [ε = 0] = λ,

and the interest rate with time-to-maturity h is :

r(t, h) = Xt + λ{h− 1
h

+
1
h

[1− 1− exp(−h)
1− exp(−1)

]}.

We check that : lim
h→∞

ψε(h) = r(t,∞)−Xt = − logP [ε = 0] = λ.

The results above concern the risk-neutral dynamics. It is known that the historical and
risk-neutral dynamics are weakly linked [see Rogers (1977)]. For instance, the historical
dynamic of (Xt) is not necessarily affine, and does not necessarily feature a unit root. Nev-
ertheless, the historical and risk-neutral distributions have a same support : in particular
the process (Xt) can never fall under the historical probability8 and the probability that
Xt+1 = Xt is nonzero if the long run interest rate exists. Similarly, when it exists, the
long run interest rate is also an nondecreasing function of time. Therefore under model
(1.1), either the long-term spot interest rate does not exist, or if it exists it can never fall.
9

8The empirical literature on term structure models with level factor identify on the contrary a decreasing

trend in the level factor dynamics [see for instance Diebold, Rudebush Aruoba (2006), p 312 fig. 2].
9Several authors argue that this property of the long-term spot rate is a consequence of no-arbitrage

[Dybvig, Ingersoll, Ross (1996), El Karoui, Frachot, Geman (1998)], but prove this property under addi-

tional assumptions. These assumptions can be a predetermined long interest rate [DIR (1996)], or a long

rate satisfying a diffusion equation [EFG (1998)].
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5 Term Structure Model with Level and Slope Factors

At this stage, we may think that the deficiencies of the level factor modeling is specific
of the single factor model and might disappear if a second factor is introduced, such as
a slope factor. We will see below that this is not the case. The steps of the proof are as
follows :

i) We first show that we have necessarily an affine term structure (Section 5.1).

ii) Then, we show that, except for some special baseline slope functions, the risk-neutral
factor dynamics is necessarily affine (Section 5.2).

iii) In Sections 5.3-5.4, we check that an affine dynamics for the level and slope factor is
not arbitrage free.

iv) Finally, we consider the cases of special baseline functions and non-affine factor dy-
namics in Section 5.5.

5.1 The affine term structure

To highlight the arguments, let us consider now a continuous time model with two factors.
Then we can write :

r(t, h) = g(Xt, Zt, h), ∀t, h ≥ 0. (5.1)

In order to allow for independent shocks on the level and slope factor, we need conditions
on the joint support of variables Xt, Zt. In particular, to assimilate the magnitude of the
shock δx (resp. δz) with an increase in X (resp. Z), we need a property of invariance of
the support. This condition is summarized in Assumption A∗· 1 below.

Assumption A∗· 1 :

i) The support of the historical (risk-neutral) conditional distribution of Xt, Zt given its
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past Xt−h, Zt−h is XxZ, for any t, h ≥ 0.

ii) The supports X and Z are additive groups.

Since the support of the historical and risk-neutral conditional distributions are the same,
the condition is valid for both of them.

Proposition 6 : Under Assumption A∗· 1, a two factor model with a level and a slope
factor can always be written as :

r(t, h) = Xt + Ztβ(h) + γ(h), ∀t, h ≥ 0.

where β(.) is an increasing function, β(0) = 1, γ(0) = 1.

Proof : Xt and Zt are level and slope factors if and only if they can be shocked sepa-
rately (under the historical distribution), with a drift and a slope effects, respectively, on
the term structure.

i) Let us first consider a shock δx on Xt. By definition of the level factor, we get :

g(Xt + δx, Zt, h) = g(Xt, Zt, h) + d(Xt, Zt, δx), ∀Xt, Zt, δx, h,

where the drift effect can depend on the environment. Without loss of generality, we can
assume that the level factor can take value zero. Thus we get :

g(δx, Zt, h) = g(0, Zt, h) + d(0, Zt, δx), ∀Zt, δx, h,

or equivalently, we can write :

g(Xt, Zt, h) = g1(Xt, Zt) + g2(Zt, h), say. (5.2)

ii) Let us now apply a shock δz on Zt. We get :

g(Xt, Zt + δz, h) = g1(Xt, Zt + δz) + g2(Zt + δz, h),

= g1(Xt, Zt) + g2(Zt, h) + s(Xt, Zt, δz)β(h), ∀Xt, Zt, δz, h,
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by denoting β(h) the baseline slope effect on the term structure.

β(.) has to be monotonous, for instance increasing, for the slope interpretation, and the
magnitude of the slope effect can depend on the environment. We can always assume that
Zt can take the value zero. Then we get :

g(Xt, δz, h) = g1(Xt, 0) + g2(0, h) + s(Xt, 0, δz)β(h), ∀Xt, δz, h,

or equivalently :

g(Xt, Zt, h) = g1(Xt) + g2(Xt, Zt)β(h) + γ(h), say. (5.3)

iii) Let us finally consider the expression (5.3) and apply a shock on the level factor. The
effect of this shock equals to :

g1(Xt + δx)− g1(Xt) + [g2(Xt + δx, Zt)− g2(Xt, Zt)]β(h),

has to be independent of h. This implies that g2(Xt, Zt) is independent of Xt.

To summarize we can write :

g(Xt, Zt, h) = g1(Xt) + g2(Zt)β(h) + γ(h),

or equivalently :
g(Xt, Zt, h) = Xt + Ztβ(h) + γ(h),

since Xt (resp. Zt) is defined up to a transformation.

Finally, if γ(0) 6= 0, β(0) 6= 1, we can always perform a drift in the definition of factor X:
Xt → Xt + γ(0), and introduce a multiplicative scale on factor Z: Zt → Ztβ(0), to satisfy
the conditions β(0) = 1, γ(0) = 0.

QED

Then, the level and slope interpretations of the factors imply an affine term structure
model, with a constant baseline term structure for the level factor, and an increasing
baseline term structure for the slope factor.
The instantaneous interest rate rt = r(t, 0) = Xt + Zt is the sum of the level and slope
factors.
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5.2 The risk-neutral factor dynamics

We will now use the affine term structure in Proposition 6 to restrict the specification of
the risk-neutral factor dynamics. To simplify the discussion, we assume that the factor
process satisfies a stochastic differential system.

Assumption A∗· 2 : Under the risk-neutral distribution, the bivariate process Yt =
(Xt, Zt)

′ satisfies the stochastic differential equation :

dYt = µ(Yt)dt+ Σ1/2(Yt)dWt,

where (Wt) is a standard bivariate Brownian motion, µ(.), Σ(.) are the infinitesimal drift
and volatility, respectively.

By assuming a continuous time model without jumps, we avoid the limit case of the special
random walk encountered in Section 4, Proposition 5.

By applying the pricing formula :

B(t, h) = exp [−hr(t, h)] = EQ
[
exp

(
−
∫ t+h

t
rudu

)
|Yt
]
,

where Q denotes the risk-neutral distribution, we deduce the relationship between µ,Σ
and the expression of the interest rate [see e.g. Duffie (2001), Chapter 7]. Let us denote:

r(t, h) = g(Yt, h),

where function g satisfies the partial differential equation (see Appendix 2) :

g(y, h)− g(y, 0) + h
∂g(y, h)
∂h

= h
∂g(y, h)
∂y′

µ(y) +
1
2
hTr

[
Σ(y)

∂2g(y, h)
∂y∂y′

]
− h2

2
∂g(y, h)
∂y′

Σ(y)
∂g(y, h)
∂y

, ∀y, h. (5.4)

In our framework, we have: g(y, h) = x+ β(h)z + γ(h), with β(0) = 1, γ(0) = 0.

Therefore, differential system (5.4) reduces to :
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[β(h)− 1]z + γ(h) + h

[
dβ(h)
dh

z +
dγ(h)
dh

]
= h

[
1, β(h)

]
µ(y) (5.5)

− h2

2

[
1, β(h)

]
Σ(y)

[
1

β(h)

]
, ∀y, h.

For given y, we get an infinite dimensional linear system of equations in µ1(y), µ2(y),
σ11(y), σ12(y), σ22(y), that are the elements of µ(y), Σ(y), respectively. Then, following
Duffie, Kan (1996), we deduce the necessary form of the drift and volatility functions.

Proposition 7 : If the baseline slope β(h) is not an affine function of h, and is not

proportional to β(h) = 1 +
√
h2+(a2+a3h)2−(a2+a3h)

h , with a2 > 0, the drift and volatility
functions are necessarily affine functions of z only under Assumptions A∗· 1-A∗· 2, and no-
arbitrage opportunity.

Proof : see Appendix 3.

Thus, we get an affine risk-neutral dynamics for the factor process :(
dXt

dZt

)
= (µ0 + µ1Zt) + (Σ0 + Σ1Zt)1/2dWt, say, (5.6)

where µ0, µ1 are bivariate vectors and Σ0, Σ1 are (2,2) symmetric matrices.

As noted in Duffie, Kan (1996), p. 386, an affine term structure of interest rate implies
an affine risk-neutral factor dynamics under some rank conditions. In our framework the
rank condition is equivalent to the conditions on the baseline slope function in Proposition
7.

5.3 Constraints on the affine factor dynamics

Let us now discuss the constraints implied by the positivity of the factor volatility matrix
and by the nonnegativity of the instantaneous rate.
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Assumption A∗· 3 : The instantaneous interest rate r(t, 0) = Xt +Zt is nonnegative, and
can reach value zero.

By introducing this new assumption, we are limiting the set of possible factor values to
{XxZ} ∩ {(x, z) : x+ z ≥ 0}. In other words, we only allow for shocks on either level, or
slope factor, keeping nonnegative the instantaneous rate.

Proposition 8 : Under Assumptions A∗· 1-A∗· 3 and no-arbitrage opportunities, process
(Zt) is a drifted Cox-Ingersoll-Ross process.

Proof :

i) First note that Σ1 6= 0. Otherwise, Yt = (Xt, Zt)
′ would be a multivariate Ornstein-

Uhlenbeck process, and r(t, 0) would be conditionally Gaussian, which contradicts As-
sumption A∗· 3.

ii) Let us now denote σ1(2, 2) the (2,2) element of Σ1. If σ1(2, 2) = 0, the process (Zt)
would be an Ornstein-Uhlenbeck process, and would take any value in (−∞,+∞).
Since σ0(1, 1) + σ1(1, 1)Zt has to be nonnegative for any value of Zt, we deduce that
σ1(1, 1) = 0. Moreover the positivity of Σ0 + Σ1zt for large zt implies Σ1 >> 0 and thus
σ1(1, 2) = 0 by Cauchy-Schwarz.
We deduce that the condition σ1(2, 2) = 0 implies Σ1 = 0, which contradicts Assumption
A∗· 3 by i).

iii) To summarize the slope process (Zt) satisfies the stochastic differential equation :

dZt = (µ0(2) + µ1(2)Zt) dt+ (σ0(2, 2) + σ1(2, 2)Zt)
1/2 dW ∗t ,

where (W ∗t ) is a one-dimensional Brownian motion and σ1(2, 2) > 0. Therefore, (Zt) is
necessarily a drifted CIR process defined on the interval Z∗ =

(
−σ0(2,2)
σ1(2,2) ,∞

)
.

QED
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5.4 The absence of solution with affine level and slope factors

Proposition 9 : Under Assumptions A∗· 1-A∗· 3, a model with level and slope factors with
an affine risk-neutral dynamics is not arbitrage free.

Proof :

Under Assumptions A∗· 1-A∗· 3, and the absence of arbitrage opportunity, the factor process
satisfies the affine dynamics (5.6). Thus, we get an affine term structure model in which
the sensitivity coefficients of the factors, that are 1 and β(h) satisfy a Riccati equation.
In our framework this equation is [see Duffie (2001), Chapter 7, eq. (31)] :

(
0

dβ(h)
dh

)
=

(
1
1

)
− µ1β(h)− 1

2

 0[
1, β(h)

]
Σ1

[
1

β(h)

]  ,

The second equation :

dβ(h)
dh

= 1− µ1(2)β(h)− 1
2

[
1, β(h)

]
Σ1

[
1

β(h)

]
, with σ1(2, 2) > 0,

is the equation corresponding to a drifted Cox-Ingersoll-Ross process, whose solution in-
volves a rational function of exponential functions of h [see e.g. Duffie (2001), Chapter 7,
eq(11)]10. The first equation is 1 = µ1(1)β(h). This leads to a contradiction since function
β(h) is not constant.

QED
10The expression of β(h) does not correspond to the expression of the sensitivity coefficient of (Zt)

in a term structure model with single factor (Zt) satisfying the dynamics of Proposition 8, except if

σ1(1, 1) = σ1(1, 2) = 0. This shows that factor (Xt) generally matters even if (Zt) admits an exogenous

dynamics.
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5.5 Non-affine level and slope factors

Finally, let us consider the special patterns of the slope function β appearing in Proposition
7. From differential equation (5.5), we get :

d [hγ(h)]
dh

= −[β(h)− 1]z − hdβ(h)
dh

z + h
[

1, β(h)
]
µ(y)

− h2

2

[
1, β(h)

]
Σ(y)

[
1

β(h)

]
, ∀y, h. (5.7)

i) Let us first consider the case of a slope affine function of h, i.e. β(h) = b0+b1h, with non-
negative real b1 to ensure that the slope baseline term structure is increasing in h. In this
case, the linear baseline term structure β(h) forces very long-term rates to be unbound-
edly large (and positive). In particular, the limiting interest rate r(t,∞) = lim

h→∞
r(t, h) is

infinite, at any time t. It is interesting to discuss this special case, since the affine slope
baseline was historically the first proposed specification [see Appendix 1 iv)].

ii) Let us now consider the function β(h) = 1 +
√
h2+(a2+a3h)2−(a2+a3h)

h , with a2 > 0. This
function tends to a finite limit when h tends to infinity. We deduce from equation (5.7),
that for large h, the derivative d[hγ(h)]

dh is of order h2, whenever there exists a state y such
that Σ(y) 6= 0. Under this condition, which ensures a nondegenerate 2-factor model, γ(h)
is the dominant term in the expression of r(t, h). In particular, the long-term rate can be
unbounded.

To summarize, let us introduce the following assumption of finiteness of the long-term rate.

Assumption A∗· 4 : P
[

lim
h→∞

sup |r(t, h)| <∞
]

= 0.

We have the Proposition below :

Proposition 10 : Under Assumptions A∗· 1-A∗· 4, a model with level and slope factors is
not arbitrage free.



21

6 Concluding Remarks

A large part of the term structure literature interprets the first factors as a level factor,
a slope factor, a curvature factor, respectively. Initially this interpretation relies on the
pattern of the weights that each factor assigns to the different maturities: the level factor
has almost equal weights, the slope factor has monotonic weights, but this interpretation
has also been used to discuss the immunization of bond portfolios with respect to specific
shocks on the term structure (see the discussion in Appendix 1). However, the literature
does not checked if these interpretations of the first factors is coherent, that is compatible
with no-arbitrage opportunity.
The aim of our paper was to show that this interpretation cannot be both realistic and
arbitrage free. To discuss this point, we consider successively a single factor model with a
level factor, and a 2-factor model with level and slope factors. None of these models are
compatible with the positivity of interest rates, the finiteness of the long-term rate and
no-arbitrage restrictions.
In particular, we show that a discrete time term structure model with a single level fac-
tor requires the short-term interest rate to be an increasing function of time. Besides, if
the long run interest rate exists, the short-term interest rate has a nonzero probability
to coincide with the previous rate. Both facts do not correspond to observed evolutions
of short-term rates. Moreover, arbitrage-free term structure models with level and slope
factors in a continuous time framework are very specific, and always feature diverging
long-term rates11.
Thus our results introduce some doubt on the relevance of the level and slope interpreta-
tions of factors underlying the term structure dynamics, but also on the practice which
consists in considering basic shocks on a term structure, without checking if these shocks
are compatible with both the existing term structure pattern and no-arbitrage.

11As noted in Andersen, Lund (1997), ”We simply do not know of any theoretical rationale for explosive

interest rate series”.
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Appendix 1
Parallel Shift and Change of Slope in the Term Structure Literature

1. The level in the literature

i) From a coupon bond to a zero-coupon bond

Very early in the literature [Macaulay (1931), (1938), p.48] appears the idea to replace a
coupon bond by an ”equivalent” zero-coupon bond in order to facilitate the comparison of
bonds with different maturities and seasoning. More precisely, let us consider at time t a
coupon bond with nonnegative coupons Ah, h = 0, 1 . . . at the different times-to-maturity,
and a current price Πt(A). To create the ”equivalent” zero-coupon bond, we have to define
the corresponding rate and time-to-maturity. They are usually defined as follows : the
equivalent rate, or yield, is the solution rIt (A) of the equation :

Πt(A) =
∞∑
h=0

Ah exp[−hrIt (A)].

The equivalent time-to-maturity is the Macaulay’s duration 12 defined by :

DI
t (A) =

∞∑
h=0

hAh exp[−hrIt (A)]/
∞∑
h=0

Ah exp[−hrIt (A)].

It is equal to the average time-to-maturity of the coupons weighted by the discounted
coupons, which corresponds to a modified probability measure with elementary probabil-

ities

(
qt(h) = Ah exp[−hrIt (A)]/

∞∑
h=0

Ah exp[−hrIt (A)]

)
.

In a modern terminology, these two notions are an implied rate and an implied time-
to-maturity, since they are computed from a misspecified term structure model, which
assumes a flat term structure, possibly varying in time :

r(t, h) = Xt, ∀h, say. (A.1)
12The eponym ”Macaulay’s duration” has been introduced in Fisher, Weil (1971), p416.
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ii) Consistency with no-arbitrage

The flat term structure model (A.1) underlying the derivation and interpretation of the
yield and duration hardly coincides with the true term structure. Nevertheless, this mis-
specified model should be consistent with no-arbitrage restrictions.

From (A.1), we note that the underlying model is a special case of model (1.1) with
c(h) = 0, ∀h. By arguments similar to the arguments in Section 4, we deduce that, under
no-arbitrage, the dynamic of (Xt) is such that :

Xt+1 = Xt, ∀t. (A.2)

Therefore, under no-arbitrage, the term structure is flat at all dates if and only if it is also
time independent :

Xt = X0, ∀t,

⇔ r(t, h) = X0,∀t, h say. (A.3)

Thus the no-arbitrage restriction induces strong links between the pattern of the term
structure (which is flat) and its evolution (which is constant in time).

The underlying model can be stochastic if the initial value is stochastic, but the associated
notion of shock is very special. Indeed, a shock on X0 can be introduced : this shock will
have a drift effect not only on the term structure at date t, but on the term structures of
all dates jointly. Under no-arbitrage on the underlying misspecified model, a transitory
shock on a term structure, that is a shock specific to date t, cannot be defined. This shock
is systematically permanent.13

The aim of Assumption A.2 was to eliminate this very special limiting case.

iii) The duration as a sensitivity parameter.

It is also well-known that the duration is a measure of the sensitivity of the bond price with
respect to shock on the level of interest rate, which does not depend on time-to-maturity

13Theorem 4 in Ingersoll, Skelton, Weil (1978) provides an alternative proof of the result. They show

that a transitory shift in a flat term structure is not arbitrage free.
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due to the assumption of a flat term structure [see e.g. Hicks (1939), Redington (1952),
Fisher (1966), Hopewell, Kaufman (1973)].
More precisely, let us shock the flat term structure r(t, h) = rIt (A), ∀h, into rl(t, h) =

rIt (A) + δ, ∀h, and consider the associated value Πl
t(A, δ) =

∞∑
h=0

Ah exp[−h
(
rIt (A) + δ

)
],

where the upper index l mentions a shock on level. We have :

∂ log Πl
t(A, δ)
∂δ

∣∣∣∣
δ=0

= DI
t (A). (A.4)

2. The slope in the literature

i) The convexity

The sensitivity analysis can be extended at second-order. The convexity is the second-
order derivative of the log-price14 function with respect to shock δ :

CIt (A) =
∂2 log Πl

t(A, δ)
∂δ2

∣∣∣∣
δ=0

=

∞∑
h=0

h2Ah exp[−hrIt (A)]

∞∑
h=0

Ah exp[−hrIt (A)]

−


∞∑
h=0

hAh exp[−hrIt (A)]

∞∑
h=0

Ah exp[−hrIt (A)]


2

=
∞∑
h=0

h2qt(h)−

[ ∞∑
h=0

hqt(h)

]2

.

Thus the convexity can be interpreted as the variance of the time-to-maturity of the bond
under modified probability measure [qt(h)].

14Our definition differs from the usual definition of convexity [see for instance Hull (2005), p.92],

according to which convexity is equal to the second-order derivative of the price function
∂2Πl

t(A,δ)

∂δ2
.

The second-order Taylor expansion is often used to derive approximated prices, that is, to consider

Πl
t(A, 0) + δ

∂Πl
t(A,0)

∂δ
+ δ2 ∂

2Πl
t(A,0)

∂δ2
instead of Πl

t(A, δ). Such a Taylor expansion does not ensure the

positivity of the approximated prices. At the opposite, this property is satisfied when the expansion is

performed on the log-price as proposed in our definition.
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ii) Effect of an affine linear shock

Let us now consider an affine linear shock, whose effect on the yield curve differs with the
maturity of the rates, that is :

rs(t, h, δ) = rIt (A) + δ
[
h−DI

t (A)
]
, ∀h,

where the shock on the yield curve is calibrated around the bond’s duration DI
t (A), and

impacts the slope without affecting the level of the yield curve.

In this case, the bond price becomes Πs
t (A, δ) =

∞∑
h=0

Ah exp
[
−h
(
rIt (A) + δ

[
h−DI

t (A)
])]

,

and the first-order sensitivity of the bond price to the affine linear shock becomes :

∂ log Πs
t (A, δ)
∂δ

∣∣∣∣
δ=0

= −

∞∑
h=0

{
h
[
h−DI

t (A)
]
Ah exp

[
−hrIt (A)

]}
∞∑
h=0

Ah exp[−hrIt (A)]

= −
∞∑
h=0

{
h
[
h−DI

t (A)
]
qt(h)

}
= −CIt (A),

which is the (opposite of) bond’s convexity.
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Appendix 2
Proof of Equation 5.4

By definition, we have :

B(t, h) = exp [−hr(t, h)] = exp [−hg(Yt, h)] = F (Yt, h), say.

Since (Yt) is an Ito process satisfying dYt = µ(Yt)dt+Σ1/2(Yt)dWt, the function F satisfies
the following PDE [see Duffie (2001), Chapter 7, eq. (22)] :

g(y, 0)F (y, h) = −∂F (y, h)
∂h

+
∂F (y, h)
∂y′

µ(y) +
1
2
Tr

[
Σ(y)

∂2F (y, h)
∂y∂y′

]
, (A.5)

with boundary conditions.

Since F (y, h) = exp [−hg(y, h)] we get:

∂F (y,h)
∂h = −F (y, h)

(
g(y, h) + h∂g(y,h)

∂h

)
,

∂F (y,h)
∂y = F (y, h)

(
−h∂g(y,h)

∂y

)
,

∂2F (y,h)
∂y∂y′ = F (y, h)

(
h2 ∂g(y,h)

∂y
∂g(y,h)
∂y′ − h

∂2g(y,h)
∂y∂y′

)
.

Therefore equation (A.5) becomes :

g(y, 0) =
(
g(y, h) + h∂g(y,h)

∂h

)
−
(
h∂g(y,h)

∂y′

)
µ(y) + 1

2Tr
[
Σ(y)

(
h2 ∂g(y,h)

∂y
∂g(y,h)
∂y′ − h

∂2g(y,h)
∂y∂y′

)]
= g(y, h) + h∂g(y,h)

∂h − h∂g(y,h)
∂y′ µ(y) + 1

2h
2 ∂g(y,h)

∂y′ Σ(y)∂g(y,h)
∂y − 1

2hTr
[
Σ(y)∂

2g(y,h)
∂y∂y′

]
,

which gives equation (5.4).
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Appendix 3
Proof of Proposition 7

i) The coefficients of µ1(y), µ2(y), σ11(y), σ12(y), σ22(y) in system (5.5) are the functions :

h, hβ(h),−h
2

2
,−h2β(h),−h2β2(h), h ∈ (0,∞).

When these five functions are linearly independent, system (5.5) admits a unique solution
µ(y), Σ(y), (if a solution exists), which is necessarily affine in z due to the expression of
the left hand side of system (5.5).

ii) Thus we have to check if these functions are linearly independent. Let us consider a
linear combination :

a0h+ a1h
2 + a2hβ(h) + a3h

2β(h) + a4h
2β2(h) = 0, ∀h ∈ (0,∞).

This condition implies :

a0 + a1h+ a2β(h) + a3hβ(h) + a4hβ
2(h) = 0, ∀h ∈ (0,∞).

By setting h = 0, we get a0 + a2 = 0 and the condition becomes :

a1h+ a2(β(h)− 1) + a3hβ(h) + a4hβ
2(h) = 0, ∀h ∈ (0,∞),

corresponding to the linear dependence between h, β(h)− 1, hβ(h), hβ2(h) values.

Let us denote : β̃(h) = β(h) − 1. It is equivalent to consider the linear dependence of
functions h, β̃(h), hβ̃(h), hβ̃2(h). This dependence arises if :

• β̃(h) = a1h, where a1 is nonnegative to ensure that the slope baseline is increasing.

• They can also exist a1, a2 such that :

hβ̃(h) + a2β̃(h) + a1h = 0⇔ β̃(h) = − a1h

a2 + h
= −a1 +

a1a2

a2 + h

For β̃ to be continuous on (0,∞), we need a2 < 0. For β̃ to be positive for large
value of h we need a1 > 0. Finally we have dβ̃(h)

dh = − a1a2
(a2+h)2 < 0. We deduce that

this situation cannot arise for continuous increasing function β̃ with β̃(0) = 0.
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• The last possibility of linear dependence arises when there exist a1, a2, a3 such that :

hβ̃2(h) + a3hβ̃(h) + a2β̃(h) + a1h = 0

⇔ hβ̃2(h) + (a2 + a3h)β̃(h) + a1h = 0 (A.6)

Lemma 1 : A real solution to equation (A.6) exists for any h ∈ (0,∞) if and only if :
i) a1 ≤ 0,
or if
ii) a1 > 0, a2 > 0 and a3 ≥ 2

√
a1,

or if
iii) a1 > 0, a2 = 0,
or if
iii) a1 > 0, a2 < 0 and a3 = −2

√
a1.

Proof : A solution exists if and only if

∆(h) = (a2 + a3h)2 − 4a1h
2 = (a2

3 − 4a1)h2 + 2a2a3h+ a2
2 ≥ 0, ∀h ∈ (0,∞).

In particular by considering the limiting value h = 0 and h→∞, we see that a2
3−4a1 ≥ 0

and a2
2 ≥ 0.

i) If a1 = 0, we get : ∆(h) = (a2 + a3h)2 ≥ 0, ∀a2, a3.

ii) If a2
3 − 4a1 = 0, we get : ∆(h) = a2(2a3h+ a2) ≥ 0, and a1 ≥ 0.

a1 = 0 implies a3 = 0 and ∆(h) = a2
2 ≥ 0, ∀h. If a1 > 0 and a3 = 2

√
a1 > 0, ∆(h) is

positive for all h if and only if a2 > 0. Conversely, if a1 > 0 and a3 = −2
√
a1 < 0, ∆(h)

is positive if and only if a2 < 0. Finally, if a1 > 0 and a2 = 0, we get ∆(h) = 0, ∀h.

iii) If a2
3 − 4a1 > 0, ∆(h) = 0 is a quadratic equation, whose discriminant is equal to :

∆′ = (a2a3)2 − a2
2(a2

3 − 4a1) = 4a1a
2
2.
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If a1 ≤ 0 the discriminant is negative or null and ∆(h) ≥ 0, ∀h ∈ (−∞,∞). If a1 > 0, the
equation ∆(h) = 0 admits the real roots :

−a2a3 ± 2|a2|
√
a1

a2
3 − 4a1

.

∆(h) is nonnegative for any nonnegative h, if and only if the maximal real root is nonpos-
itive. Then the condition is : −a2a3 + 2|a2|

√
a1 ≤ 0.

This inequality can be rewritten according to the sign of a2. If a2 > 0, we get 2
√
a1 < a3,

and if a2 < 0, we get a3 < −2
√
a1, which is not compatible with the inequality a2

3−4a1 > 0.
Finally, if a2 = 0 the maximal real root is null for all a3, and thus ∆(h) ≥ 0 ∀h ≥ 0.

QED

Then, the solution is necessarily the root :

β̃(h) =
−(a2 + a3h) +

√
(a2 + a3h)2 − 4a1h2

2h
, (A.7)

due to the restriction β̃(0) = 0.

Let us now compute the derivative of this function. We get :

dβ̃(h)
dh

=
a2∆−1/2(h)

2h2

[
∆1/2(h)− (a2 + a3h)

]
.

This derivative is positive if and only if, either a2 > 0, a1 < 0, or a2 < 0, a1 > 0. By
combining these restrictions with the restrictions of Lemma 1, we get the next Lemma.

Lemma 2 : A solution to equation (A.6) exists and is increasing for h ∈ (0,∞), if and
only if a1 < 0 and a2 > 0. This solution is given by :

β̃(h) =

√
(a2 + a3h)2 − 4a1h2 − (a2 + a3h)

2h
.
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