-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Research Papers in Economics
1~ HITOTSUBASHI
UNIVERSITY

Global COE Hi-Stat Discussion Paper Series 227

Research Unit for Statistical
and Empirical Analysis in Social Sciences (Hi-Stat)

Testing for Multiple Structural Changes with
Non-Homogeneous Regressors

Eiji Kurozumi

Paper

February 2012

1IScussion

Hi-Stat D

Hi-Stat

Institute of Economic Research

Hitotsubashi University

2-1 Naka, Kunitatchi Tokyo, 186-8601 Japan
http://gcoe.ier.hit-u.ac.jp


https://core.ac.uk/display/6552379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Testing for Multiple Structural Changes with
Non-Homogeneous Regressors

Eiji Kurozumi'

Department of Economics, Hitotsubashi University

February 21, 2011

Abstract

This paper investigates tests for multiple structural changes with non-homogeneous
regressors, such as polynomial trends. We consider exponential-type, supremum-type
and average-type tests as well as the corresponding weighted-type tests suggested in the
literature. We show that the limiting distributions depend on regressors in general, and
we need to tabulate critical values depending on them. Then, we focus on the linear trend
case and obtain the critical values of the test statistics. The Mote Carlo simulations are
conducted to investigate the finite sample properties of the tests proposed in the paper,
and it is found that the specification of the number of breaks is an important factor for the
finite sample performance of the tests. Since it is often the case that we cannot prespecify
the number of breaks under the alternative but can suppose only the maximum number
of breaks, the weighted-type tests are useful in practice.
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1. Introduction

This paper proposes tests for multiple structural changes with non-homogeneous regressors.
In particular, we focus on trending regressors. Tests for structural changes have long been
investigated in the econometric and statistical literature, and the most commonly used tests in
empirical analysis for a one-time break are the supremum-type (sup-type) test by Andrews
(1993) in the GMM framework and the exponential-type (exp-type) and the average-type
(avg-type) tests by Andrews and Ploberger (1994) in linear regression models. The latter
two tests have an optimal property, which was investigated by Andrews and Ploberger (1994)
and Sowell (1996) under the Pitman-type alternative, while Kim and Perron (2009) compared

these tests in a framework based on the Bahadur slope.

Although these tests are often used in practice to test for a one-time change, we need
to take into account the possibility of multiple structural changes when economic data in
long sample periods are available. Bai and Perron (1998) extended the sup-type test for the
case of multiple structural changes in univariate regressions, while the multivariate case was
considered by Qu and Perron (2007). Andrews, Lee, and Ploberger (1996) investigated the
optimality of the exp-type and avg-type tests. Note that these tests are designed for the
null hypothesis of no change against the alternative of the fixed number of breaks. On the
other hand, Bai and Perron (1998) and Qu and Perron (2007) proposed double maximum
tests against the alternative under which only the maximum number of breaks is prespecified,
while Bai and Perron (1998), Bai (1999), and Qu and Perron (2007) considered tests for the
null hypothesis of ¢ breaks against the alternative of £ + 1 breaks. The multiple structural
change tests have an advantage over the single structural change tests in that the former tests
are more powerful than the latter when multiple breaks have actually occurred, as shown by

Bai and Perron (2006).

The practical difficulty in the multiple structural change tests is that we need to take into
account all permissible change points when constructing the test statistics. That is, for the
sup-type, the exp-type, and the avg-type tests, we need to construct either the Wald, the
likelihood ratio (LR), or the Lagrange multiplier test statistic for all permissible sets of change

points, the number of which is proportional to 7", where m indicates the number of breaks



under the alternative. Then, the direct calculation of these test statistics is computationally
very expensive when m is large. To overcome this problem, Bai and Perron (2003a) proposed
an efficient algorithm for the sup-type test, which requires only the O(T?) calculations for
any number of breaks. Critical values for the sup-type test are tabulated in Andrews (1993)
for a one-time break and Bai and Perron (1998, 2003b) for multiple changes, and those for
the exp-type and the avg-type tests are given in Andrews and Ploberger (2004) for a one-time
change, while asymptotic p-values of these tests can be calculated by the method proposed by
Hansen (1997). However, critical values for the exp-type and the avg-type tests with multiple

breaks are not yet available.

Most of the above tests assume that regressors are homogeneous in the whole sample
period, or at least in each regime under the null hypothesis. However, we sometimes include
non-homogeneous regressors, such as trending variables. In this case, most of the above tests
are not available in practical analysis. The exception is the LR test, denoted by sup F'(¢+1|¢),
for the null hypothesis of ¢ breaks against the alternative of ¢ + 1 breaks proposed by Bai
(1999). This test allows for polynomial trends, and hence the null hypothesis of no break
can be tested using sup F'(1|0). However, as pointed out by Bai and Perron (2006), this test
may be less powerful than tests for multiple structural changes when multiple breaks have

actually occurred.

In this paper, we develop tests for multiple breaks with non-homogeneous regressors,
including trending regressors. We consider sup-type, exp-type, and avg-type tests, as in the
literature, and derive the concise expressions of the limiting distributions. It is shown that
in general, the limiting distributions depend on non-homogeneous regressors, and then, we
need to tabulate critical values depending on the case. For this reason, we focus on the linear
trend case and tabulate critical values. Since we need to calculate the Wald test statistics for
all permissible break points for the exp-type tests, which is computationally very expensive
in the case of more than three breaks, we tabulate the critical values of the exp-type test for
at most three breaks, whereas those of the sup-type and avg-type tests are calculated for up
to five breaks because they require O(7?) operations for any given number of breaks under
the alternative. Finite sample properties are investigated by Mote Carlo simulations, and it

is confirmed that the tests that assume the maximum number of breaks but not the specific



number of breaks are useful in practical analysis.

The rest of this paper is organized as follows. Section 2 explains a model and assumptions.
The test statistics are given in Section 3, and their limiting distributions are derived. Section
4 discusses the computational problem of the test statistics, and the finite sample properties

are investigated in Section 5. Section 6 gives concluding remarks.
2. Model and Assumptions

Let us consider the following regression with m structural changes (m + 1 regimes):
w=xfi+e (=1 m+1 and t=Tj1+1,,T)), (1)

where x; is p-dimensional regressors, including a constant, and ¢; is an error term. We set
To = 0 and T, +1 = T so that the total number of observations is 1. The testing problem we

consider is given by

Hy: B1=-=Bmy1 vs. Hy: B; # B; for some i # j,

and we then consider the null of no structural change. The following assumptions are made

throughout the paper.

Assumption A1 For some normalizing matriz Dr, (a) D' Zf‘,:k zxy Dt is invertible for
I —k > ko for some 0 < ko < oo. (b) D;l Zl[iq] :Bta:;D;l L5 Q, uniformly over 0 <r <1,
where €, is a p X p positive definite matriz for 0 < r < 1 with Qo = 0, [k] signifies the largest
integer less than k, and -2 signifies convergence in probability. (c) Qs—Q, is positive definite

forall0 <r <s<1.

Assumption A2 (a) {e;} is a martingale difference sequence with respect to F; = o(ey,
Et_1, s Tpx1, Ty, - ) with Ble?|Fi_1] = o2 for all t. (b) supyE|ey|*T° < 0o for some § > 0.
(¢) For the same normalizing matriz D in Assumption A2, D' 21[21} xier = oG(r) for 0 <
r < 1, where G(r) is a p-dimensional Gaussian process with mean zero and E[G(r)G'(s)] =

Qns, and = signifies weak convergence of the associated probability measures.



Assumption Al(a) is made for the identification of the coefficient. A1(b) allows for non-
homogeneous regressors because the second moment of x; is not asymptotically proportional
to the sample fraction r, but possibly depends on r in a complicated way. Al(c) is required
for technical reasons. Assumption A2 is standard in linear regressions, but we do not allow
for serial correlation in the error term. However, since the lagged dependent variables are

allowed as regressors, the dynamic property of the model may be captured through them.

Exactly speaking, Assumptions Al and A2 are required only under the null hypothesis in
order to derive the null limiting distributions of the test statistics and they can be relaxed
under the alternative in order for the tests to be consistent. See, for example, Assumptions
made in Bai and Perron (1998) for the case of (regime-wise) stationary regressors.

One of the interesting non-homogeneous regressors is a polynomial trend. For example,
when z; is given by

/ 2 d
Ty = [Ltat Y A AT 7xqt]7

where x14,--- , x4 are stationary regressors, we can choose Dy = diag{Tl/z, T3/2,75/2 ...

T2 712} and Assumptions Al(b) and A2(c) then become

B r? rdtl / T - r B
" 3 4l "Ha Jo dW1i(s)
T r T re o T 2
(v} T 5 T Tk (rr] Jo 7 AW(s)
D:Fl Z ajtx;D}l L : : ) : : and D}l Z TiEr = O :
t—1 rd+1 rd+2 p2d+1l pd+l o, t=1 T deW s
o drz T 2yl did He Jo 12 1(5)
L THz %N:c T 7;1+1 Fz _ - Fm W2 (T)
where j1, and I';; are ¢ x 1 and ¢ x ¢ and consist of the first and second moments of x4, - - - , 24,

respectively, Wi (r) and Wa(r) are 1- and ¢-dimensional standard Brownian motions on [0, 1]
and [0, 1]%, respectively, and they are independent of each other. Apparently, the second
moment of x; is not proportional to r, and hence we cannot use the exiting results for

multiple structural changes.
3. Tests for Multiple Structural Changes

In this section, we define the test statistics for multiple structural changes and derive their lim-

iting distributions. Let B = [Bi, e ,Bm+1]/ be the least squares estimator of the coefficients



for a given number of breaks m with change points {74, , T}, 3= dz’ag{fll, e ,meH}
be an (m + 1)p x (m + 1)p block-diagonal matrix where 3; = (ZtTiTj,l z2}) 71, and 62 be a
consistent estimator of o2. Typically, 62 = T~} Zle é2 where &; is the regression residual.
Then, the Wald test statistic for the null hypothesis of Hy is given by
I, -1, 0
A\ " Nl I, -1,
W (An) = (Rﬁ) (62RZR’> (Rﬁ) . where R= |
I, —1Ip

and Ap, = {Ai,--- , A} with A\; = T3/T for j = 1,---,m being break fractions. We set
Ao = 0 and A\, 41 = 1 for convention because Ty = 0 and T;,,+1 = 1. Using Wyp(A,,), we

construct the exp-type, the sup-type, and the avg-type tests, as in the literature.

1 1
exp-Wr(m,e) = log T Z exp <2WT(Am)> ; (2)
Am€EAE,
sup-Wr(m,e) = \nax Wr(Am), (3)
1
avg-Wr(m,e) = T Z Wr(Anp), (4)
Am €A,
where AS, = {(A, -, Am) : Aj —Ajo1 > € for j=1,---,m+ 1} for a given trimming

parameter € and 7™ is the number of permissible sets of break fractions included in Af,. The
trimming parameter ¢ should be small; ¢ = 0.05, 0.1, and 0.15 have often been considered
in the literature. As discussed in Andrews, Lee, and Ploberger (1996), the exp-type test is
optimal against the alternative of the large magnitude of structural changes, whereas the

avg-type test is asymptotically most powerful against the alternative of small changes.

The above three tests require the specific number of breaks m under the alternative before
constructing the test statistics, but, if we do not want to prespecify the number of breaks,
then we may set only the maximum number of breaks given by M and consider the following

weighted exp-type and avg-type tests suggested by Andrews, Lee, and Ploberger (1996) as



well as the weighted double maximum test proposed by Bai and Perron (1998):

M
1
WexpWr(M,e) = S @l oy o),
1 Cexp(pa a, m)
1
WDmax-Wp(M,e) = max Msnp—WT(m, €),
1<m<M Csyp(p, o, )
&l Cav (p,a, 1)
Wan 'WT(Ma 6) - gian'WT(T’% 6)7

m—1 Cavg (p, «, m)
where ¢;(p, a,m) for i = exp, sup, and avg are the critical values of (2)—(4) for a given m
with significance level a. These weights are suggested by Bai and Perron (1998).

The limiting distributions of these test statistics are given by the following theorem.

Theorem 1 Assume that Assumptions A1 and A2 hold. Then, under the null hypothesis,

exp-Wr(m, €) 4, log/

1
exp <W(Am)> dA,,
AmeAe, 2

sup-Wrp(m, €) i>Asu5)\ W (An), avg-Wpr(m,e) i)/A N W (Ap)dA,

M
ex ) 71 ]‘
Wexp-Wr(M, ) -5 S c”(po‘)log/ exp <W(Am)> dA,
Am€eAS,

1 Cexp(pa «, m) 2

1
WDmax-Wr (M, e) %, max Coup(P, @, 1) sup W(An),
1<m<M Csup(p’a m) Am€AS,

M
av bl 1
Wavg -Wr(M,e) -2 3 = 9 (., / W (Ap)dAm,
2 Cang(paum) S ens
where
W(An) = @,

=1

.

Remark 1 Theorem 1 shows that although the Wald test statistic for a given set of break
points Ay, is asymptotically chi-square distributed, W (Ap, 1) is correlated with W (A, 2) in
a complicated way for Apm1 # Amo (Ami,Am2 € AS,), and the test statistics for unknown

breaks are then nonstandard.

= zmj( 2L G\) Q;;G()\j)),<ﬂ;jl—(2;jl+l)_ (QA1+1G()\j+1)—Q;j1G()\j)).

()



Remark 2 When the regressors are homogeneous with €, = rQ), we have G(r) = B(r), where
B(r) is a p-dimensional standard Brownian motion on [0,1P, and it is then not difficult to

show that

[AjB(Aj41) — Ajr1 Bl
W(A,, , 6
( Z AjAj+1( A1 — Aj) (6)

which is given by Bai and Perron (1998) for the case of stationary regressors. Thus, Theorem

1 includes the existing result as a special case.

As we can see from Theorem 1, the limiting distributions of the test statistics depend on
the structure of €2, and then, we need to calculate critical values for a given regressor x;.
The dependency of critical values on x; have sometimes been observed in different situations
in the literature. For example, the critical values for unit root tests depend on whether a
linear trend is included as a regressor, while the LR tests for cointegrating rank are known

to have different distributions depending on the structure of the deterministic term.

In the following, we focus on the case where x; includes a linear trend, which is widely

used in practical analysis. More precisely, let us consider the case where
Tt = [1atax1t7"' awqt]/a (7)

with @y, -+, 24 being stationary variables and lagged dependent variables. In this case, we

have the following corollary.

Corollary 1 Assume that Assumptions A1 and A2 hold. Then, under the null hypothesis
with x¢ given by (7), Theorem 1 holds with W (Ay,) = Q1,m + Q2,m, where Q1 is given by
(5) with

rs(r24rs+s?)  (rs)?(r+s)

4 6
B 4 _ 6 _ 1y —1 s—r s—T
0l = [ s b ] and (' -0 = Sk U
72 73 2(s—7)3 3(s—r)?

Jor 0 <r <s<1and G(r) = [Bi(r), [, sdBi(s)]', where Bi(r) is a one-dimensional stan-
dard Brownian motion on [0,1], while Q2 is given by (6) with B(r) being a q-dimensional

standard Brownian motion independent of By(r).

The result in Corollary 1 is similar to that given by Bai (1999) for testing the null
hypothesis of ¢ breaks against the alternative of ¢ 4+ 1 breaks; the limiting distribution is



the sum of the two independent distributions corresponding to (constant plus) a linear trend
and stationary regressors. We can see that the limiting distribution of Bai’s (1999) test with

¢ =0 is the same as ours with m = 0.
4. Computation of Critical Values

Since the limiting distributions of the test statistics are nonstandard, we obtain the critical
values by simulations with G(r) approximated by 1,000 partial sums of the appropriate pseudo
random variables. For example, if G(r) is a standard Brownian motion, then we approximate
G(r) using the normalized partial sums of i.i.d.N(0, 1) pseudo-random variables. However,
the computation of the critical values is not necessarily easy for large values of m because
the number of permissible sets of breaks is proportional to 7", so the direct calculation of
all permissible Wald test statistics is computationally too expensive when m > 4. For the
sup-type test, Bai and Perron (2003a) gives an efficient algorithm for the computation of the
test statistics, which requires operations of order O(7?) for any given number of breaks; we

can use this in our case.

For the avg-type test, we can also calculate the critical values computationally efficiently?.
Let Q1(7%,Tp) be the summand of (5) approximated by the above method with 7" observations
given T, = \,T and T, = \T'. Since the distance between two consecutive break points must
be at least h = €T', the permissible ranges of 17,75, -+ , T, are Ty = h,h +1,--- ;T — hm,
Th=T1+hTh+h+1,--- T —h(m—-1), -, Ty =Tp-1+h,Tp1+h+1,--- T —h;
then, the limiting distribution of the avg-type test statistic can be approximated by

T—hm T—h(m—1)

T—h m
%Z YooY Yoz (8)

Ti=h To=Ti+h  Ty=Tm_1+h j=1
However, (8) requires the summation operators of order O(7"), which is computationally
expensive as explained above. Instead, we calculate the limiting distributions by noting that
each of Q1(7},T}+1) appears in (8) many times; if we count them, we can save computational

time. For example, Q1 (77, T%) appears as many times as the permissible number of allocations

2Pjerre Perron pointed out the existence of the efficient calculation of the avg-type test through personal
communications.



of Ty, -+ , Ty, in [T, T]. Since, in general, the permissible number of combinations of ¢ breaks

in [T,,T,] with two consecutive breaks’ distance being larger than h is given by
‘
1 .
k(Lo Ty 0) = 5 [[ATa = To+ 1) = h(C 4+ 1) + 3,
Ti=1

which is obtained by direct calculations, we can see that Q1(7%,T5) appears ky(T5, T, m — 2)
times in (8). Similarly, we observe Q1(Ty,, Tm+1) as many times as the number of allocations
of Th,--+ ,Tp—1 in [1,T,], which is given by kj(1,T,,,m — 1). For the case of Q1(Tj,Tj4+1)
for j =2,--- ,m — 1, there are j — 1 and m — j — 1 breaks allocated in [1,7}] and [T}j11,T],
respectively. Then, we can see that

m—1T—h(m—j+1) T—h(m—j)

(8) = 1Tm > Z Z k(L Tay j = Q1 (Ta, Ty, )kn(To, Tym — j — 1)

jzl Ta=jh =Ta+h
T—h
+ Z kh(17T07m_1)Q1(TC7T7m)7 (9)
Te=hm

where ky(T,,Tp,0) = 1 for convention. We can see that the number of summation operators

on the right hand side of (9) is proportional to O(T?) for any given number of m.

On the other hand, we cannot find an efficient computational method for the exp-type

test. Therefore, we consider the exp-type test only up to m = 3.

The critical values in the case of a linear trend are given in Tables 1-3 for ¢ = 0.05,
0.10, and 0.15 and ¢ = 0 to 9, where ¢ is the number of homogeneous regressors. They are
obtained by approximating Brownian motions by 1,000 partial sums of i.i.d.N(0, 1) pseudo-
random variables with 10,000 replications. Because of the above reason, the critical values for
the exp-type test is given for only up to m = 3 and M = 3 whereas those for the sup-type and
avg-type tests are obtained for up to m =5 and M = 3 and 5. As in the case of homogeneous

regressors, the critical values get larger as ¢ and/or m increase.
5. Finite Sample Properties

In this section, we investigate the finite sample properties of the proposed tests via Monte

Carlo simulations. We consider two cases where ¢ = 0 (DGP0) and ¢ = 1 (DGP1). In the



case of ¢ = 0, the data generating process under the null hypothesis is given by

ye = P1+ Pat + &4

fort =1,---,T with &, ~ .i.d.N(0,1). We set 51 = f2 = 0 because all the test statistics are
invariant to the true values of 81 and (B2 under Hy. On the other hand, the DGP1 has an

autoregressive (AR) regressor as follows:

yr = B1 + Pat + Bsxy + e, x4 = Ppxp_1 + up

fort=1,---,T, where, again, we set 81 = o = 83 = 0 without loss of generality. The initial
value of z; is set to zg = 0 while ¢ = —0.8, —0.4, 0, 0.4, and 0.8. The sample size T" is 120
and 300 and the significance level is set to 0.05. We investigate the case where the maximum
number of breaks is three, so that we construct the weighted-type tests with M = 3. All

computations are conducted using the GAUSS matrix language with 2,000 replications.

Table 4 shows the empirical sizes of the tests. For comparison, we also consider the LR
test for the null hypothesis of no break against the alternative of a one-time break proposed
by Bai (1999). For DGPO with 7" = 120, the empirical sizes of all the tests are close to the
nominal one except for the exp-type test with m = 3, which tends to overly reject the null
hypothesis slightly, while the LR test is conservative. However, the size distortions of the

tests disappear when the sample size is 300.

On the other hand, when the stationary variable is included as a regressor, almost all the
tests reject the null hypothesis more frequently compared to DGP0. As a result, we observe
the tendency of the over-rejection for the exponential type test with m = 2 and m = 3;
however, again, this tendency disappears when T' = 300. As a whole, the empirical sizes of
all the tests are not greatly affected by the AR parameter of the stationary regressor as long

as ¢ ranges from —0.8 to 0.8; its effect seems marginal.

To see the finite sample powers of the tests, we first consider the following DGP with a

one-time break for ¢ = 0 and ¢ = 1, respectively:

Bi1+ Bait + et ot=1,--- T,
DGPO = ’ ’
o { Br2+ Bt + Poo(t —T1)+¢e = t=T1+1,---,T,
B1,1 + Baat + B3 1w + &4 ot=1,---,T,
DGP1 ’ ’ ’
b {51,2+52,1t+52,2(t—T1)+53,29€t+6t ct=T1+1,--- T,

10



where T1 = 0.5T, B11 = f21 = P31 = 0, while 12 = f32 = 5y and 22 = v with v taking
positive values, which are chosen so that the overall shapes of the power functions can be

observed.

Figure 1 shows the size-adjusted powers of the tests when ¢ = 0 (DGP0). As expected,
the test against the correct number of breaks (m = 1) is more powerful than the others among
the same type of tests. For example, we observe from (i-a) and (i-b) that the exp-type test
with m = 1 is most powerful, followed by the tests with m = 2 and m = 3. The effect of the
misspecification of the number of breaks is relatively large for the sup-type tests, whereas the
avg-type tests are less affected by m. We can also see that the weighted-type tests are the
second-best tests compared to tests with a fixed number of breaks. Figures 1(iv-a) and (iv-b)
compare the three weighted-type tests and the LR test by Bai (1999). We observe that the
weighted avg-type test is most powerful, and the second-best is the weighted exp-type test.
The weighted double maximum test and the LR test are inferior to the others in this case,

and the former is slightly less powerful than the latter.

Figure 2 corresponds to the case where ¢ = 1 (DGP1) and the AR coefficient of x; is
0. We observe that the relative performance is preserved compared to Figure 1. Regarding
the effect of the persistence of ¢, the tests are most powerful when z; is an i.i.d. sequence
(¢ = 0) and the powers decrease as the absolute values of ¢ get larger. However, the difference
between the powers is not substantial, and the effect of the persistence of the regressor is

slight for —0.8 < ¢ < 0.8 (we do not show the figure to save space).

We next investigate the case where the number of breaks is two. The DGP in this case is

given by

P11+ B2t + & ot=1,--- 11,
DGPO y = P12+ Beat + Baa(t —T1) + & ct=T1+1,-- Ty,

Bi3+ Pt + Poo(t —Th) + fos(t —To)+e¢ : t=Tp+1,--- T,

P11+ Beat + B3 1xe + € ot=1,--- 11,
DGP1 y = B2 + Beat + Paa(t — T1) + Baoxt + &4 cot=Ty+1,--- Ty,

P13+ Bt + Bop(t —T1) + Po3(t —To) + P3aws +e¢ @ t=To+1,--- T,
where T7 = 0.37 and T5 = 0.77, and we consider two kinds of changes: The first is the case
of two successive increases in the coefficients; 811 = 821 = 83,1 = 0 while 312 = 32 = 5v

and 22 = <y in the second regime and 313 = 3.3 = 10 and 32 3 = 7y in the third regime with

11



~ taking positive values. The second case is such that the first break occurs in the upwards
directions while the dependent variable crashes down by the second break; 11 = f21 =
B3.1 =0 while 312 = 32 = 5y and 22 = v in the second regime and 13 = 333 = —57 and
P23 = —0.5v in the third regime.

Figure 3 shows the size-adjusted powers for ¢ = 0. We observe that the test with under-
misspecification of the number of breaks (m = 1) is still most powerful than the others in
this case for each type of the tests. As in the one-time break case, the second-best are
the weighted-type tests, while the avg-type test is most powerful among the weighted-type
tests, followed by the exp-type test, as is observed from (iv-a) and (iv-b). Similar property
is observed with a stationary regressor from Figure 4, but as long as the avg-type test is
concerned, the specification of the number of breaks does not so much affect the differences
in powers. In addition, we do not observe the significant differences in powers among the
weighted-type tests. On the other hand, the persistence in the AR regressor affects the finite
sample powers very much. The case with ¢ = 0 is most powerful whereas ¢ = 0.8 corresponds
to the least powerful case. The maximum differences in powers in these two cases with m = 2
are 0.490, 0.493, and 0.454 for the exp-type, sup-type and avg-type tests, respectively, when
T = 120. The similar magnitude of the differences is observed even when 7" = 300 (we do

not show the figure to save space).

Figure 5 shows the size-adjusted powers in the second case of the two breaks for ¢ = 0.
When T' = 120, the test correctly specifying the number of breaks (m = 2) is most powerful
in each type of the tests. In particular, the differences in powers are relatively large for the
avg-type tests. On the other hand, when T" = 300, the differences become smaller and as long
as the sup-type test is concerned, the test with m = 1 becomes most powerful. The differences
in powers are more pronounced when a stationary variable is included as a regressor, as is
observed from Figure 6. The effect of the persistence of the AR regressor on the powers is
mitigated in this case; the largest differences in the powers of the tests with m = 2 are 0.169,
0.158, and 0.115 for the exp-type, sup-type and avg-type tests, respectively, when 7" = 120,

and the differences becomes marginal when 7" = 300.

In summary, the performance of the tests depends on the DGP and none of the tests

12



dominates the others uniformly, while we also observe that the weighted-type tests are the

second-best in most cases and the powers of those tests are close to those of the best tests.

6. Concluding Remarks

In this paper, we have investigated tests for multiple breaks with non-homogeneous regres-
sors. We have derived the limiting distributions of the test statistics in a general case and
found that the limiting distributions depend on the regressors. By focusing on the linear
trend case, we have obtained the critical values for the sup-type and avg-type tests by com-
putationally efficient methods (although we cannot find such a method for the exp-type test),
and have obtained the critical values for the exp-type test only up to m = 3. By Monte Carlo
simulations, we have showed that the correct specification of the number of breaks is very
important in order for the tests to have good power. However, since we often cannot spec-
ify the specific number of breaks under the alternative but can only suppose the maximum

number of breaks, the weighted-type tests would be useful in practice.

Appendix

Proof of Theorem 1: According to Assumptions Al and A2, we can see that under the

null hypothesis,

T T}
A —1 I y—1 -1
Dy (ﬁj_ ﬁ) = (D7t Y waiD; o
t:Tj,1+1 tZTj,]_-‘r].

i) g (Q)\j - Q)\j_l)_l (G()\j) - G()\j_l)) = Ui)\jé()\j),

where 3y, = (U, — Q,_,) 7! with Q, = 0 and G(\;) = G(\;) — G(\j—1) with G(X\¢) = 0.
Then, we can see that

Wr(Am) -5 (REG) (RER)H(REG)

uniformly over the permissible sets of break fractions, where G = [G'(A1), -+, G'(Amy1)]
and ¥ = diag{>y,, -+, %, }- Then, we need to show that
N N T
<REG> (RZR’) (RZG) = Qum, (10)
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where Q1 is defined in (5).

matrix is given by

Note that the difficulty is in that the inverse of the variance

[ Sy, +5,, -5y, 0 0 17!
1 _SAQ i)\2 + i)\3 —i)\s
(rER) = 0 S5 0 .y
: : S s,
i 0 0 =X, Z,\W—G—ZAmH 1

which does not have a simple closed-form expression.

In order to treat (11), we introduce a nonsingular matrix H and transform the left hand
side of (10) using H as (HRXG)' (HRYXR'H')~'(HRXG) and evaluate the transformed ex-
pression. More precisely, we define an mp x mp lower triangular matrix H and decompose

the restriction matrix R as

I, 0 - 0 0| -1, 0 0 L]0 0
H = , R — Ip _Ip + 0
: 0 0 .0 :
I, I, 0 0 I, -I, 010 0
0l1, 0 0 L]0 0
oo e el
sothat HR=| | —
N R | Dol R
0lo0 -+ 0 I, L0 - o 0
Let us decompose ¥ as ¥ = diag{¥y,, 52 m+1}, where 39,41 = diag{Ey,, -, Sy, }-
Then, we can see that
- —1 ~1
(HRER’H’) - ( m+1+FZ,\1F’)
S S $—1 /5—1 et
= E E2m+1F (EA1 +sz2,m+1FP> Fp22,m+1
S TSR S~ By 0} (i—1+~ + 5! ) Mot (12)
2,m+1 2,m+1 A1 Am1 pH2,m+17
where F), = [I,,--- , 1]’ is an mp x p matrix, while
Y, G(\2) — Xy, G(A)
HRYG = : (13)
S GAmy1) — S5, G(A1)
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Then, since fb\j = (2, —,_,) ' and G()\j) = G(\j) — G(\j_1), we can see from (13) that

"N) 20, G) —2) G (A)S, GN)
j=1
)ENn () + -+ 20 )8 G0)

NE
Qz

(HREG)'S3), ((HREG) =

W.
Q-

I
M: &

(G(Ajr1) = G (0 — )G (A1) — G(N))
1

) {G’(Al)sz;}c:(xmﬂ) _ G’(Al)Q;jG(Al)}

<.
Il

+G (M), 0 GO0) = G ()G (M), (14)

Similarly, since F, 22 11n+1 = [2;21, e ,ZNI;:HI], we have

FySl HREG = Y Gh) — (S5 4+ 3571 )50, G,

0 1

()\m—i-l) - G()‘l) - (Q)\m+1 - Q/\1)Q;11G()‘1)
= GAmi1) — D, 0 GN),

so that
(HRSG)YS3 0 By (S5) 4+ 5, +1)_ FIS, L (HRSG)
= (G()‘mﬂ) - QAWHQLIG(/\l)) 00 (G(/\m+1) - QAmHQXfG(/\l))
= M) Gnsr) = 26" (M) G(Amg1) + G/ ()25, 25 G (). (15)

m—+1

Then, by combining (12), (14) and (15), we have

-~ - —1 -~
(HREG) (HRER’H’) (HREG)

= Y (G1) = GONY (D — D) (Gj41) — GA))
j=1
+G' (M) GA) = G (A1) G (A1)

= > {(G(/\j—H) — GO (D0 — ) (GN1) = GO))
j=1
+C )R GO) — G (A1) +1G(AM)}
= (@ G0 2060 (950, - 5) (251,60 - 25760)

Jj=1
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where the last equality is obtained by using the following three equivalent expressions:

-1 1 -1 -1 \—-1n-1
(Q/\j+1 - Q/\j) = Q/\j+1 +Q)\j+1(Q)\j N QAjJrl) QAJH
-1 —1/y—1 -1 \—1-1
= O+ - )Ty
_ o-lro-1 -1 \—1-1
= Q/\j (Q)\j — Q)\Hl) QAj+1'.

Proof of Corollary 1: Since a constant term is included as a regressor, the stationary
variables can be assumed to be mean zero without loss of generality. Similarly, because the
lagged dependent variables can be decomposed into a constant, a linear trend, and stationary
components, we can treat the expectation of the lagged dependent variables to be zero because

1 and ¢ are included as regressors. Then, we can see that €2, becomes a block diagonal matrix
with the first 2-by-2 diagonal block given by

[ 2]

and the last ¢-by-¢ block given by rQs, where {29 consists of the second moments of the

w3
w‘ﬂww‘ﬁw

stationary regressors. The result immediately follows because of the diagonality of €2,..H
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Table 1: Asymptotic critical values of the exp-type test with level a

m o 0 1 2 3 4 5 6 7 8 9
exp-Wr(m,0.05) (¢ = 0.05)
10 2,63 360 449 538 618 698 7.86 859 936 10.14
1 .05 3.26 4.32 5.28 6.21 7.10 7.99 8.81 9.64 1042 11.17
.01 4.80 5.83 7.10 8.00 9.00 9.93 10.79 11.70 12.61 13.43
10 4.55 6.32 797 9.61 11.16 12.70 14.23 15.71 17.20 18.61
2 .06 535 718 897 10.66 12.26 13.88 1543 16.99 18.51 19.96
.01 7.20 9.28 1098 12,93 14.77 16.42 18.12 19.66 21.35 2297
.10 6.29 8.80 11.18 13.49 15.75 1798 20.20 22.41 24.57 26.60
3 .05 7.21 9.82 1237 14.79 17.12 19.38 21.62 23.90 26.08 28.27
.01 937 1211 14.65 17.28 19.69 2240 24.67 27.10 29.29 31.68
Wexp-Wr(3,0.05) (¢ = 0.05, M = 3)
.10 7.81 10.656 13.33 1599 1830 20.77 23.30 25.51 27.84 30.25
.05 9.66 12.7v9 15.60 18.29 21.02 23.59 26.20 2855 30.78 33.08
.01 1414 1735 20.81 23.75 2646 29.21 31.79 3442 37.02 39.87
exp-Wr(m,0.10) (¢ = 0.10)
.10 2.59 3.56 4.45 5.33 6.11 6.90 7.74  8.48 9.24 10.00
1 .05 3.25 4.27 5.25 6.16 6.98 7.92 8.72 9.52 10.32 11.08
.01 482 590 7.04 800 898 9.82 10.67 11.60 12.50 13.34
10 443 6.18 7.80 9.38 10.84 1235 13.89 1532 16.75 18.14
2 .05 5.28 7.06 8.80 10.41 1197 13.54 15.14 16.70 18.13 19.57
.01 7.10 9.20 10.89 12.65 14.40 16.27 17.77 19.32 20.85 22.56
.10 6.07 856 10.84 13.056 15.21 17.39 19.56 21.65 23.70 25.75
3 .05 7.06 9.60 12.02 14.36 16.59 18.83 20.98 23.24 2540 27.41
.01 9.15 12.00 14.31 16.80 19.30 21.78 23.97 26.20 28.52 3091
Wexp-Wr(3,0.10) (¢ = 0.10, M = 3)
.10 7.70 10.55 13.17 15.81 18.10 20.48 2297 25.13 27.44 29.78
.05 9.63 12.63 1544 18.11 20.61 23.36 25.79 28.20 30.56 32.86
.01 1418 17.25 20.69 2348 26.26 28.81 3147 34.19 36.78 39.25
exp-Wr(m,0.15) (¢ = 0.15)
10 256 351 442 525 6.05 683 761 840 9.13 9.86
1 .06 321 425 520 610 694 78 860 9.38 10.23 10.99
01 484 590 692 793 897 9.79 10.63 11.56 12.34 13.26
10 4.33 6.06 7.68 9.19 10.62 12.12 13.62 1493 16.37 17.77
2 .05 5.21 6.99 8.60 10.18 11.75 13.31 14.83 16.28 17.84 19.24
.01 7.07  9.14 10.67 1259 14.07 15.87 17.50 19.08 20.54 22.05
.10 5.92 8.34 1047 12.63 14.77 16.89 1896 20.96 2297 24.99
3 .05 687 935 11.69 13.90 16.12 1837 2045 2257 24.59 26.63
.01 8.96 11.78 14.17 16.57 18.91 21.25 23.38 25.65 27.97 30.07
Wexp-Wr(3,0.15) (¢ = 0.15, M = 3)
10 7.56 10.34 13.09 15.56 17.87 20.22 2252 24.86 27.00 29.22
.05 9.50 12.60 15.28 17.91 20.41 23.04 2544 27.78 30.34 32.57
.01 1418 17.27 20.33 23.19 26.35 28.65 31.13 33.85 36.18 38.80




Table 2: Asymptotic critical values of the sup-type test with level o

q
m o« 0 1 2 3 4 ) 6 7 8 9
sup-Wr(m,0.05) (¢ = 0.05)
10 12,10 14.25  16.10 1794 19.79 21.60 23.21 24.86 26.60 28.16
1 .06 13.70 16.03 1795 20.00 21.84 23.69 2548 27.18 28.83  30.56
.01 1750 20.34 2248 2458 26.38 28.19 30.44 3228 33.74  35.65
10 2241 26.62 30.15 33.64 36.92 40.39 43.62 46.80  49.82 52.85
2 .06 2478 2887 32.69 36.18 39.57 43.07 46.31 49.66  52.68  55.69
.01 28,96 33.67 38.03 4147 45.18 48.70 52.20 55.87  59.03  62.18
10 31.02  36.92 4231 4735 52.25 57.16 61.86  66.62 71.06 75.49
3 .05 33.62 39.65 4520 50.35 5536 6021 6527 69.79 7457  79.06
.01 38.72 4522 5093 56.43 61.67 66.86 71.76 77.15 81.92  86.45
10 38.89 46.48 53.58 60.33 66.66 72.94 79.16  85.22 91.34  97.06
4 .05 41.57 4940 56.67 63.51 69.96 76.38 82.90 89.11 94.90 100.96
.01 47.60 56.17 63.02 7045 7v7.15 83.76 90.96 97.12 103.79 109.31
10 4590 55.12 63.92 7213 79.96 87.85 95.34 102.75 110.20 117.24
5 .06 4872 5851 6747 7577 8377 91.71  99.60 107.03 114.51 121.77
.01 55.08 6582 7431 83.09 91.16 99.74 108.76 116.48 124.60 131.19
WDmax-W(3,0.05) (¢ = 0.05, M = 3)
10 13.13 1531 17.24 19.16 21.00 22.92 24.57  26.25 28.01 29.60
05 14.68 1719 19.19 21.29 23.20 25.04 26.87  28.61 30.41 31.92
.01 1877 21.64 23.80 2599 2778 29.76 3196 33.98 35.30 37.40
WDmax-Wr(5,0.05) (¢ = 0.05, M = 5)
10 13.26 1548 17.43 19.36 21.22 23.09 24.78  26.51 28.21 29.82
05 1493 1738 19.35 2147 2340 2524 27.04 2887 30.66  32.33
.01 19.04 21.83 24.01 26.17 28.08 30.04 32.19 34.14 35.53 37.52
sup-Wr(m,0.10) (¢ = 0.10)
10 1154 1354 1552 1741 19.02 20.71 22.50  24.00 25.61 27.31
1 .05 1332 1551 1743 19.31 21.10 2297 2473  26.51 28.11 29.55
.01 1696 19.41 21.61 23.80 25.75 27.55 29.27 31.18 32.96 34.62
10 20.62 2433 27.86 31.36 34.61 3790 41.25 4425  47.32 50.30
2 .06 2266 26.67 3048 34.00 37.29 40.68 44.06 47.26 50.45  53.37
.01 2730 31.99 3554 39.27 4285 46.62 49.79 53.20 56.51  59.75
10 2770 33.21 3846 43.38 48.28 53.09 57.60 62.13  66.51 70.83
3 .05 30.07 36.10 4148 46.63 51.36 56.22 60.75 65.57  70.15 74.54
.01 35.16 41.76 47.25 5222 57.53 62.85 67.49 72.46 77.27 82.54
10 33.70  40.75  47.42 53.92 60.04 66.34 7218 78.18  83.90 §89.32
4 .05 3635 4393 50.79 5730 63.64 69.94 76.21 8223 88.04 93.74
.01 4227 50.28 5746 64.29 70.72 77.03 83.19 89.61 96.12 101.48
10 38.69 47.19 55.36 63.19 70.58 78.13 85.22 92.66 99.46 106.41
5 .06 41.64 50.56 58.80 66.86 74.55 82.08 89.39 96.87 104.25 111.19
.01 4739 57.01 66.06 7441 82.18 90.19 97.62 10540 113.23 120.14
WDmax-Wr(3,0.10) (¢ = 0.10, M = 3)
10 12,53 1471 16.72  18.63 20.22 22.01 23.76 25.33 27.08 28.73
.05 1447 16.67 18.68 20.50 2242 24.31 26.17 2799 29.52 31.14
.01 1819 20.71 22.78 2522 27.27 29.07 30.80 32.68 34.62 36.45
WDmax-Wr(5,0.10) (¢ = 0.10, M = 5)
10 1275 1495 16.92 18.85 20.51 22.25 24.11 25.63 27.35 29.02
.05 14.68 16.93 18.93 20.75 2275 24.69 26.45 28.26 29.79  31.35
.01 1848 20.87 23.09 2554 27.55 2934 31.14 33.10 34.87  36.65




Table 2: (Continued)

m o 0 1 2 3 4 5 6 7 8 9
sup-Wr(m,0.15) (¢ = 0.15)
10 11.07  13.03 1497 16.81 1848 20.16 21.83 23.34 24.92 26.65
1 .05 12.80 14.95 1691 18.70 20.42 2235 23.95 25.75 27.51 29.01
.01 16.54 18.87 20.81 23.03 25.07 26.88 28.70 30.65 32.28 33.97
100 1892 2271 26.21  29.58 3278 3597 39.10 42.04 45.16 47.93
2 .06 21.056 25.03 28.73 32.02 3533 38.73 42.05 45.15 4825  51.17
.01 25.62 3032 33.59 3755 40.88 44.58 47.79 50.84 54.05  57.56
10 24.66 30.06 34.93 39.72 4436 49.06 53.52 57.83 6222  66.33
3 .06 2702 32.68 3798 4284 47.61 52.63 56.94 61.33 65.77 70.13
.01 3229 38.60 43.66 49.08 53.92 59.02 63.64 68.15 73.02 77.19
10 28,50 3530 41.37 4756 53.46 59.31 64.99 70.59 76.16  81.62
4 .05 31.28 3823 44.75 5091 56.70 63.22 68.78 74.44 80.19  85.77
.01 36.62 4441 51.11 5756 64.34 70.51 76.35 82.29 88.67 94.30
10 28.82  36.30 43.61 50.63 57.41 64.02 7049 77.03 83.70 89.74
5 .06 31.39 39.52 46.95 54.35 61.10 67.97 74.56 81.42 88.16 94.58
.01 36.78 45.68 53.60 61.06 6840 76.30 8294 89.34 96.70 103.25
WDmax-Wr(3,0.15) (¢ = 0.15, M = 3)
10 1212 14.23  16.20  18.07 19.74 21.55 23.19 24.75 26.41 28.18
.05 13.85 16.17 18.16 19.98 21.75 23.58 2541 27.21 28.93 30.55
.01 1774 2023 2230 24.11 26.50 28.22 30.29 32.08 33.87 35.82
WDmax-Wr(5,0.15) (¢ = 0.15, M = 5)
10 12,39 1452 16.51  18.40 20.11 21.93 23.61 25.24 26.87 28.64
.05 1427 16.50 18.52 20.36 22.22 24.10 25.85 27.66 29.41 31.04
.01 1812 20.83 22.62 24.71 26.95 28.65 30.67 32.81 34.45 36.48




Table 3: Asymptotic critical values of the avg-type test with level «

m o« 0 1 2

3

avg-Wr(m,0.05) (¢ = 0.05)
.10 3.51 4.86 6.24
1 .06 432 577 7.08
01 632 780 9.20
10 6.36 8.94 11.39
2 .05 7.49 10.19 12.78
.01 10.15 1297 15.63
.10 9.00 12.78 16.35
3 .06 1035 14.29 18.02
.01 1346 17.55 21.24
.10 11,50 16.42 21.15
4 .05 13.14 1826 23.10
.01 16.67 21.70 26.69
10 14.09  20.11 2591
5 .06 1580 2211 28.07
.01 19.70 25.90 32.09

7.44

8.49
10.51
13.82
15.25
18.22
19.89
21.60
25.13
25.78
27.82
31.82
31.58
33.89
38.29

8.72

9.84
12.02
16.16
17.71
20.95
23.27
25.11
29.07
30.27
32.39
36.73
37.18
39.64
44.45

9.93
11.17
13.44
18.52
20.21
23.64
26.71
28.79
32.87
34.84
37.13
41.87
42.86
45.44
50.54

11.10
12.38
14.90
20.82
22.66
26.21
30.12
32.26
36.41
39.25
41.67
46.28
48.27
50.92
56.45

12.34
13.63
16.33
23.10
25.01
28.82
33.48
35.88
40.29
43.71
46.35
51.53
53.86
96.71
62.38

13.52
14.84
17.56
25.44
27.42
30.97
36.85
39.31
43.91
48.19
50.95
56.34
59.46
62.32
68.48

14.63
16.04
18.76
27.63
29.70
33.48
40.19
42.80
47.48
52.57
55.40
60.94
64.87
68.00
74.21

Wavg-Wr(3,0.05) (¢ = 0.05, M = 3)

10 1048 14.54 18.59
056 1294 1724 21.10
.01 18.66 23.18 27.59

22.20
25.29
31.42

26.00
29.42
35.85

29.70
33.36
40.21

33.16
37.08
44.85

36.81
40.76
48.85

40.38
44.34
52.16

43.77
47.90
55.89

Wavg-Wr(5,0.05) (¢ = 0.05, M = b)

A0 1735 24.19 3091
.05 21.24 2853 35.01
.01 30.94 38.59 45.79

36.92
41.96
51.96

43.27
48.70
59.72

49.33
95.31
66.38

55.16
61.60
73.57

61.24
67.57
80.71

67.18
73.90
86.74

72.71
79.67
92.61

avg-Wrp(m,0.10) (e = 0.10)
10 358 498  6.40
1 .05 4.45 5.97 7.32
.01 6.64 8.15 9.49
.10 6.50  9.19  11.67
2 .05 7.74 1047 13.09
.01 10.67 13.39 16.19
.10 9.21 13.09 16.71
3 .05 10.67 14.68 18.48
.01 14.16 18.28 21.96
10 11.82 16.91  21.58
4 .05 13.64 18.78 23.77
.01 1728 22.72 27.69
10 1447 20.66 26.48
5 .05 16.35 22.84 28.87
.01 2044 27.22 33.37

7.60

8.70
10.93
14.12
15.63
18.76
20.33
22.14
25.98
26.24
28.50
32.90
32.14
34.83
39.73

8.88
10.10
12.36
16.48
18.07
21.45
23.69
25.71
30.04
30.88
33.18
37.79
37.88
40.53
45.63

10.11
11.48
13.91
18.86
20.68
24.40
27.22
29.39
33.72
35.52
38.04
42.84
43.78
46.48
51.88

11.34
12.68
15.42
21.19
23.08
26.89
30.65
32.93
37.40
39.87
42.60
47.76
49.12
52.09
57.75

12.52
13.92
16.79
23.47
25.48
29.43
33.93
36.64
41.17
44.37
47.43
92.73
54.65
57.96
64.26

13.77
15.22
18.06
25.85
27.95
31.82
37.46
40.03
44.99
48.96
52.02
57.84
60.44
63.60
70.31

14.88
16.39
19.35
28.09
30.19
34.33
40.84
43.39
48.72
53.33
56.42
62.53
65.82
69.29
76.11

Wavg-Wr(3,0.10) (¢ = 0.10, M = 3)

.10 10.66 14.87 19.01
.05 13.22 1772 21.75
.01 1931 24.06 28.36

22.65
25.88
32.32

26.52
30.09
36.83

30.19
34.25
41.53

33.89
37.88
45.73

37.39
41.48
50.08

41.10
45.42
53.43

44.44
48.90
57.61

Wavg-Wr(5,0.10) (¢ = 0.10, M = 5)

10 17.68  24.64  31.56
.05 21.81 29.27 35.96
01 3236 39.74 46.82

37.61
42.96
53.46

43.95
49.75
61.04

49.98
56.61
68.48

56.21
62.74
76.05

62.08
69.00
82.83

68.22
75.49
88.92

73.94
81.26
95.59




Table 3: (Continued)

m o« 0 1 2 3

avg-Wr(m,0.15) (e = 0.15)

1

5

10
.05
.01
.10
.05
.01
10
.05
.01
.10
.05
.01
.10
.05
.01

3.66
4.61
6.89
6.65
7.92
10.99
9.41
10.99
14.63
12.16
14.02
17.79
15.09
17.01
21.31

5.10

6.13

8.52

9.36
10.74
13.80
13.40
15.16
18.78
17.37
19.32
23.53
21.38
23.80
28.98

6.53

7.54

9.87
11.94
13.45
16.54
17.10
18.98
22.70
22.11
24.36
28.92
27.47
30.13
35.54

7.78

8.96
11.37
14.35
15.95
19.43
20.66
22.55
26.87
26.85
29.14
34.27
33.43
36.22
41.93

9.07
10.35
12.87
16.78
18.45
22.14
24.12
26.30
30.78
31.49
33.96
39.16
39.16
42.17
48.24

10.31
11.72
14.30
19.18
21.01
24.85
27.72
30.00
34.52
36.15
38.86
44.09
44.86
48.22
54.26

11.59
12.94
15.92
21.58
23.55
27.29
31.09
33.66
38.21
40.68
43.48
49.14
50.95
54.08
60.74

12.70
14.24
17.30
23.85
25.95
30.07
34.55
37.27
42.30
45.28
48.28
94.31
56.14
60.00
67.02

13.99
15.50
18.60
26.17
28.42
32.60
37.98
40.88
46.21
49.82
52.87
99.61
61.93
65.63
73.35

15.12
16.74
19.99
28.49
30.72
35.17
41.44
44.22
49.68
54.19
57.59
64.31
67.48
71.42
79.35

Wavg-Wr(3,0.15) (e = 0.15, M = 3)

.10
.05
.01

10.89
13.62
20.07

15.18
18.14
24.95

19.42
22.31
29.01

23.12
26.61
33.45

27.02
30.76
38.20

30.67
34.98
42.72

34.56
38.49
47.18

37.90
42.36
51.23

41.69
46.14
54.94

45.04
49.76
59.15

Wavg-Wr(5,0.15) (¢ = 0.15, M = 5)

.10
.05
.01

17.91
22.39

25.01
29.83

32.01
36.81

38.30
43.74

33.59 41.02 47.67 55.21

44.64
50.63
62.69

50.68
57.41
70.18

57.04
63.58
77.68

62.46
69.96
84.14

69.05
76.41
90.41

74.68
82.33
97.53




Table 4: Empirical sizes of the tests

DGPO DGP1
T 120 300 120 300
0] - - -08 —-04 0.0 0.4 0.8 -08 —-04 0.0 0.4 0.8
exp(l) | 0.058 0.049 | 0.064 0.062 0.059 0.058 0.060 0.048 0.048 0.050 0.043 0.050
exp(2) | 0.064 0.056 | 0.085 0.080 0.079 0.076 0.077 0.053 0.062 0.060 0.057 0.063
exp(3) | 0.071 0.057 | 0.096 0.095 0.089 0.094 0.092 0.058 0.069 0.064 0.059 0.066
Wexp | 0.066 0.053 | 0.076 0.072 0.071 0.073 0.076 0.051 0.057 0.060 0.053 0.059
sup(1) | 0.041 0.044 | 0.046 0.043 0.041 0.038 0.041 0.035 0.040 0.036 0.035 0.040
sup(2) | 0.043 0.047 | 0.057 0.053 0.050 0.049 0.050 0.041 0.053 0.043 0.043 0.048
sup(3) | 0.053 0.052 | 0.065 0.062 0.058 0.064 0.067 0.044 0.050 0.050 0.049 0.054
WDmax | 0.045 0.042 | 0.056 0.056 0.050 0.055 0.053 0.041 0.045 0.044 0.041 0.050
avg(l) | 0.047 0.051 | 0.055 0.052 0.049 0.051 0.052 0.041 0.043 0.048 0.044 0.047
avg(2) | 0.052 0.055 | 0.058 0.057 0.059 0.053 0.053 0.048 0.052 0.054 0.050 0.057
avg(3) | 0.054 0.053 | 0.060 0.054 0.059 0.052 0.053 0.049 0.055 0.055 0.048 0.056
Wavg | 0.051 0.054 | 0.056 0.056 0.059 0.051 0.0561 0.047 0.049 0.053 0.047 0.053
LR 0.037 0.041 | 0.041 0.040 0.039 0.036 0.037 0.035 0.038 0.034 0.034 0.039
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Figure 5: Size adjusted power (¢ = 0, m = 2, case b)
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