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Abstract

This paper investigates tests for multiple structural changes with non-homogeneous
regressors, such as polynomial trends. We consider exponential-type, supremum-type
and average-type tests as well as the corresponding weighted-type tests suggested in the
literature. We show that the limiting distributions depend on regressors in general, and
we need to tabulate critical values depending on them. Then, we focus on the linear trend
case and obtain the critical values of the test statistics. The Mote Carlo simulations are
conducted to investigate the finite sample properties of the tests proposed in the paper,
and it is found that the specification of the number of breaks is an important factor for the
finite sample performance of the tests. Since it is often the case that we cannot prespecify
the number of breaks under the alternative but can suppose only the maximum number
of breaks, the weighted-type tests are useful in practice.
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1. Introduction

This paper proposes tests for multiple structural changes with non-homogeneous regressors.

In particular, we focus on trending regressors. Tests for structural changes have long been

investigated in the econometric and statistical literature, and the most commonly used tests in

empirical analysis for a one-time break are the supremum-type (sup-type) test by Andrews

(1993) in the GMM framework and the exponential-type (exp-type) and the average-type

(avg-type) tests by Andrews and Ploberger (1994) in linear regression models. The latter

two tests have an optimal property, which was investigated by Andrews and Ploberger (1994)

and Sowell (1996) under the Pitman-type alternative, while Kim and Perron (2009) compared

these tests in a framework based on the Bahadur slope.

Although these tests are often used in practice to test for a one-time change, we need

to take into account the possibility of multiple structural changes when economic data in

long sample periods are available. Bai and Perron (1998) extended the sup-type test for the

case of multiple structural changes in univariate regressions, while the multivariate case was

considered by Qu and Perron (2007). Andrews, Lee, and Ploberger (1996) investigated the

optimality of the exp-type and avg-type tests. Note that these tests are designed for the

null hypothesis of no change against the alternative of the fixed number of breaks. On the

other hand, Bai and Perron (1998) and Qu and Perron (2007) proposed double maximum

tests against the alternative under which only the maximum number of breaks is prespecified,

while Bai and Perron (1998), Bai (1999), and Qu and Perron (2007) considered tests for the

null hypothesis of � breaks against the alternative of � + 1 breaks. The multiple structural

change tests have an advantage over the single structural change tests in that the former tests

are more powerful than the latter when multiple breaks have actually occurred, as shown by

Bai and Perron (2006).

The practical difficulty in the multiple structural change tests is that we need to take into

account all permissible change points when constructing the test statistics. That is, for the

sup-type, the exp-type, and the avg-type tests, we need to construct either the Wald, the

likelihood ratio (LR), or the Lagrange multiplier test statistic for all permissible sets of change

points, the number of which is proportional to Tm, where m indicates the number of breaks
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under the alternative. Then, the direct calculation of these test statistics is computationally

very expensive when m is large. To overcome this problem, Bai and Perron (2003a) proposed

an efficient algorithm for the sup-type test, which requires only the O(T 2) calculations for

any number of breaks. Critical values for the sup-type test are tabulated in Andrews (1993)

for a one-time break and Bai and Perron (1998, 2003b) for multiple changes, and those for

the exp-type and the avg-type tests are given in Andrews and Ploberger (2004) for a one-time

change, while asymptotic p-values of these tests can be calculated by the method proposed by

Hansen (1997). However, critical values for the exp-type and the avg-type tests with multiple

breaks are not yet available.

Most of the above tests assume that regressors are homogeneous in the whole sample

period, or at least in each regime under the null hypothesis. However, we sometimes include

non-homogeneous regressors, such as trending variables. In this case, most of the above tests

are not available in practical analysis. The exception is the LR test, denoted by supF (�+1|�),
for the null hypothesis of � breaks against the alternative of � + 1 breaks proposed by Bai

(1999). This test allows for polynomial trends, and hence the null hypothesis of no break

can be tested using supF (1|0). However, as pointed out by Bai and Perron (2006), this test

may be less powerful than tests for multiple structural changes when multiple breaks have

actually occurred.

In this paper, we develop tests for multiple breaks with non-homogeneous regressors,

including trending regressors. We consider sup-type, exp-type, and avg-type tests, as in the

literature, and derive the concise expressions of the limiting distributions. It is shown that

in general, the limiting distributions depend on non-homogeneous regressors, and then, we

need to tabulate critical values depending on the case. For this reason, we focus on the linear

trend case and tabulate critical values. Since we need to calculate the Wald test statistics for

all permissible break points for the exp-type tests, which is computationally very expensive

in the case of more than three breaks, we tabulate the critical values of the exp-type test for

at most three breaks, whereas those of the sup-type and avg-type tests are calculated for up

to five breaks because they require O(T 2) operations for any given number of breaks under

the alternative. Finite sample properties are investigated by Mote Carlo simulations, and it

is confirmed that the tests that assume the maximum number of breaks but not the specific
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number of breaks are useful in practical analysis.

The rest of this paper is organized as follows. Section 2 explains a model and assumptions.

The test statistics are given in Section 3, and their limiting distributions are derived. Section

4 discusses the computational problem of the test statistics, and the finite sample properties

are investigated in Section 5. Section 6 gives concluding remarks.

2. Model and Assumptions

Let us consider the following regression with m structural changes (m+ 1 regimes):

yt = x′tβj + εt (j = 1 · · · ,m+ 1 and t = Tj−1 + 1, · · · , Tj), (1)

where xt is p-dimensional regressors, including a constant, and εt is an error term. We set

T0 = 0 and Tm+1 = T so that the total number of observations is T . The testing problem we

consider is given by

H0 : β1 = · · · = βm+1 vs. H1 : βi �= βj for some i �= j,

and we then consider the null of no structural change. The following assumptions are made

throughout the paper.

Assumption A1 For some normalizing matrix DT , (a) D
−1
T

∑l
t=k xtx

′
tD

−1
T is invertible for

l − k > k0 for some 0 < k0 < ∞. (b) D−1
T

∑[Tr]
t=1 xtx

′
tD

−1
T

p−→ Ωr uniformly over 0 < r ≤ 1,

where Ωr is a p× p positive definite matrix for 0 < r ≤ 1 with Ω0 = 0, [k] signifies the largest

integer less than k, and
p−→ signifies convergence in probability. (c) Ωs−Ωr is positive definite

for all 0 ≤ r < s ≤ 1.

Assumption A2 (a) {εt} is a martingale difference sequence with respect to Ft = σ(εt,

εt−1, · · · , xt+1, xt, · · · ) with E[ε2t |Ft−1] = σ2 for all t. (b) suptE|εt|2+δ < ∞ for some δ > 0.

(c) For the same normalizing matrix DT in Assumption A2, D−1
T

∑[Tr]
t=1 xtεt ⇒ σG(r) for 0 ≤

r ≤ 1, where G(r) is a p-dimensional Gaussian process with mean zero and E[G(r)G′(s)] =

Ωr∧s, and ⇒ signifies weak convergence of the associated probability measures.
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Assumption A1(a) is made for the identification of the coefficient. A1(b) allows for non-

homogeneous regressors because the second moment of xt is not asymptotically proportional

to the sample fraction r, but possibly depends on r in a complicated way. A1(c) is required

for technical reasons. Assumption A2 is standard in linear regressions, but we do not allow

for serial correlation in the error term. However, since the lagged dependent variables are

allowed as regressors, the dynamic property of the model may be captured through them.

Exactly speaking, Assumptions A1 and A2 are required only under the null hypothesis in

order to derive the null limiting distributions of the test statistics and they can be relaxed

under the alternative in order for the tests to be consistent. See, for example, Assumptions

made in Bai and Perron (1998) for the case of (regime-wise) stationary regressors.

One of the interesting non-homogeneous regressors is a polynomial trend. For example,

when xt is given by

x′t = [1, t, t2, · · · , td, x1t, · · · , xqt],

where x1t, · · · , xqt are stationary regressors, we can choose DT = diag{T 1/2, T 3/2, T 5/2, · · · ,
T d+1/2, T 1/2Iq} and Assumptions A1(b) and A2(c) then become

D−1
T

[Tr]∑
t=1

xtx
′
tD

−1
T

p−→

⎡
⎢⎢⎢⎢⎢⎢⎣

r r2

2 · · · rd+1

d+1 rμ′
x

r2

2
r3

3 · · · rd+2

d+2
r2

2 μ
′
x

...
...

. . .
...

...
rd+1

d+1
rd+2

d+2 · · · r2d+1

2d+1
rd+1

d+1 μ
′
x

rμx
r2

2 μx · · · rd+1

d+1 Γx

⎤
⎥⎥⎥⎥⎥⎥⎦

and D−1
T

[Tr]∑
t=1

xtεt ⇒ σ

⎡
⎢⎢⎢⎢⎢⎣

∫ r
0 dW1(s)∫ r

0 s2dW1(s)
...∫ r

0 sddW1(s)

Γ
1/2
x W2(r)

⎤
⎥⎥⎥⎥⎥⎦ ,

where μx and Γx are q×1 and q×q and consist of the first and second moments of x1t, · · · , xqt,
respectively, W1(r) and W2(r) are 1- and q-dimensional standard Brownian motions on [0, 1]

and [0, 1]q, respectively, and they are independent of each other. Apparently, the second

moment of xt is not proportional to r, and hence we cannot use the exiting results for

multiple structural changes.

3. Tests for Multiple Structural Changes

In this section, we define the test statistics for multiple structural changes and derive their lim-

iting distributions. Let β̂ = [β̂′
1, · · · , β̂m+1]

′ be the least squares estimator of the coefficients
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for a given number of breaks m with change points {T1, · · · , Tm}, Σ̂ = diag{Σ̂1, · · · , Σ̂m+1}
be an (m+ 1)p× (m+ 1)p block-diagonal matrix where Σ̂j = (

∑Tj

t=Tj−1
xtx

′
t)
−1, and σ̂2 be a

consistent estimator of σ2. Typically, σ̂2 = T−1
∑T

t=1 ε̂
2
t , where ε̂t is the regression residual.

Then, the Wald test statistic for the null hypothesis of H0 is given by

WT (Λm) =
(
Rβ̂

)′ (
σ̂2RΣ̂R′

)−1 (
Rβ̂

)
, where R =

⎡
⎢⎢⎢⎣

Ip −Ip 0
Ip −Ip

. . .
. . .

Ip −Ip

⎤
⎥⎥⎥⎦

and Λm = {λ1, · · · , λm} with λj = Tj/T for j = 1, · · · ,m being break fractions. We set

λ0 = 0 and λm+1 = 1 for convention because T0 = 0 and Tm+1 = T . Using WT (Λm), we

construct the exp-type, the sup-type, and the avg-type tests, as in the literature.

exp-WT (m, ε) = log

⎡
⎣ 1

T ∗
∑

Λm∈Λε
m

exp

(
1

2
WT (Λm)

)⎤⎦ , (2)

sup-WT (m, ε) = max
Λm∈Λε

m

WT (Λm), (3)

avg-WT (m, ε) =
1

T ∗
∑

Λm∈Λε
m

WT (Λm), (4)

where Λε
m = {(λ1, · · · , λm) : λj − λj−1 ≥ ε for j = 1, · · · ,m + 1} for a given trimming

parameter ε and T ∗ is the number of permissible sets of break fractions included in Λε
m. The

trimming parameter ε should be small; ε = 0.05, 0.1, and 0.15 have often been considered

in the literature. As discussed in Andrews, Lee, and Ploberger (1996), the exp-type test is

optimal against the alternative of the large magnitude of structural changes, whereas the

avg-type test is asymptotically most powerful against the alternative of small changes.

The above three tests require the specific number of breaks m under the alternative before

constructing the test statistics, but, if we do not want to prespecify the number of breaks,

then we may set only the maximum number of breaks given by M and consider the following

weighted exp-type and avg-type tests suggested by Andrews, Lee, and Ploberger (1996) as
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well as the weighted double maximum test proposed by Bai and Perron (1998):

Wexp-WT (M, ε) =
M∑

m=1

cexp(p, α, 1)

cexp(p, α,m)
exp-WT (m, ε),

WDmax-WT (M, ε) = max
1≤m≤M

csup(p, α, 1)

csup(p, α,m)
sup-WT (m, ε),

Wavg -WT (M, ε) =
M∑

m=1

cavg(p, α, 1)

cavg(p, α,m)
avg-WT (m, ε),

where ci(p, α,m) for i = exp, sup, and avg are the critical values of (2)–(4) for a given m

with significance level α. These weights are suggested by Bai and Perron (1998).

The limiting distributions of these test statistics are given by the following theorem.

Theorem 1 Assume that Assumptions A1 and A2 hold. Then, under the null hypothesis,

exp-WT (m, ε)
d−→ log

∫
Λm∈Λε

m

exp

(
1

2
W (Λm)

)
dΛm,

sup-WT (m, ε)
d−→ sup

Λm∈Λε
m

W (Λm), avg-WT (m, ε)
d−→
∫
Λm∈Λε

m

W (Λm)dΛm,

Wexp-WT (M, ε)
d−→

M∑
m=1

cexp(p, α, 1)

cexp(p, α,m)
log

∫
Λm∈Λε

m

exp

(
1

2
W (Λm)

)
dΛm,

WDmax-WT (M, ε)
d−→ max

1≤m≤M

csup(p, α, 1)

csup(p, α,m)
sup

Λm∈Λε
m

W (Λm),

Wavg -WT (M, ε)
d−→

M∑
m=1

cavg(p, α, 1)

cavg(p, α,m)

∫
Λm∈Λε

m

W (Λm)dΛm,

where

W (Λm) = Q1,m (5)

≡
m∑
j=1

(
Ω−1
λj+1

G(λj+1)− Ω−1
λj

G(λj)
)′ (

Ω−1
λj

− Ω−1
λj+1

)−1 (
Ω−1
λj+1

G(λj+1)− Ω−1
λj

G(λj)
)
.

Remark 1 Theorem 1 shows that although the Wald test statistic for a given set of break

points Λm is asymptotically chi-square distributed, W (Λm,1) is correlated with W (Λm,2) in

a complicated way for Λm,1 �= Λm,2 (Λm,1,Λm,2 ∈ Λε
m), and the test statistics for unknown

breaks are then nonstandard.
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Remark 2 When the regressors are homogeneous with Ωr = rΩ, we have G(r) = B(r), where

B(r) is a p-dimensional standard Brownian motion on [0, 1]p, and it is then not difficult to

show that

W (Λm) = Q2,m ≡
m∑
j=1

‖λjB(λj+1)− λj+1B(λj)‖
λjλj+1(λj+1 − λj)

, (6)

which is given by Bai and Perron (1998) for the case of stationary regressors. Thus, Theorem

1 includes the existing result as a special case.

As we can see from Theorem 1, the limiting distributions of the test statistics depend on

the structure of Ωr, and then, we need to calculate critical values for a given regressor xt.

The dependency of critical values on xt have sometimes been observed in different situations

in the literature. For example, the critical values for unit root tests depend on whether a

linear trend is included as a regressor, while the LR tests for cointegrating rank are known

to have different distributions depending on the structure of the deterministic term.

In the following, we focus on the case where xt includes a linear trend, which is widely

used in practical analysis. More precisely, let us consider the case where

xt = [1, t, x1t, · · · , xqt]′, (7)

with x1t, · · · , xqt being stationary variables and lagged dependent variables. In this case, we

have the following corollary.

Corollary 1 Assume that Assumptions A1 and A2 hold. Then, under the null hypothesis

with xt given by (7), Theorem 1 holds with W (Λm) = Q1,m + Q2,m, where Q1,m is given by

(5) with

Ω−1
r =

[
4
r − 6

r2

− 6
r2

12
r3

]
and

(
Ω−1
r − Ω−1

s

)−1
=

[
rs(r2+rs+s2)

(s−r)3
(rs)2(r+s)
2(s−r)3

(rs)2(r+s)
2(s−r)3

(rs)3

3(s−r)3

]

for 0 < r < s ≤ 1 and G(r) = [B1(r),
∫ r
0 sdB1(s)]

′, where B1(r) is a one-dimensional stan-

dard Brownian motion on [0, 1], while Q2,m is given by (6) with B(r) being a q-dimensional

standard Brownian motion independent of B1(r).

The result in Corollary 1 is similar to that given by Bai (1999) for testing the null

hypothesis of � breaks against the alternative of � + 1 breaks; the limiting distribution is
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the sum of the two independent distributions corresponding to (constant plus) a linear trend

and stationary regressors. We can see that the limiting distribution of Bai’s (1999) test with

� = 0 is the same as ours with m = 0.

4. Computation of Critical Values

Since the limiting distributions of the test statistics are nonstandard, we obtain the critical

values by simulations withG(r) approximated by 1,000 partial sums of the appropriate pseudo

random variables. For example, if G(r) is a standard Brownian motion, then we approximate

G(r) using the normalized partial sums of i.i.d.N(0, 1) pseudo-random variables. However,

the computation of the critical values is not necessarily easy for large values of m because

the number of permissible sets of breaks is proportional to Tm, so the direct calculation of

all permissible Wald test statistics is computationally too expensive when m ≥ 4. For the

sup-type test, Bai and Perron (2003a) gives an efficient algorithm for the computation of the

test statistics, which requires operations of order O(T 2) for any given number of breaks; we

can use this in our case.

For the avg-type test, we can also calculate the critical values computationally efficiently2.

Let Q1(Ta, Tb) be the summand of (5) approximated by the above method with T observations

given Ta = λaT and Tb = λbT . Since the distance between two consecutive break points must

be at least h = εT , the permissible ranges of T1, T2, · · · , Tm are T1 = h, h + 1, · · · , T − hm,

T2 = T1 + h, T1 + h + 1, · · · , T − h(m − 1), · · · , Tm = Tm−1 + h, Tm−1 + h + 1, · · · , T − h;

then, the limiting distribution of the avg-type test statistic can be approximated by

1

T ∗

T−hm∑
T1=h

T−h(m−1)∑
T2=T1+h

· · ·
T−h∑

Tm=Tm−1+h

m∑
j=1

Q1(Tj , Tj+1). (8)

However, (8) requires the summation operators of order O(Tm), which is computationally

expensive as explained above. Instead, we calculate the limiting distributions by noting that

each of Q1(Tj , Tj+1) appears in (8) many times; if we count them, we can save computational

time. For example, Q1(T1, T2) appears as many times as the permissible number of allocations

2Pierre Perron pointed out the existence of the efficient calculation of the avg-type test through personal
communications.
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of T3, · · · , Tm in [T2, T ]. Since, in general, the permissible number of combinations of � breaks

in [Ta, Tb] with two consecutive breaks’ distance being larger than h is given by

kh(Ta, Tb, �) =
1

�!

�∏
i=1

{(Ta − Tb + 1)− h(�+ 1) + i},

which is obtained by direct calculations, we can see that Q1(T1, T2) appears kh(T2, T,m− 2)

times in (8). Similarly, we observe Q1(Tm, Tm+1) as many times as the number of allocations

of T1, · · · , Tm−1 in [1, Tm], which is given by kh(1, Tm,m − 1). For the case of Q1(Tj , Tj+1)

for j = 2, · · · ,m− 1, there are j − 1 and m− j − 1 breaks allocated in [1, Tj ] and [Tj+1, T ],

respectively. Then, we can see that

(8) =
1

kh(1, T,m)

m−1∑
j=1

T−h(m−j+1)∑
Ta=jh

T−h(m−j)∑
Tb=Ta+h

kh(1, Ta, j − 1)Q1(Ta, Tb, j)kh(Tb, T,m− j − 1)

+
T−h∑

Tc=hm

kh(1, Tc,m− 1)Q1(Tc, T,m), (9)

where kh(Ta, Tb, 0) = 1 for convention. We can see that the number of summation operators

on the right hand side of (9) is proportional to O(T 2) for any given number of m.

On the other hand, we cannot find an efficient computational method for the exp-type

test. Therefore, we consider the exp-type test only up to m = 3.

The critical values in the case of a linear trend are given in Tables 1-3 for ε = 0.05,

0.10, and 0.15 and q = 0 to 9, where q is the number of homogeneous regressors. They are

obtained by approximating Brownian motions by 1,000 partial sums of i.i.d.N(0, 1) pseudo-

random variables with 10,000 replications. Because of the above reason, the critical values for

the exp-type test is given for only up to m = 3 and M = 3 whereas those for the sup-type and

avg-type tests are obtained for up to m = 5 and M = 3 and 5. As in the case of homogeneous

regressors, the critical values get larger as q and/or m increase.

5. Finite Sample Properties

In this section, we investigate the finite sample properties of the proposed tests via Monte

Carlo simulations. We consider two cases where q = 0 (DGP0) and q = 1 (DGP1). In the
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case of q = 0, the data generating process under the null hypothesis is given by

yt = β1 + β2t+ εt

for t = 1, · · · , T with εt ∼ i.i.d.N(0, 1). We set β1 = β2 = 0 because all the test statistics are

invariant to the true values of β1 and β2 under H0. On the other hand, the DGP1 has an

autoregressive (AR) regressor as follows:

yt = β1 + β2t+ β3xt + εt, xt = φxt−1 + ut

for t = 1, · · · , T , where, again, we set β1 = β2 = β3 = 0 without loss of generality. The initial

value of xt is set to x0 = 0 while φ = −0.8, −0.4, 0, 0.4, and 0.8. The sample size T is 120

and 300 and the significance level is set to 0.05. We investigate the case where the maximum

number of breaks is three, so that we construct the weighted-type tests with M = 3. All

computations are conducted using the GAUSS matrix language with 2,000 replications.

Table 4 shows the empirical sizes of the tests. For comparison, we also consider the LR

test for the null hypothesis of no break against the alternative of a one-time break proposed

by Bai (1999). For DGP0 with T = 120, the empirical sizes of all the tests are close to the

nominal one except for the exp-type test with m = 3, which tends to overly reject the null

hypothesis slightly, while the LR test is conservative. However, the size distortions of the

tests disappear when the sample size is 300.

On the other hand, when the stationary variable is included as a regressor, almost all the

tests reject the null hypothesis more frequently compared to DGP0. As a result, we observe

the tendency of the over-rejection for the exponential type test with m = 2 and m = 3;

however, again, this tendency disappears when T = 300. As a whole, the empirical sizes of

all the tests are not greatly affected by the AR parameter of the stationary regressor as long

as φ ranges from −0.8 to 0.8; its effect seems marginal.

To see the finite sample powers of the tests, we first consider the following DGP with a

one-time break for q = 0 and q = 1, respectively:

DGP0 yt =

{
β1,1 + β2,1t+ εt : t = 1, · · · , T1,
β1,2 + β2,1t+ β2,2(t− T1) + εt : t = T1 + 1, · · · , T,

DGP1 yt =

{
β1,1 + β2,1t+ β3,1xt + εt : t = 1, · · · , T1,
β1,2 + β2,1t+ β2,2(t− T1) + β3,2xt + εt : t = T1 + 1, · · · , T,

10



where T1 = 0.5T , β1,1 = β2,1 = β3,1 = 0, while β1,2 = β3,2 = 5γ and β2,2 = γ with γ taking

positive values, which are chosen so that the overall shapes of the power functions can be

observed.

Figure 1 shows the size-adjusted powers of the tests when q = 0 (DGP0). As expected,

the test against the correct number of breaks (m = 1) is more powerful than the others among

the same type of tests. For example, we observe from (i-a) and (i-b) that the exp-type test

with m = 1 is most powerful, followed by the tests with m = 2 and m = 3. The effect of the

misspecification of the number of breaks is relatively large for the sup-type tests, whereas the

avg-type tests are less affected by m. We can also see that the weighted-type tests are the

second-best tests compared to tests with a fixed number of breaks. Figures 1(iv-a) and (iv-b)

compare the three weighted-type tests and the LR test by Bai (1999). We observe that the

weighted avg-type test is most powerful, and the second-best is the weighted exp-type test.

The weighted double maximum test and the LR test are inferior to the others in this case,

and the former is slightly less powerful than the latter.

Figure 2 corresponds to the case where q = 1 (DGP1) and the AR coefficient of xt is

0. We observe that the relative performance is preserved compared to Figure 1. Regarding

the effect of the persistence of xt, the tests are most powerful when xt is an i.i.d. sequence

(φ = 0) and the powers decrease as the absolute values of φ get larger. However, the difference

between the powers is not substantial, and the effect of the persistence of the regressor is

slight for −0.8 ≤ φ ≤ 0.8 (we do not show the figure to save space).

We next investigate the case where the number of breaks is two. The DGP in this case is

given by

DGP0 yt =

⎧⎨
⎩

β1,1 + β2,1t+ εt : t = 1, · · · , T1,
β1,2 + β2,1t+ β2,2(t− T1) + εt : t = T1 + 1, · · · , T2,
β1,3 + β2,1t+ β2,2(t− T1) + β2,3(t− T2) + εt : t = T2 + 1, · · · , T,

DGP1 yt =

⎧⎨
⎩

β1,1 + β2,1t+ β3,1xt + εt : t = 1, · · · , T1,
β1,2 + β2,1t+ β2,2(t− T1) + β3,2xt + εt : t = T1 + 1, · · · , T2,
β1,3 + β2,1t+ β2,2(t− T1) + β2,3(t− T2) + β3,3xt + εt : t = T2 + 1, · · · , T,

where T1 = 0.3T and T2 = 0.7T , and we consider two kinds of changes: The first is the case

of two successive increases in the coefficients; β1,1 = β2,1 = β3,1 = 0 while β1,2 = β3,2 = 5γ

and β2,2 = γ in the second regime and β1,3 = β3,3 = 10γ and β2,3 = γ in the third regime with

11



γ taking positive values. The second case is such that the first break occurs in the upwards

directions while the dependent variable crashes down by the second break; β1,1 = β2,1 =

β3,1 = 0 while β1,2 = β3,2 = 5γ and β2,2 = γ in the second regime and β1,3 = β3,3 = −5γ and

β2,3 = −0.5γ in the third regime.

Figure 3 shows the size-adjusted powers for q = 0. We observe that the test with under-

misspecification of the number of breaks (m = 1) is still most powerful than the others in

this case for each type of the tests. As in the one-time break case, the second-best are

the weighted-type tests, while the avg-type test is most powerful among the weighted-type

tests, followed by the exp-type test, as is observed from (iv-a) and (iv-b). Similar property

is observed with a stationary regressor from Figure 4, but as long as the avg-type test is

concerned, the specification of the number of breaks does not so much affect the differences

in powers. In addition, we do not observe the significant differences in powers among the

weighted-type tests. On the other hand, the persistence in the AR regressor affects the finite

sample powers very much. The case with φ = 0 is most powerful whereas φ = 0.8 corresponds

to the least powerful case. The maximum differences in powers in these two cases with m = 2

are 0.490, 0.493, and 0.454 for the exp-type, sup-type and avg-type tests, respectively, when

T = 120. The similar magnitude of the differences is observed even when T = 300 (we do

not show the figure to save space).

Figure 5 shows the size-adjusted powers in the second case of the two breaks for q = 0.

When T = 120, the test correctly specifying the number of breaks (m = 2) is most powerful

in each type of the tests. In particular, the differences in powers are relatively large for the

avg-type tests. On the other hand, when T = 300, the differences become smaller and as long

as the sup-type test is concerned, the test withm = 1 becomes most powerful. The differences

in powers are more pronounced when a stationary variable is included as a regressor, as is

observed from Figure 6. The effect of the persistence of the AR regressor on the powers is

mitigated in this case; the largest differences in the powers of the tests with m = 2 are 0.169,

0.158, and 0.115 for the exp-type, sup-type and avg-type tests, respectively, when T = 120,

and the differences becomes marginal when T = 300.

In summary, the performance of the tests depends on the DGP and none of the tests

12



dominates the others uniformly, while we also observe that the weighted-type tests are the

second-best in most cases and the powers of those tests are close to those of the best tests.

6. Concluding Remarks

In this paper, we have investigated tests for multiple breaks with non-homogeneous regres-

sors. We have derived the limiting distributions of the test statistics in a general case and

found that the limiting distributions depend on the regressors. By focusing on the linear

trend case, we have obtained the critical values for the sup-type and avg-type tests by com-

putationally efficient methods (although we cannot find such a method for the exp-type test),

and have obtained the critical values for the exp-type test only up to m = 3. By Monte Carlo

simulations, we have showed that the correct specification of the number of breaks is very

important in order for the tests to have good power. However, since we often cannot spec-

ify the specific number of breaks under the alternative but can only suppose the maximum

number of breaks, the weighted-type tests would be useful in practice.

Appendix

Proof of Theorem 1: According to Assumptions A1 and A2, we can see that under the

null hypothesis,

DT

(
β̂j − β

)
=

⎛
⎝D−1

T

Tj∑
t=Tj−1+1

xtx
′
tD

−1
T

⎞
⎠

−1

D−1
T

Tj∑
t=Tj−1+1

xtut

d−→ σ
(
Ωλj − Ωλj−1

)−1
(G(λj)−G(λj−1)) ≡ σΣ̃λj G̃(λj),

where Σ̃λj = (Ωλj − Ωλj−1)
−1 with Ωλ0 = 0 and G̃(λj) = G(λj) − G(λj−1) with G(λ0) = 0.

Then, we can see that

WT (Λm)
d−→ (RΣ̃G̃)′(RΣ̃R′)−1(RΣ̃G̃)

uniformly over the permissible sets of break fractions, where G̃ = [G̃′(λ1), · · · , G̃′(λm+1)]
′

and Σ̃ = diag{Σ̃λ1 , · · · , Σ̃λm+1}. Then, we need to show that

(
RΣ̃G̃

)′ (
RΣ̃R′

)−1 (
RΣ̃G̃

)
= Q1,m, (10)
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where Q1,m is defined in (5). Note that the difficulty is in that the inverse of the variance

matrix is given by

(
RΣ̃R′

)−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃λ1 + Σ̃λ2 −Σ̃λ2 0 · · · 0

−Σ̃λ2 Σ̃λ2 + Σ̃λ3 −Σ̃λ3

. . .
...

0 −Σ̃λ3

. . .
. . . 0

...
. . .

. . .
. . . −Σ̃m

0 · · · 0 −Σ̃λm Σ̃λm + Σ̃λm+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

, (11)

which does not have a simple closed-form expression.

In order to treat (11), we introduce a nonsingular matrix H and transform the left hand

side of (10) using H as (HRΣ̃G̃)′(HRΣ̃R′H ′)−1(HRΣ̃G̃) and evaluate the transformed ex-

pression. More precisely, we define an mp × mp lower triangular matrix H and decompose

the restriction matrix R as

H =

⎡
⎢⎢⎢⎢⎣

−Ip 0 · · · 0
...

. . .
. . .

...
...

. . . 0
−Ip · · · · · · −Ip

⎤
⎥⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎢⎣

0 −Ip 0 · · · 0
... Ip −Ip

. . .
...

... 0
. . .

. . . 0
0 0 · · · Ip −Ip

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

Ip 0 · · · · · · 0

0
...

. . .
...

...
...

. . .
...

0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

so that HR =

⎡
⎢⎢⎢⎢⎣

0 Ip 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 Ip

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

Ip 0 · · · · · · 0
...

...
. . .

...
...

...
. . .

...
Ip 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦ .

Let us decompose Σ̃ as Σ̃ = diag{Σ̃λ1 , Σ̃2,m+1}, where Σ̃2,m+1 = diag{Σ̃λ2 , · · · , Σ̃λm+1}.
Then, we can see that

(
HRΣ̃R′H ′

)−1
=

(
Σ̃2,m+1 + FpΣ̃λ1F

′
p

)−1

= Σ̃−1
2,m+1 − Σ̃−1

2,m+1Fp

(
Σ̃−1
λ1

+ F ′
pΣ̃

−1
2,m+1Fp

)−1
F ′
pΣ̃

−1
2,m+1

= Σ̃−1
2,m+1 − Σ̃−1

2,m+1Fp

(
Σ̃−1
λ1

+ · · ·+ Σ̃−1
λm+1

)−1
F ′
pΣ̃

−1
2,m+1, (12)

where Fp = [Ip, · · · , Ip]′ is an mp× p matrix, while

HRΣ̃G̃ =

⎡
⎢⎣

Σ̃λ2G̃(λ2)− Σ̃λ1G̃(λ1)
...

Σ̃λm+1G̃(λm+1)− Σ̃λ1G̃(λ1)

⎤
⎥⎦ . (13)
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Then, since Σ̃λj = (Ωλj −Ωλj−1)
−1 and G̃(λj) = G(λj)−G(λj−1), we can see from (13) that

(HRΣ̃G̃)′Σ̃−1
2,m+1(HRΣ̃G̃) =

m∑
j=1

G̃′(λj+1)Σ̃λj+1G̃(λj+1)− 2

m∑
j=1

G̃′(λ1)Σ̃λ1G̃(λj+1)

+G̃′(λ1)Σ̃λ1(Σ̃
−1
λ2

+ · · ·+ Σ̃−1
λm+1

)Σ̃λ1G̃(λ1)

=
m∑
j=1

(G(λj+1)−G(λj))
′(Ωλj+1 − Ωλj )

−1(G(λj+1)−G(λj))

−2
{
G′(λ1)Ω

−1
λ1

G(λm+1)−G′(λ1)Ω
−1
λ1

G(λ1)
}

+G′(λ1)Ω
−1
λ1

Ωλm+1Ω
−1
λ1

G(λ1)−G′(λ1)Ω
−1
λ1

G(λ1). (14)

Similarly, since F ′
pΣ̃

−1
2,m+1 = [Σ̃−1

λ2
, · · · , Σ̃−1

λm+1
], we have

F ′
pΣ̃

−1
2,,m+1HRΣ̃G̃ =

m∑
j=1

G̃(λj+1)− (Σ̃−1
λ2

+ · · ·+ Σ̃−1
λm+1

)Σ̃λ1G̃λ1

= G(λm+1)−G(λ1)− (Ωλm+1 − Ωλ1)Ω
−1
λ1

G(λ1)

= G(λm+1)− Ωλm+1Ω
−1
λ1

G(λ1),

so that

(HRΣ̃G̃)′Σ̃−1
2,m+1Fp

(
Σ̃−1
λ1

+ · · ·+ Σ̃−1
λm+1

)−1
F ′
pΣ̃

−1
2,m+1(HRΣ̃G̃)

=
(
G(λm+1)− Ωλm+1Ω

−1
λ1

G(λ1)
)′

Ω−1
λm+1

(
G(λm+1)− Ωλm+1Ω

−1
λ1

G(λ1)
)

= G′(λm+1)Ω
−1
λm+1

G(λm+1)− 2G′(λ1)Ω
−1
λ1

G(λm+1) +G′(λ1)Ω
−1
λ1

Ωλm+1Ω
−1
λ1

G(λ1).(15)

Then, by combining (12), (14) and (15), we have

(HRΣ̃G̃)′
(
HRΣ̃R′H ′

)−1
(HRΣ̃G̃)

=

m∑
j=1

(G(λj+1)−G(λj))
′ (Ωλj+1 − Ωλj

)−1
(G(λj+1)−G(λj))

+G′(λ1)Ω
−1
λ1

G(λ1)−G′(λm+1)Ω
−1
λm+1

G(λm+1)

=
m∑
j=1

{
(G(λj+1)−G(λj))

′ (Ωλj+1 − Ωλj

)−1
(G(λj+1)−G(λj))

+G′(λj)Ω
−1
λj

G(λj)−G′(λj+1)Ω
−1
λj+1

G(λj+1)
}

=
m∑
j=1

(
Ω−1
λj+1

G(λj+1)− Ω−1
λj

G(λj)
)′ (

Ω−1
λj+1

− Ω−1
λj

)−1 (
Ω−1
λj+1

G(λj+1)− Ω−1
λj

G(λj)
)
,
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where the last equality is obtained by using the following three equivalent expressions:

(
Ωλj+1 − Ωλj

)−1
= Ω−1

λj+1
+Ωλj+1(Ω

−1
λj

− Ω−1
λj+1

)−1Ω−1
λj+1

= −Ω−1
λj

+Ω−1
λj

(Ω−1
λj

− Ω−1
λj+1

)−1Ω−1
λj

= Ω−1
λj

(Ω−1
λj

− Ω−1
λj+1

)−1Ω−1
λj+1

.�

Proof of Corollary 1: Since a constant term is included as a regressor, the stationary

variables can be assumed to be mean zero without loss of generality. Similarly, because the

lagged dependent variables can be decomposed into a constant, a linear trend, and stationary

components, we can treat the expectation of the lagged dependent variables to be zero because

1 and t are included as regressors. Then, we can see that Ωr becomes a block diagonal matrix

with the first 2-by-2 diagonal block given by[
r r2

2
r2

2
r3

3

]

and the last q-by-q block given by rΩ2, where Ω2 consists of the second moments of the

stationary regressors. The result immediately follows because of the diagonality of Ωr.�
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Table 1: Asymptotic critical values of the exp-type test with level α

q
m α 0 1 2 3 4 5 6 7 8 9
exp-WT (m, 0.05) (ε = 0.05)

.10 2.63 3.60 4.49 5.38 6.18 6.98 7.86 8.59 9.36 10.14
1 .05 3.26 4.32 5.28 6.21 7.10 7.99 8.81 9.64 10.42 11.17

.01 4.80 5.83 7.10 8.00 9.00 9.93 10.79 11.70 12.61 13.43

.10 4.55 6.32 7.97 9.61 11.16 12.70 14.23 15.71 17.20 18.61
2 .05 5.35 7.18 8.97 10.66 12.26 13.88 15.43 16.99 18.51 19.96

.01 7.20 9.28 10.98 12.93 14.77 16.42 18.12 19.66 21.35 22.97

.10 6.29 8.80 11.18 13.49 15.75 17.98 20.20 22.41 24.57 26.60
3 .05 7.21 9.82 12.37 14.79 17.12 19.38 21.62 23.90 26.08 28.27

.01 9.37 12.11 14.65 17.28 19.69 22.40 24.67 27.10 29.29 31.68
Wexp-WT (3, 0.05) (ε = 0.05, M = 3)

.10 7.81 10.65 13.33 15.99 18.30 20.77 23.30 25.51 27.84 30.25

.05 9.66 12.79 15.60 18.29 21.02 23.59 26.20 28.55 30.78 33.08

.01 14.14 17.35 20.81 23.75 26.46 29.21 31.79 34.42 37.02 39.87
exp-WT (m, 0.10) (ε = 0.10)

.10 2.59 3.56 4.45 5.33 6.11 6.90 7.74 8.48 9.24 10.00
1 .05 3.25 4.27 5.25 6.16 6.98 7.92 8.72 9.52 10.32 11.08

.01 4.82 5.90 7.04 8.00 8.98 9.82 10.67 11.60 12.50 13.34

.10 4.43 6.18 7.80 9.38 10.84 12.35 13.89 15.32 16.75 18.14
2 .05 5.28 7.06 8.80 10.41 11.97 13.54 15.14 16.70 18.13 19.57

.01 7.10 9.20 10.89 12.65 14.40 16.27 17.77 19.32 20.85 22.56

.10 6.07 8.56 10.84 13.05 15.21 17.39 19.56 21.65 23.70 25.75
3 .05 7.06 9.60 12.02 14.36 16.59 18.83 20.98 23.24 25.40 27.41

.01 9.15 12.00 14.31 16.80 19.30 21.78 23.97 26.20 28.52 30.91
Wexp-WT (3, 0.10) (ε = 0.10, M = 3)

.10 7.70 10.55 13.17 15.81 18.10 20.48 22.97 25.13 27.44 29.78

.05 9.63 12.63 15.44 18.11 20.61 23.36 25.79 28.20 30.56 32.86

.01 14.18 17.25 20.69 23.48 26.26 28.81 31.47 34.19 36.78 39.25
exp-WT (m, 0.15) (ε = 0.15)

.10 2.56 3.51 4.42 5.25 6.05 6.83 7.61 8.40 9.13 9.86
1 .05 3.21 4.25 5.20 6.10 6.94 7.84 8.60 9.38 10.23 10.99

.01 4.84 5.90 6.92 7.93 8.97 9.79 10.63 11.56 12.34 13.26

.10 4.33 6.06 7.68 9.19 10.62 12.12 13.62 14.93 16.37 17.77
2 .05 5.21 6.99 8.60 10.18 11.75 13.31 14.83 16.28 17.84 19.24

.01 7.07 9.14 10.67 12.59 14.07 15.87 17.50 19.08 20.54 22.05

.10 5.92 8.34 10.47 12.63 14.77 16.89 18.96 20.96 22.97 24.99
3 .05 6.87 9.35 11.69 13.90 16.12 18.37 20.45 22.57 24.59 26.63

.01 8.96 11.78 14.17 16.57 18.91 21.25 23.38 25.65 27.97 30.07
Wexp-WT (3, 0.15) (ε = 0.15, M = 3)

.10 7.56 10.34 13.09 15.56 17.87 20.22 22.52 24.86 27.00 29.22

.05 9.50 12.60 15.28 17.91 20.41 23.04 25.44 27.78 30.34 32.57

.01 14.18 17.27 20.33 23.19 26.35 28.65 31.13 33.85 36.18 38.80



Table 2: Asymptotic critical values of the sup-type test with level α

q
m α 0 1 2 3 4 5 6 7 8 9
sup-WT (m, 0.05) (ε = 0.05)

.10 12.10 14.25 16.10 17.94 19.79 21.60 23.21 24.86 26.60 28.16
1 .05 13.70 16.03 17.95 20.00 21.84 23.69 25.48 27.18 28.88 30.56

.01 17.50 20.34 22.48 24.58 26.38 28.19 30.44 32.28 33.74 35.65

.10 22.41 26.62 30.15 33.64 36.92 40.39 43.62 46.80 49.82 52.85
2 .05 24.78 28.87 32.69 36.18 39.57 43.07 46.31 49.66 52.68 55.69

.01 28.96 33.67 38.03 41.47 45.18 48.70 52.20 55.87 59.03 62.18

.10 31.02 36.92 42.31 47.35 52.25 57.16 61.86 66.62 71.06 75.49
3 .05 33.62 39.65 45.20 50.35 55.36 60.21 65.27 69.79 74.57 79.06

.01 38.72 45.22 50.93 56.43 61.67 66.86 71.76 77.15 81.92 86.45

.10 38.89 46.48 53.58 60.33 66.66 72.94 79.16 85.22 91.34 97.06
4 .05 41.57 49.40 56.67 63.51 69.96 76.38 82.90 89.11 94.90 100.96

.01 47.60 56.17 63.02 70.45 77.15 83.76 90.96 97.12 103.79 109.31

.10 45.90 55.12 63.92 72.13 79.96 87.85 95.34 102.75 110.20 117.24
5 .05 48.72 58.51 67.47 75.77 83.77 91.71 99.60 107.03 114.51 121.77

.01 55.08 65.82 74.31 83.09 91.16 99.74 108.76 116.48 124.60 131.19
WDmax-WT (3, 0.05) (ε = 0.05, M = 3)

.10 13.13 15.31 17.24 19.16 21.00 22.92 24.57 26.25 28.01 29.60

.05 14.68 17.19 19.19 21.29 23.20 25.04 26.87 28.61 30.41 31.92

.01 18.77 21.64 23.80 25.99 27.78 29.76 31.96 33.98 35.30 37.40
WDmax-WT (5, 0.05) (ε = 0.05, M = 5)

.10 13.26 15.48 17.43 19.36 21.22 23.09 24.78 26.51 28.21 29.82

.05 14.93 17.38 19.35 21.47 23.40 25.24 27.04 28.87 30.66 32.33

.01 19.04 21.83 24.01 26.17 28.08 30.04 32.19 34.14 35.53 37.52
sup-WT (m, 0.10) (ε = 0.10)

.10 11.54 13.54 15.52 17.41 19.02 20.71 22.50 24.00 25.61 27.31
1 .05 13.32 15.51 17.43 19.31 21.10 22.97 24.73 26.51 28.11 29.55

.01 16.96 19.41 21.61 23.80 25.75 27.55 29.27 31.18 32.96 34.62

.10 20.62 24.33 27.86 31.36 34.61 37.90 41.25 44.25 47.32 50.30
2 .05 22.66 26.67 30.48 34.00 37.29 40.68 44.05 47.26 50.45 53.37

.01 27.30 31.99 35.54 39.27 42.85 46.62 49.79 53.20 56.51 59.75

.10 27.70 33.21 38.46 43.38 48.28 53.09 57.60 62.13 66.51 70.83
3 .05 30.07 36.10 41.48 46.63 51.36 56.22 60.75 65.57 70.15 74.54

.01 35.16 41.76 47.25 52.22 57.53 62.85 67.49 72.46 77.27 82.54

.10 33.70 40.75 47.42 53.92 60.04 66.34 72.18 78.18 83.90 89.32
4 .05 36.35 43.93 50.79 57.30 63.64 69.94 76.21 82.23 88.04 93.74

.01 42.27 50.28 57.46 64.29 70.72 77.03 83.19 89.61 96.12 101.48

.10 38.69 47.19 55.36 63.19 70.58 78.13 85.22 92.66 99.46 106.41
5 .05 41.64 50.56 58.80 66.86 74.55 82.08 89.39 96.87 104.25 111.19

.01 47.39 57.01 66.05 74.41 82.18 90.19 97.62 105.40 113.23 120.14
WDmax-WT (3, 0.10) (ε = 0.10, M = 3)

.10 12.53 14.71 16.72 18.63 20.22 22.01 23.76 25.33 27.08 28.73

.05 14.47 16.67 18.68 20.50 22.42 24.31 26.17 27.99 29.52 31.14

.01 18.19 20.71 22.78 25.22 27.27 29.07 30.80 32.68 34.62 36.45
WDmax-WT (5, 0.10) (ε = 0.10, M = 5)

.10 12.75 14.95 16.92 18.85 20.51 22.25 24.11 25.63 27.35 29.02

.05 14.68 16.93 18.93 20.75 22.75 24.69 26.45 28.26 29.79 31.35

.01 18.48 20.87 23.09 25.54 27.55 29.34 31.14 33.10 34.87 36.65



Table 2: (Continued)

q
m α 0 1 2 3 4 5 6 7 8 9
sup-WT (m, 0.15) (ε = 0.15)

.10 11.07 13.03 14.97 16.81 18.48 20.16 21.83 23.34 24.92 26.65
1 .05 12.80 14.95 16.91 18.70 20.42 22.35 23.95 25.75 27.51 29.01

.01 16.54 18.87 20.81 23.03 25.07 26.88 28.70 30.65 32.28 33.97

.10 18.92 22.71 26.21 29.58 32.78 35.97 39.10 42.04 45.16 47.93
2 .05 21.05 25.03 28.73 32.02 35.33 38.73 42.05 45.15 48.25 51.17

.01 25.62 30.32 33.59 37.55 40.88 44.58 47.79 50.84 54.05 57.56

.10 24.66 30.05 34.93 39.72 44.36 49.06 53.52 57.83 62.22 66.33
3 .05 27.02 32.68 37.98 42.84 47.61 52.63 56.94 61.33 65.77 70.13

.01 32.29 38.60 43.66 49.08 53.92 59.02 63.64 68.15 73.02 77.19

.10 28.50 35.30 41.37 47.56 53.46 59.31 64.99 70.59 76.16 81.62
4 .05 31.28 38.23 44.75 50.91 56.70 63.22 68.78 74.44 80.19 85.77

.01 36.62 44.41 51.11 57.56 64.34 70.51 76.35 82.29 88.67 94.30

.10 28.82 36.30 43.61 50.63 57.41 64.02 70.49 77.03 83.70 89.74
5 .05 31.39 39.52 46.95 54.35 61.10 67.97 74.56 81.42 88.16 94.58

.01 36.78 45.68 53.60 61.06 68.40 76.30 82.94 89.34 96.70 103.25
WDmax-WT (3, 0.15) (ε = 0.15, M = 3)

.10 12.12 14.23 16.20 18.07 19.74 21.55 23.19 24.75 26.41 28.18

.05 13.85 16.17 18.16 19.98 21.75 23.58 25.41 27.21 28.93 30.55

.01 17.74 20.23 22.30 24.11 26.50 28.22 30.29 32.08 33.87 35.82
WDmax-WT (5, 0.15) (ε = 0.15, M = 5)

.10 12.39 14.52 16.51 18.40 20.11 21.93 23.61 25.24 26.87 28.64

.05 14.27 16.50 18.52 20.36 22.22 24.10 25.85 27.66 29.41 31.04

.01 18.12 20.83 22.62 24.71 26.95 28.65 30.67 32.81 34.45 36.48



Table 3: Asymptotic critical values of the avg-type test with level α

q
m α 0 1 2 3 4 5 6 7 8 9
avg-WT (m, 0.05) (ε = 0.05)

.10 3.51 4.86 6.24 7.44 8.72 9.93 11.10 12.34 13.52 14.63
1 .05 4.32 5.77 7.08 8.49 9.84 11.17 12.38 13.63 14.84 16.04

.01 6.32 7.80 9.20 10.51 12.02 13.44 14.90 16.33 17.56 18.76

.10 6.36 8.94 11.39 13.82 16.16 18.52 20.82 23.10 25.44 27.63
2 .05 7.49 10.19 12.78 15.25 17.71 20.21 22.66 25.01 27.42 29.70

.01 10.15 12.97 15.63 18.22 20.95 23.64 26.21 28.82 30.97 33.48

.10 9.00 12.78 16.35 19.89 23.27 26.71 30.12 33.48 36.85 40.19
3 .05 10.35 14.29 18.02 21.60 25.11 28.79 32.26 35.88 39.31 42.80

.01 13.46 17.55 21.24 25.13 29.07 32.87 36.41 40.29 43.91 47.48

.10 11.50 16.42 21.15 25.78 30.27 34.84 39.25 43.71 48.19 52.57
4 .05 13.14 18.26 23.10 27.82 32.39 37.13 41.67 46.35 50.95 55.40

.01 16.67 21.70 26.69 31.82 36.73 41.87 46.28 51.53 56.34 60.94

.10 14.09 20.11 25.91 31.58 37.18 42.86 48.27 53.86 59.46 64.87
5 .05 15.80 22.11 28.07 33.89 39.64 45.44 50.92 56.71 62.32 68.00

.01 19.70 25.90 32.09 38.29 44.45 50.54 56.45 62.38 68.48 74.21
Wavg-WT (3, 0.05) (ε = 0.05, M = 3)

.10 10.48 14.54 18.59 22.20 26.00 29.70 33.16 36.81 40.38 43.77

.05 12.94 17.24 21.10 25.29 29.42 33.36 37.08 40.76 44.34 47.90

.01 18.66 23.18 27.59 31.42 35.85 40.21 44.85 48.85 52.16 55.89
Wavg-WT (5, 0.05) (ε = 0.05, M = 5)

.10 17.35 24.19 30.91 36.92 43.27 49.33 55.16 61.24 67.18 72.71

.05 21.24 28.53 35.01 41.96 48.70 55.31 61.60 67.57 73.90 79.67

.01 30.94 38.59 45.79 51.96 59.72 66.38 73.57 80.71 86.74 92.61
avg-WT (m, 0.10) (ε = 0.10)

.10 3.58 4.98 6.40 7.60 8.88 10.11 11.34 12.52 13.77 14.88
1 .05 4.45 5.97 7.32 8.70 10.10 11.48 12.68 13.92 15.22 16.39

.01 6.64 8.15 9.49 10.93 12.36 13.91 15.42 16.79 18.06 19.35

.10 6.50 9.19 11.67 14.12 16.48 18.86 21.19 23.47 25.85 28.09
2 .05 7.74 10.47 13.09 15.63 18.07 20.68 23.08 25.48 27.95 30.19

.01 10.67 13.39 16.19 18.76 21.45 24.40 26.89 29.43 31.82 34.33

.10 9.21 13.09 16.71 20.33 23.69 27.22 30.65 33.93 37.46 40.84
3 .05 10.67 14.68 18.48 22.14 25.71 29.39 32.93 36.64 40.03 43.39

.01 14.16 18.28 21.96 25.98 30.04 33.72 37.40 41.17 44.99 48.72

.10 11.82 16.91 21.58 26.24 30.88 35.52 39.87 44.37 48.96 53.33
4 .05 13.64 18.78 23.77 28.50 33.18 38.04 42.60 47.43 52.02 56.42

.01 17.28 22.72 27.69 32.90 37.79 42.84 47.76 52.73 57.84 62.53

.10 14.47 20.66 26.48 32.14 37.88 43.78 49.12 54.65 60.44 65.82
5 .05 16.35 22.84 28.87 34.83 40.53 46.48 52.09 57.96 63.60 69.29

.01 20.44 27.22 33.37 39.73 45.63 51.88 57.75 64.26 70.31 76.11
Wavg-WT (3, 0.10) (ε = 0.10, M = 3)

.10 10.66 14.87 19.01 22.65 26.52 30.19 33.89 37.39 41.10 44.44

.05 13.22 17.72 21.75 25.88 30.09 34.25 37.88 41.48 45.42 48.90

.01 19.31 24.06 28.36 32.32 36.83 41.53 45.73 50.08 53.43 57.61
Wavg-WT (5, 0.10) (ε = 0.10, M = 5)

.10 17.68 24.64 31.56 37.61 43.95 49.98 56.21 62.08 68.22 73.94

.05 21.81 29.27 35.96 42.96 49.75 56.61 62.74 69.00 75.49 81.26

.01 32.36 39.74 46.82 53.46 61.04 68.48 76.05 82.83 88.92 95.59



Table 3: (Continued)

q
m α 0 1 2 3 4 5 6 7 8 9
avg-WT (m, 0.15) (ε = 0.15)

.10 3.66 5.10 6.53 7.78 9.07 10.31 11.59 12.70 13.99 15.12
1 .05 4.61 6.13 7.54 8.96 10.35 11.72 12.94 14.24 15.50 16.74

.01 6.89 8.52 9.87 11.37 12.87 14.30 15.92 17.30 18.60 19.99

.10 6.65 9.36 11.94 14.35 16.78 19.18 21.58 23.85 26.17 28.49
2 .05 7.92 10.74 13.45 15.95 18.45 21.01 23.55 25.95 28.42 30.72

.01 10.99 13.80 16.54 19.43 22.14 24.85 27.29 30.07 32.60 35.17

.10 9.41 13.40 17.10 20.66 24.12 27.72 31.09 34.55 37.98 41.44
3 .05 10.99 15.16 18.98 22.55 26.30 30.00 33.66 37.27 40.88 44.22

.01 14.63 18.78 22.70 26.87 30.78 34.52 38.21 42.30 46.21 49.68

.10 12.16 17.37 22.11 26.85 31.49 36.15 40.68 45.28 49.82 54.19
4 .05 14.02 19.32 24.36 29.14 33.96 38.86 43.48 48.28 52.87 57.59

.01 17.79 23.53 28.92 34.27 39.16 44.09 49.14 54.31 59.61 64.31

.10 15.09 21.38 27.47 33.43 39.16 44.86 50.55 56.14 61.93 67.48
5 .05 17.01 23.80 30.13 36.22 42.17 48.22 54.08 60.00 65.63 71.42

.01 21.31 28.98 35.54 41.93 48.24 54.26 60.74 67.02 73.35 79.35
Wavg-WT (3, 0.15) (ε = 0.15, M = 3)

.10 10.89 15.18 19.42 23.12 27.02 30.67 34.56 37.90 41.69 45.04

.05 13.62 18.14 22.31 26.61 30.76 34.98 38.49 42.36 46.14 49.76

.01 20.07 24.95 29.01 33.45 38.20 42.72 47.18 51.23 54.94 59.15
Wavg-WT (5, 0.15) (ε = 0.15, M = 5)

.10 17.91 25.01 32.01 38.30 44.64 50.68 57.04 62.46 69.05 74.68

.05 22.39 29.83 36.81 43.74 50.63 57.41 63.58 69.96 76.41 82.33

.01 33.59 41.02 47.67 55.21 62.69 70.18 77.68 84.14 90.41 97.53



Table 4: Empirical sizes of the tests

DGP0 DGP1
T 120 300 120 300
φ - - −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

exp(1) 0.058 0.049 0.064 0.062 0.059 0.058 0.060 0.048 0.048 0.050 0.043 0.050
exp(2) 0.064 0.056 0.085 0.080 0.079 0.076 0.077 0.053 0.062 0.060 0.057 0.063
exp(3) 0.071 0.057 0.096 0.095 0.089 0.094 0.092 0.058 0.069 0.064 0.059 0.066
Wexp 0.066 0.053 0.076 0.072 0.071 0.073 0.076 0.051 0.057 0.060 0.053 0.059
sup(1) 0.041 0.044 0.046 0.043 0.041 0.038 0.041 0.035 0.040 0.036 0.035 0.040
sup(2) 0.043 0.047 0.057 0.053 0.050 0.049 0.050 0.041 0.053 0.043 0.043 0.048
sup(3) 0.053 0.052 0.065 0.062 0.058 0.064 0.067 0.044 0.050 0.050 0.049 0.054
WDmax 0.045 0.042 0.056 0.056 0.050 0.055 0.053 0.041 0.045 0.044 0.041 0.050
avg(1) 0.047 0.051 0.055 0.052 0.049 0.051 0.052 0.041 0.043 0.048 0.044 0.047
avg(2) 0.052 0.055 0.058 0.057 0.059 0.053 0.053 0.048 0.052 0.054 0.050 0.057
avg(3) 0.054 0.053 0.060 0.054 0.059 0.052 0.053 0.049 0.055 0.055 0.048 0.056
Wavg 0.051 0.054 0.056 0.056 0.059 0.051 0.051 0.047 0.049 0.053 0.047 0.053
LR 0.037 0.041 0.041 0.040 0.039 0.036 0.037 0.035 0.038 0.034 0.034 0.039
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Figure 1: Size adjusted power (q = 0, m = 1)
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Figure 2: Size adjusted power (q = 1, m = 1, φ = 0)
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Figure 3: Size adjusted power (q = 0, m = 2, case a)
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Figure 4: Size adjusted power (q = 1, m = 2, φ = 0, case a)
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Figure 5: Size adjusted power (q = 0, m = 2, case b)
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Figure 6: Size adjusted power (q = 1, m = 2, φ = 0, case b)




