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1. Introduction

Recently, Rydberg and Shephard (2003), Chauvet and Potter (2005) and Startz

(2008), among others, have introduced new time series models for binary depen-

dent variables. In this paper, the ”dynamic autoregressive” probit model suggested

by Kauppi and Saikkonen (2008) is considered. We develop Lagrange Multiplier (LM)

test which can be used to test the adequacy of a restricted model in which the au-

toregressive structure is excluded. The proposed LM test is attractive because it only

requires estimates from the restricted model, which can be obtained by using standard

econometric software packages. According to our simulations, the two versions of the

LM test considered have reasonable size and high power, especially in large samples.

In small samples, a parametric bootstrap method is proposed to obtain critical values

which are more reliable than the asymptotic ones. In an empirical application, the

LM tests are used to assess recession forecasting models for the U.S.

The paper is organized as follows. The probit model is introduced in Section 2

and the LM tests are developed in Section 3. Results of the simulation and bootstrap

experiments are provided in Section 4 and the empirical example is presented in

Section 5. Finally, Section 6 concludes.

2. Model

Consider the binary valued stochastic process yt, t = 1, 2, ..., T , and let Et−1(·) and

Pt−1(·), respectively, signify the conditional expectation and conditional probability

given the information set Ωt−1. Conditional on Ωt−1, yt has a Bernoulli distribution,

that is,

yt|Ωt−1 ∼ B(pt). (1)

In the probit model

pt = Et−1(yt) = Pt−1(yt = 1) = Φ(πt(θ)), (2)

where Φ(·) is a standard normal cumulative distribution function and πt(θ) is a linear

function of variables in the information set Ωt−1 and the parameter vector θ.
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The previous literature is mainly considered the “static” model

πt(θ) = ω + x
′

t−1β, (3)

where x
′

t−1 is a vector of explanatory variables. An extension of this model (see, e.g.,

Cox 1981) is a dynamic model

πt(θ) = ω + δ1yt−1 + x
′

t−1β, (4)

which also contains a lagged value of the dependent variable. As an extension of the

dynamic model (4) Kauppi and Saikkonen (2008) propose a model with an autore-

gressive structure

πt(θ) = ω + α1πt−1(θ) + δ1yt−1 + x
′

t−1β, (5)

where |α1| < 1. Note that alternative, but very similar, models have been proposed

by Rydberg and Shephard (2003) and Kauppi (2008). The LM tests developed in the

next section can straightforwardly be extended to these models as well.

The parameters of the models (3)–(5) can conveniently be estimated by the

method of maximum likelihood (ML). Conditional on initial values, the log-likelihood

function is

l(θ) =

T
∑

t=1

lt(θ) =

T
∑

t=1

(

yt log(Φ(πt(θ))) + (1 − yt) log(1 − Φ(πt(θ)))
)

, (6)

where lt(θ) is the log-likelihood for t:th observation. The score function is

s(θ) =
∂l(θ)

∂θ
=

T
∑

t=1

st(θ) =

T
∑

t=1

( yt − Φ(πt(θ))

Φ(πt(θ))(1 − Φ(πt(θ)))
φ(πt(θ))

∂πt(θ)

∂θ

)

, (7)

where φ(·) signifies the probability density function of the standard normal distribu-

tion and an explicit expression of the derivative term ∂πt(θ)/∂θ will be given in the

next section.

3. LM Tests

In applications, model (5) may be a superior to its restricted version (4) but, on the

other hand, its ML estimation is more complicated and no estimation procedures are
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readily available in standard econometric software packages. Thus, it is of interest to

start with the simpler model (4) and check for its adequacy by testing whether the

autoregressive coefficient α1 in (5) is zero. The null hypothesis of interest is therefore

H0 : α1 = 0. (8)

In this context, the LM test is attractive because it only requires the estimation

of the parameters of model (4). Following Davidson and MacKinnon (1984) we can

construct two LM test statistics for the null hypothesis (8). The first one is

LM1 = ι
′

S(θ̃)
(

S(θ̃)
′

S(θ̃)
)

−1

S(θ̃)
′

ι, (9)

where ι is a vector of ones and the matrix S(θ̃) is given by

S(θ̃) =
(

s1(θ̃) s2(θ̃) ... sT (θ̃)
)′

.

Expression (9) can also be seen as the regression sum of squares from the artificial

linear regression

ι = S(θ̃)a + error.

Using the symbols Φ̃t = Φ(πt(θ̃)) and φ̃t = φ(πt(θ̃)), a second LM test statistic

can be based on the artificial regression

r(θ̃) = R(θ̃)b + error, (10)

where

R(θ̃) =
(

R1(θ̃)
′

R2(θ̃)
′

... RT (θ̃)
′

)′

with

Rt(θ̃) =
(

Φ̃t(1 − Φ̃t)
)

−1/2

φ̃t
∂πt(θ̃)

∂θ

and

r(θ̃) =
(

r1(θ̃) r2(θ̃) ... rT (θ̃)
)′

with

rt(θ̃) = yt

(1 − Φ̃t

Φ̃t

)1/2

+ (yt − 1)
( Φ̃t

1 − Φ̃t

)1/2

=
(

(1 − Φ̃t)Φ̃t

)

−1/2(

yt − Φ̃t

)

.
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Running the artificial regression (10) and computing the regression sum of squares

yields the test statistic

LM2 = r(θ̃)
′

R(θ̃)
(

R(θ̃)
′

R(θ̃)
)

−1

R(θ̃)
′

r(θ̃). (11)

Because R(θ̃)
′

r(θ̃) = s(θ̃) = S(θ̃)
′

ι, it can be seen that the test statistics LM1 and

LM2 only differ in the way the information matrix estimate I(θ̃) is constructed.

Note that LM1 and LM2 can also be expressed as

LM1 =

T
∑

t=1

d̃t

(∂πt(θ̃)

∂θ

)′

(

T
∑

t=1

d̃2
t

(∂πt(θ̃)

∂θ

)(∂πt(θ̃)

∂θ

)′

)

−1 T
∑

t=1

d̃t

(∂πt(θ̃)

∂θ

)

,

and

LM2 =

T
∑

t=1

d̃t

(∂πt(θ̃)

∂θ

)′

(

T
∑

t=1

φ̃2
t

Φ̃t(1 − Φ̃t)

(∂πt(θ̃)

∂θ

)(∂πt(θ̃)

∂θ

)′

)

−1 T
∑

t=1

d̃t

(∂πt(θ̃)

∂θ

)

,

where

d̃t =
yt − Φ̃t

Φ̃t(1 − Φ̃t)
φ̃t.

This shows that the derivative term ∂πt(θ)/∂θ evaluated at θ̃ is central for the test

statistics. The derivative in model (5) is

∂πt(θ)

∂θ
=

















∂πt(θ)
∂ω

∂πt(θ)
∂α1

∂πt(θ)
∂δ1

∂πt(θ)

∂β
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1 + α1
∂πt−1(θ)
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and under H0, it is
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4. Simulation Results

The two LM tests described in the previous section are asymptotically equivalent.

In this section, the small-sample properties of the LM tests are studied by simula-

tion.1 We simulated realizations from the Bernoulli distribution (1) using two different

models2

πt(θ) = −0.30 + α1πt−1(θ) + 0.50 yt−1 (12)

and

πt(θ) = −0.30 + α1πt−1(θ) + 1.00 yt−1 − 0.20 xt−1, (13)

where

xt = 0.1 + 0.90xt−1 + εt, εt ∼ NID(0, 1).

Positive coefficients for the lagged value of yt, yt−1, in (12) and (13) indicate that

the realized values of yt, i.e. zeros and ones, tend to cluster in the same way as, for

example, recession periods of the economy (see the empirical application in Section

5).

We provide simulation evidence for sample sizes 150, 300, 500, 1000 and 2000.

For all generated series, 200 extra observations were simulated and discarded from

the beginning of every sample to avoid initialization effects. We report empirical sizes

of the models at 10%, 5% and 1% significance levels. All results are based on 2000

replications. However, in some cases a little more than 2000 replications (about 20–30

replications) are needed because of numerical difficulties in the optimization of the

log-likelihood function (6).

Empirical sizes of the LM tests in models (12) and (13) are presented in Tables 1

and 2. Both tests seem to be rather severely oversized in small samples, but for larger

samples, the empirical sizes are rather close to the nominal levels.

1 Matlab version 7.5.0 and the BFGS algorithm in the Optimization Toolbox is used in simulation

and estimation. Eviews code for computing LM tests (9) and (11) is also available upon request.
2 The initial value π0(θ) in (5) is set to in a similar way as suggested by Kauppi and Saikkonen

(2008) where π0(θ) = (ω + δ1ȳ + x̄t−kβ)/(1− α1) with the parameter values used in (12) and (13).

A bar is used to denote the sample mean of the considered variables.
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Table 1: Empirical size of the LM1 and LM2 tests in the model (12).

T LM1 LM2

10% 5% 1% 10% 5% 1%

150 28.5 15.3 3.1 28.9 14.7 3.2

300 19.6 9.0 1.5 19.3 8.9 1.4

500 17.0 8.5 1.4 16.8 8.4 1.3

1000 14.3 6.6 1.1 14.3 6.6 1.1

2000 10.3 5.3 1.2 10.3 5.4 1.2

Notes: In size simulations, α1 = 0. The results are based on the 2000 replications.

Table 2: Empirical size of the LM1 and LM2 tests in the model (13).

T LM1 LM2

10% 5% 1% 10% 5% 1%

150 42.8 26.3 7.1 41.6 23.0 5.0

300 30.1 15.2 3.3 28.4 14.5 2.3

500 22.0 10.8 2.2 21.0 10.3 2.0

1000 14.0 7.6 1.5 13.7 7.3 1.3

2000 11.4 5.7 0.9 11.4 5.3 0.9

Notes: See notes to Table 1.

Rejection rates presented in Tables 1 and 2 are based on the critical values from the

asymptotic χ2
1 distribution. However, one can use a parametric bootstrap method to

obtain alternative, potentially more accurate, critical values. The employed procedure

is the following. The ML estimates θ̃ = (ω̃ δ̃ β̃)
′

are computed under H0 and

bootstrap samples yb
τ , and the values of test statistics LM b

1 and LM b
2 , b = 1, 2, ..., B,

are obtained by using

yb
τ ∼ B(Φ(πb

τ (θ̃))), (14)

where τ = 1, 2, ..., T , and

πb
τ (θ̃) = ω̃ + yb

τ−1δ̃ + x
′

τ−1β̃.

Finally, bootstrap critical values at different significance levels are obtained from the
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empirical distribution of the test statistics LM b
1 and LM b

2 . The number of bootstrap

replications B is set to 500 and the simulation is carried out for 500 replications.

As an illustration for the usefulness of the proposed bootstrap method, Table 3

presents the rejection rates based on the bootstrap critical values for the three smallest

sample sizes. Compared with the results shown in Tables 1 and 2, the empirical sizes

of the LM tests are now much closer to the nominal values.

Table 3: Empirical size of the LM1 and LM2 tests using the model (13) and bootstrap

critical values.

LM1 LM2

T 10% 5% 1% 10% 5% 1%

150 9.0 4.2 1.0 9.6 6.2 1.0

300 9.6 5.4 1.6 9.0 6.2 1.0

500 12.2 5.0 1.2 11.2 6.4 0.4

Size-adjusted empirical power functions with different sample sizes at the 5% level

are depicted in Figures 1 and 2. In many applications, the parameter α1 is expected

to be non-negative and, therefore, we concentrate on values from α1 = 0.00 up to

α1 = 0.80.3 The power seems to increase rather quickly when the value of α1 increases,

in particular when the explanatory variable xt is employed in the model. The power of

LM2 is typically slightly higher than that of LM1 although the differences are minor.

5. Application: U.S. Recession Forecasting Models

Forecasting recession periods has been one of the most common empirical applications

of binary time series models. In this application, the dependent variable is a binary

recession indicator yt which takes the value 1 when the economy is in a recession and

0 otherwise. Predicting the direction-of-change in stock market returns is an example

of another potential application (see, e.g., Leung, Daouk and Chen 2000, Rydberg

and Shephard 2003, and Nyberg 2010b).

3 The evidence appears to be rather the same with the negative values of α1, especially in large

samples.
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Figure 1: Empirical power in the case of model (12).
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Figure 2: Empirical power in the case of model (13).
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Although in this study we are not interested in out-of-sample forecasting, we

consider forecasting models behind the ”direct” (using a forecast horizon-specific pre-

dictor yt−15) and ”iterative” (yt−1) multi-step forecasts for the recession indicator (for

details, see Kauppi and Saikkonen 2008). The difference between ”direct” and ”it-

erative” forecasts is similar to that in time series models for traditional continuous

variables (see, e.g., Marcellino, Stock, and Watson 2006).

Table 5 presents the estimated predictive models using the U.S. data described in

more detail in Table 4. The forecast horizon is assumed to be six months. The fact

the NBER business cycle turning points are announced with a delay is also taken into

account in ”direct” forecasting models.4

Table 4: U.S. dataset.

yt NBER recession indicator (yt = 1 denotes a recession)

Rt 10-year Treasury bond yield rate, constant maturity

it Three-month Treasury bill rate, secondary market

SPt Term spread, Rt − it

rt Monthly stock market return, log-difference of the S&P500 index

Notes: Recession (yt = 1) and expansion (yt = 0) periods are obtained from the business cycle

chronology provided by the National Bureau of Economic Research (see details at

http://www.nber.org/cycles/cyclesmain.html). Interest rates are from

http://www.federalreserve.gov/releases/h15/data.htm. S&P500 stock index is taken from

http://finance.yahoo.com and http://www.econstats.com.

In Table 5, outcomes of the two LM tests are in accordance with the Wald and

likelihood ratio test at a 5% significance level. The recommendation is that an au-

toregressive model structure is worth considering as an alternative to a standard

recession prediction model (see, e.g., Estrella and Mishkin 1998, and Bernard and

Gerlach 1998), possibly augmented by the forecast horizon-specific lagged value yt−15,

as presented in Models 1 and 2. However, in Model 4 used in iterative out-of-sample

forecasting approach (see Kauppi and Saikkonen 2008), the estimated coefficient for

πt−1(θ) is statistically insignificant and the lagged state of the economy, yt−1, seems

to be the main predictor.

4 We assume that this ”publication lag” is nine months. For further details see Kauppi and

Saikkonen (2008), Kauppi (2008), and Nyberg (2010a).
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Table 5: Estimation results for the recession prediction models.

Model 1 2 3 4

constant -0.50 -0.02 -1.71 -2.00

(0.16) (0.04) (0.17) (0.24)

SPt−6 -0.61 -0.21 -0.58 -0.67

(0.13) (0.05) (0.14) (0.16)

rt−6 -0.05 -0.08 -0.01 -0.01

(0.02) (0.02) (0.03) (0.03)

πt−1(θ) 0.81 -0.17

(0.03) (0.09)

yt−1 3.38 3.95

(0.25) (0.35)

yt−15 -0.41 -0.07

(0.36) (0.16)

log-L -185.94 -136.60 -55.63 -55.29

pseudo − R2 0.192 0.367 0.689 0.691

LM1 25.25 2.75

p-value 0.000 0.097

LM2 36.18 0.65

p-value 0.000 0.420

Bootstrap

critical values

LM1 10 % 3.06 5.10

5 % 3.93 6.88

1 % 5.90 9.61

LM2 10 % 2.71 2.30

5 % 3.75 3.07

1 % 5.37 6.45

Notes: Models are estimated using the U.S. data from 1954 M01 to 2006 M12 (T = 636). First 21

months are used as initial values. Robust standard errors (see Kauppi and Saikkonen 2008) are

reported in parentheses. The estimated value of the log-likelihood function (6) and pseudo-R2

measure (Estrella 1998), which is a counterpart to the coefficient of determination in models for

continuous dependent variables, are also provided as well as the values of the LM1 and LM2 test

statistics, their p-values based on the asymptotic χ2

1
distribution, and critical values obtained by

bootstrap.
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6. Conclusions

We have proposed LM tests for testing an autoregressive model structure in binary

time series models. Based on a limited simulation study, the tests appear to have

reasonable empirical size, especially in large samples, and high power. For small sam-

ples, the proposed bootstrap simulation method provides improved empirical sizes.

An empirical example of recession forecasting models for the U.S. illustrates the use

of the LM test and provides evidence that the inclusion of an autoregressive model

structure may be a useful addition to the recession prediction model.
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