
On the Distribution of Crop Yields: Does the

Central Limit Theorem Apply?

Abstract

In this paper we take issue with the applicability of the central limit theorem (CLT)

on aggregate crop yields. We argue that even after correcting for the e¤ects of spatial de-

pendence, systemic heterogeneities and risk factors, aggregation does not necessarily lead

to normality. We show that aggregation is also likely to lead to nonnormal distributions,

which exhibit both skewness and excess kurtosis. In particular, we consider the case in

which the number of summands is not constant but varies with time, which corresponds

to the empirically relevant situation where the number of acres used for cultivation of

a particular crop exhibits substantial variation over time. In this case, the CLT is not

applicable while the limit theorems for random sums of random variables, which apply,

predict that the limiting distribution of the sum is not normal and depends on the pos-

tulated distribution of the number of summands. Using data from aggregate US states

crop yields, we provide empirical support regarding the deviation of aggregate crops yields

from normality.

JEL Classi�cation: C16, C51, Q14

Keywords: Aggregate Crop Yield; Central Limit Theorem; Limit Theorem for Random

Sums of Random Variables; Normality.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6551916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The probability distribution of crop yields has been extensively investigated over

the last twenty years or so; however its characterization still remains an open is-

sue. Several authors, such as Just and Weninger (1999), Ker and Goodwin (2000),

Atwood, Shaik and Whatts (2002, 2003), Sherrick et al. (2004), Hennessy (2009),

to name a few of the recent contributors to this literature, focus on the question of

whether crop yields deviate from normality.

Just and Weninger (1999) identify the following reasons, which are likely to pre-

vent the emergence of a general consensus on the shape of crop yield distribution:

(i) The lack of a clear pattern against normality. In spite of the presence of ample

empirical evidence against normality, the origins of the latter are not at all clear. For

example, in an early study, Day (1965) reports weak evidence for positive skeweness

and nonnormal kurtosis (both leptokurtosis and platykurtosis) for Mississipi cotton,

corn and oats yields. Using aggregate time series data, Gallagher (1987) �nds neg-

ative skewness in US soybean yields, a result consistent with Taylor (1990). The

latter study, however, reports evidence on positive skewness for the wheat yields

together with leptokurtosis for all crops (corn soybean and wheat) under consid-

eration (see also Buccola 1986, Moss and Shonkwiler 1993). (ii) The uncertainty

surrounding the speci�cation of the conditional mean and conditional variance of

yields. Misspeci�cation of the systematic components of crop yields are likely to

introduce nonstationarity in the random component thus producing erroneous in-

ferences on the distributional properties of the latter. In the same spirit, Hennessy

(2009, p. 46) noted that �...when systemic heterogeneities exist in the data under

consideration, these will dominate to determine the shape of the yield distribution�.

He also provided a link between the skewness of aggregate yield and the weather fac-

tor skewness. (iii) Misinterpretation of statistical signi�cance. This problem arises

in a univariate framework when one fails to combine the various tests for normality

(e.g. separate tests for skewness and kurtosis) into a single test to assess signi�cance.
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The same problem is also likely to arise in a multivariate framework, if the possible

correlations among yields of several crops are ignored. (iv) The use of aggregate

time series (ATS) data to represent farm-speci�c variation. At each point in time,

crop yield data are constructed by taking the acreage-weighted average over the

sample farms. This averaging operation eliminates the speci�c probabilistic features

of the yields of each individual farm, thus obscuring the production uncertainty

characteristics at the farm-level.

All issues raised above are indeed valid. However, Just and Weninger make an

additional point concerning the necessity of the normal distribution as the appropri-

ate probabilistic description of crop yields, which arises from the fact that the CLT

seems to be at work. Speci�cally, Just and Weninger correctly point out that �crop

yields at all levels are averages�. In particular, they state: �At the aggregate level,

ATS data are averages of yields over many farms. At the farm-level, yields are av-

erages of production over many acres�(pp. 301). As a result, the above mentioned

authors conclude that �under broad conditions�the probability distribution of these

averages has to be the normal because of the CLT. On the other hand, Goodwin

and Ker (1998) and Goodwin and Mahul (2004), among others, state that the exis-

tence of spatial dependence and systemic risk factors indicate that a straightforward

application of the CLT is not appropriate.

In this paper we take issue with the applicability of the CLT on aggregate crop

yields, arguing that even after correcting for the e¤ects of spatial dependence, sys-

temic heterogeneities and (systemic) risk factors, aggregation does not necessarily

lead to normality but instead it is also likely to lead to nonnormal distributions,

which exhibit both skewness and excess kurtosis. Put it di¤erently, although we do

accept the fact that crop yields are indeed averages and also that �convergence in

distribution�seems to be in place (in the sense that no distributional explosion is

observed) we do not accept that the only possible limiting distribution is the nor-
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mal. More speci�cally, we consider the case in which the number of summands is

not constant but varies with time, being a random variable itself. This corresponds

to the case in which the number of acres used for the cultivation of a particular crop

exhibits substantial variation over time. Indeed, one of the most critical decisions

that a farmer makes is what crops to grow on the land she has available. For some

farmers, the decision of which crops to cultivate is straight forward because the land,

climate, tradition, infrastructure and economic conditions all support one dominant

crop1. However, these farmers still need to decide each year how many acres of

this crop they will cultivate, which may be a function of unpredictable economic

conditions. For other farmers, there may be a variety of crops adapted to their local

ecology, and they may wrestle each year with the decision of what crops to plant

on what pieces of land. Factors that can a¤ect cropping decisions in a random way

are predictions about the weather and predictions on what crops may be planted

in other parts of the country or the world which will in�uence expectations about

prices for di¤erent crops at the end of the growing season.

Under this set of assumptions, the central limit theorem is not applicable; in-

stead we must appeal to limit theorems for random sums of random variables (see

Gnedenko and Korolev 1996). These theorems predict that the limiting distribution

of the sum is not normal and depends on the postulated distribution for the number

of summands (see Clark 1973 and Blattberg and Gonedes 1974, among others, for

an application of these ideas to stock returns). Using data from US aggregate state

crop yields, we provide empirical support for the predictions of these theorems. In

particular, we �nd positive correlation between crop-speci�c acreage and a set of

statistics that measure the deviation of aggregate crops yield from normality.

This paper is organized as follows: �rst, the case against standard convergence to

normality mentioned above is analyzed in detail, then the relevant empirical support

is provided using US data. Last section concludes the paper.
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On the Applicability of the Central Limit Theorem: The case
of Random Sums

As mentioned in Introduction, Just and Weninger (1999) make a case for the nor-

mality of the distribution of crop yields by appealing to the CLT. More speci�cally,

they claim that �At the aggregate level ATS data are averages of yields over many

farms. At the farm-level, yields are averages of production over many acres. The

CLT implies that averages have asymptotically normal distributions under broad

conditions� (Just and Weninger 1999, pp 301). Let us formalize this statement.

First, we may assume that the random variable of interest is the production of a

speci�c acre, with corresponding index j; at time t, denoted by �jt. Obviously, the

values of the random variable �jt (that is the production of each speci�c acre j at

time t) are not observable. Nevertheless, what is observable is the production at

the State, county, or even farm level as well as the total acreage of each State (or

county or farm) devoted to the production of a speci�c crop. So, let Xit and nit be

the production and the acreage of farm i, respectively, kt be the number of farms

and Nt =
ktP
i=1

nit be the total acreage of all farms at time t. Then, the average yield

per acre is given by:

yt =

ktP
i=1

Xit

ktP
i=1

nit

=

NtP
j=1

�jt

Nt
(1)

More speci�cally, we must distinguish between the probabilistic properties of the

�jt�s within the same time period t (cross-sectional properties) and those across

time (temporal properties). To formalize this, we may arrange the random variables

�jt into the following array:
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t = 1 t = 2 :::
j = 1 �11 �12 :::
j = 2 �21 �22 :::
:
:
:

j = Nt �N11 �N22 :::

(2)

where the last line in (2) does not correspond to a speci�c row but it describes the

last element of each column.

In this general setting, the random variables �jt may be characterised by two

types of dependence. The �rst one is cross-sectional dependence, that is dependence

among the elements of the columns of (2). The second is temporal dependence

among the elements of the rows of (2). Put it di¤erently, cross sectional dependence

refers to dependence among the crop yields of various acres within the same time

period, whereas temporal dependence concerns the dependence among �jts across

di¤erent time periods. Similar distinctions can be made about time and spatial

heterogeneity. More speci�cally, cross-sectional heterogeneity concerns the extent to

which the distributions, D(�); of the yields of various acres within the same period

are di¤erent, whereas time heterogeneity refers to the distributions of the total yield

across di¤erent time periods. For example, if D(�11) = D(�21) = ::: = D(�N11)

then we have cross-sectional homogeneity for t = 1: On the other hand, if D(y1) =

D(y2) = ::: then the distributions of the average yield over time are identical:

Let �t and �t denote the mean and standard deviation of �jt at time t. In

other words, we assume that the �rst two moments of �jt are equal across j =

1; 2; :::; Nt (cross-sectional homogeneity of the second-order). The CLT states that,

under some additional conditions on the probabilistic properties of the individual

random variables �jt; p
Nt (yt � �t)

�t

L! N(0; 1): (3)
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As an implication of (3), we have that for large Nt;

yt ' N(�t; �2t=Nt) (4)

Remarks

(i) Just and Weninger claim that the (cross-sectional) conditions under which

(4) is true, are �broad�. Indeed, recent results in Probability Theory on the con-

ditions under which CLT applies seem to make a very strong case in favor of the

approximate normality of yt. More speci�cally, it has been proved that CLT holds

under quite general properties for the initial sequence f�jtgj�1 (with �xed t): For

example, Ibragimov (1962) proves that f�jtgj�1 obeys CLT if it is strictly station-

ary, ��mixing sequence with E j�1tj
2+�t < 1; for some �t > 0: Herrndorf (1984)

relaxes the assumption of stationarity and derives a CLT for ��mixing sequences

of random variables satisfying the condition supi2NE j�itj
bt < 1; for some bt > 2

(see Kourogenis and Pittis 2009 for a survey of CLT�s). On the contrary, when the

area under consideration is restricted, then spatial dependence may not dissipate

fast enough for CLT to hold (see Goodwin and Ker (1998), Goodwin and Mahul

(2004) among others).

(ii) It is obvious from (4) that a su¢ cient condition for achieving time homo-

geneity amounts to �t = � and �t = �
2 > 0 for every t.

One of the assumptions implicit in (4) is that the number, Nt, of summands is

large and �certain�. In many interesting cases, however, the number of the sum-

mands is not constant but is itself a random variable. In such cases, it is interesting

to investigate the limiting behaviour of the so-called �random sums�of random vari-

ables. More speci�cally, we are interested in �nding the conditions (if any) under

which N(0; 1) is still a good approximation of the distribution of the aggregate crop

yields, if the number, Nt (the total acreage) of the �jt�s (production per acre) is large
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but random. Put it di¤erently, we are interested in examining whether there are

any conditions under which, for each t, the �jt�s may still belong to the domain of

attraction of the normal law, even in the presence of randomness in the number of

summands. We are also interested in identifying the cases for which a distribution,

D; di¤erent than N(0; 1) is the appropriate limiting distribution of the random sum

and studying its properties.

To de�ne the problem, for each t, let f�jgi�1 be an iid sequence of random

variables with �nite E(�j) = �� and V ar(�j) = �
2
� > 0. Obviously, the moments ��

and �2� may in general vary across time, but since the analysis that follows refers

to a speci�c time period, we choose to drop the second subscript t from the more

appropriate notation ��t and �
2
�t
for simplicity. Moreover, (and following the same

notational convention of dropping the time subscript) let fNngn�1 be a sequence of

nonnegative integer-valued random variables. De�ne the random sum process

SNn =
NnX
i=1

�j:

The question to be answered is under what conditions the random sum, SNn ; prop-

erly normed and centered, converges in law to some random variable, Z; and further,

under what additional conditions Z is distributed as N(0; 1): Robbins (1948) obtains

su¢ cient conditions for the convergence in law of the properly centered and normed

sequence SNn ; to normal, under the assumption that Nn is independent of the sum-

mands, �1, �2; :::. Renyi (1960) and Blum, Hanson and Rosenblatt (1963) derive

su¢ cient conditions similar to those of Robbins (1948) without the assumption of

independence between Nn and the summands.

To state the problem formally, (for each t) de�ne the centered and normed ran-
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dom sum process, Zn; as follows:

Zn =
SNn � n��q

n�2�

We are interested in �nding the general conditions under which the sequence of

the Zn�s converges in law to a random variable Z; as well as the speci�c conditions

guaranteeing that Z � N(0; 1): Finkelstein and Tucker (1989) show that under the

assumption that Nn is independent of the summands, the necessary and su¢ cient

condition for

Zn
L! (some) Z (5)

is given by

Un �
Nn � np

n

L! (some) U: (6)

In such a case, the distribution of Z is that of the sum of two independent random

variables, Z1 and Z2; where Z1 is N(0; 1) and the distribution of Z2 is the same

to that of
��U

��
: This result may be stated in an equivalent way by saying that the

distribution function FZ of Z is equal to ��FU where � and FU are the distribution

functions of the standard normal and U , respectively. In other words, Z is a mixture

of normals, with the mean being mixed by U (see Finkelstein, Kruglov and Tucker

1994).

Finkelstein and Tucker (1989) also derive the conditions for the convergence of

Zn to N(0; 1): Speci�cally, they show that if (and only if) condition (6) is replaced

by

Un �
Nn � np

n

p! 0; (7)

then

Zn
L! N(0; 1): (8)
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Remarks:

(i) Condition (7) is stronger than (6). This in turn implies that the assump-

tions that must be made on the behavior of fNngn�1 in order to obtain asymptotic

normality are stronger than the ones that ensure simply convergence to some dis-

tribution. In the case that (6) holds but (7) fails, the sequence Zn of random sums

converges in law to a non-normal random variable, which is likely to exhibit both

skewness and excess kurtosis.

(ii) The case analyzed above is usually referred to as �convergence of random

sums under nonrandom centering�. This is due to the fact that the random sum

process SNn is centered by the sequence of constants, n��. A somewhat di¤erent

problem arises in the case that the sequence SNn is centered by Nn�� instead of

n��: In such a case, the random sum process is centered by a sequence of random

variables rather than by a sequence of constants. This asymptotic problem, referred

to as �convergence of random sums under random centering�was �rst analyzed by

Renyi (1960) who showed that the centered and normed random sum process,

Z�n �
SNn �Nn��
�x
p
n

(9)

converges to N(0; 1) if
Nn
n

p! 1: (10)

Condition (10) which ensures convergence to N(0; 1) in the case of random centering

is weaker and hence easier to be satis�ed in practice than (7) which corresponds to

the case of nonrandom centering. However, nonrandom centering is more natural

for constructing approximate distributions. Moreover, Korolev (1995) argues that

random centering �signi�cantly restricts the class of possible limit laws compared

to the general situation, where random sums are centered by constants�(1995, pp.

2153).
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(ii) The results analyzed above were obtained under the restrictive assumption

that the initial random variables, �j; are iid with �nite mean, ��; and variance,

�2� . Billingsley (1962) extends this result by proving the asymptotic normality of

Z�n for the cases in which (10) holds and the initial sequence f�jgi�1 obeys the

�invariance principle�(IP). The latter is a stronger version of the classical central

limit theorem for nonrandom partial sums. It has been shown that IP is satis�ed

by a wide spectrum of non iid sequences f�jgi�1; such as strong or uniform mixing

ones (see Kourogenis and Pittis 2009 for a recent survey on this topic). This result

implies that Z�n
L! N(0; 1) holds under (10) even for cases in which f�jgi�1 is an

asymptotically independent, nonstationary sequence.

The practical implications of the preceding discussion may be summarized as

follows:

(i) When a random variable, Z; is the sum of elementary random variables, then

its distribution may be approximated by the normal one, even if the number of

summands, Nn; is random. This is valid when Nn behaves in a way prescribed by

conditions (7) or (10). Speci�cally, Nn must exhibit small variation around n for

large n. If Nn displays considerable variability around n even for large n; then the

asymptotic distribution of Z is not normal but rather a mixture of normals. In such

a case, the empirical distribution of Z is likely to exhibit both skewness and excess

kurtosis.

(ii) In assessing the distribution of crop yields using aggregate time series data,

we face the following problems: First we must account for possible trends in the

aggregate series arising from time heterogeneity in the moments of the �j�s. More

speci�cally, if we assume that E(�jt) = ��t then the aggregate crop yield series

will exhibit a trending behavior, which has to be accounted for before any tests for

normality are carried out. This issue is analyzed in the third and fourth sections

of Just and Weninger (1999) and is also considered in the empirical section of this
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paper. However, even if we succeed in correctly detrending the aggregate series,

we still face the problem of the possible variation (randomness) of the number of

acres that enter the calculation of the aggregate yield over time. If this variation is

substantial (in the sense that it violates conditions (7) or (10)), then non-normality

of the aggregate data is likely to arise.

Verbally, we consider the case in which the number of summands is not constant

but varies with time, being a random variable itself. This corresponds to the case

in which the number of acres used for the cultivation of a particular crop exhibits

substantial variation over time and this variation is more or less random. As dis-

cussed in Introduction, factors that can a¤ect cropping decisions in a random way

are predictions about the weather and predictions on what crops may be planted

in other parts of the country or the world which will in�uence expectations about

prices for di¤erent crops at the end of the growing season.

Empirical Results

The analysis of the previous section suggests that the presence of non-normality in

the crop yield distributions is likely to derive from the random nature of the number

of acres employed in the production of various crops over time. This assumption

implies that we should observe some signi�cant correlation between the sample stan-

dard deviation, s(�Nt); of the percent annual changes, �Nt; of the total number

of acres employed in the production of a speci�c crop and any measure of non-

normality (such as skeweness and excess kurtosis coe¢ cients) of the distribution of

the aggregate (State level) yield of this crop. To examine this empirical implication,

we �rst estimate the skeweness, �3; and kurtosis, �4, coe¢ cients of the distribution

of percent annual changes, �yt; of the yields of �ve major crops, namely cotton,

soybean, corn, barley and wheat together with the value of the Jarque-Berra (JB)

test for normality for several US States2. We also estimate the same parameters for
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the residuals, ut, of an auxiliary autoregression of �yt on �yt�1, �yt�2 and a time

trend. The latter case aims at controlling for non-normality e¤ects caused by the

presence of temporal dependence and/or time heterogeneity (deterministic or sto-

chastic) in the original crop yield series (see Just and Weninger 1999 for a detailed

discussion of these points).

Table 1 around here

Table 1 reports the following correlation coe¢ cients: (i) the correlation between

s(�Nt) and the absolute value of �3; (ii) the correlation between s(�Nt) and the

absolute value of �4 � 3; (iii) the correlation between s(�Nt) and JB. Note that

the employed distributional characteristics have been calculated for two alterna-

tive empirical distributions of crop yields. The �rst one refers to the raw data of

�yt whereas the second one corresponds to the residuals ut. The results may be

summarized as follows:

(i) All estimated correlation coe¢ cients have positive sign thus suggesting a pos-

itive relationship between the standard deviation of �Nt and each of the employed

measures of non-normality.

(ii) The magnitude of these correlation coe¢ cients, in general, seems to be higher

for the case in which the detrended and demeaned crop yield series are employed.

For example, for the case of soybean, the correlation coe¢ cient between s(�Nt)

and j�3j is equal to 0.24 and 0.50 for the cases of raw and �ltered crop yield series

respectively.

(iii) In some cases, the estimated correlation coe¢ cients exceed the value of 0.5,

thus reaching an impressively high value. For example, the correlation coe¢ cient

between s(�Nt) and j�4 � 3j for the case of the �ltered cotton yield is equal to 0.54,

whereas the same coe¢ cient for the case of �ltered barley yield reaches the value of

0.70.
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(iv) When the residuals ut are employed, the smallest correlation coe¢ cient is

the one between s(�Nt) and the Jarque-Berra Statistic for the case of wheat and is

equal to 0.08. It is interesting to note that this is the crop for which �Nt exhibits

the smallest average variation across States. More speci�cally, the mean of the

estimated s(�Nt)�s across States is equal to 30.71, 36.22, 25.40, 34.35 and 25.1 for

cotton, soybean, corn, barley and wheat, respectively. This piece of evidence implies

that the minimum �correlation e¤ects�appear in the case of wheat for which the

percent annual changes of the total number of acres displays the minimum variation

among the �ve crops under consideration.

Table 2 reports the estimated regression coe¢ cients and the corresponding t-

statistics between the standard deviation of �Nt (explanatory variable) and the the

distributional characteristics of crop yield changes, as measured by the skeweness,

the kurtosis and the Jarque-Berra Statistic:

Table 2 around here

In accordance with the results of Table 1, we �nd that when the statistics of the

residuals ut are used, all crops have at least one regression coe¢ cient with corre-

sponding t-statistic greater than 1.96. More speci�cally:

(i) The higher values of the t-statistics correspond to barley (all greater than 5)

and to corn (all greater than 2.1).

(ii) The absolute values of the t-statistics when uts are used are in general higher

than the corresponding ones for the case where �yts are employed.

Conclusions

This paper comments on the assertion of Just and Weninger (1999) that the distri-

bution of the aggregate crop yields is expected to be normal due to the applicability
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of the CLT. We argue that normality is not an inevitable consequence of the op-

eration of aggregation of crop yields. Motivated by the empirical observation that

the number of crop-speci�c acres exhibits substantial variation over time (due to

weather predictions or predictions about cultivation decisions elsewhere that will

a¤ect expectations on crop prices), we consider limit theorems that are applicable

when the number of summands is not constant but varies with time. These theorems

predict that the limiting distribution of the sum is not normal and depends on the

postulated distribution for the number of summands.

Our empirical analysis investigates the existence of signi�cant correlation be-

tween the sample standard deviation of the percent annual changes of the total

number of acres employed in the production of a speci�c crop (�Nt) and di¤erent

measures of non-normality (skeweness and excess kurtosis coe¢ cients) of the distri-

bution of the aggregate yield of this crop. We apply this investigation to �ve major

crops, namely cotton, soybean, corn, barely and wheat. To hedge against the pres-

ence of non-normality e¤ects due to temporal dependence and/or time heterogeneity

in the original crop yield series, we apply the same investigation to the de-trended

and demeaned series of the same crops. Our results provide empirical support for

our theoretical predictions. In particular, we �nd a positive relationship between

�Nt and di¤erent measures of non-normality, the magnitude of which increases,

reaching impressively high values for some crops, when we use the de-trended and

demeaned crop series.

Our results have implications for the correct speci�cation and estimation of

econometric models of crop yields, since we have identi�ed an additional factor,

namely the standard deviation of �Nt, which can cause nonzero skewness and ex-

cess kurtosis in the distribution of aggregate crop yields. This implies that when

policy-making is based on these estimated models, one needs to be cautious to take

into account the changes in crop-speci�c acreage, in order to avoid unreliable and

15



misleading results deriving from distributional mispeci�cation.
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Footnotes:

1: For example, in the South of the US cotton was king because it grew well in the

long, hot summers, the farmers understood how to manage it and the cotton gins,

markets and transportation systems were all nearby.

2: Data are collected from National Agricultural Statistics Service (NASS). NASS

publishes annual time series on harvested land and yield production for a variety

of commodities both in county, state and country level. Selected crops satisfy a

minimum requirement of 50 observations (that is collecting data for at least half

a century) for harvested land and crop�s yields. This condition, depending on the

crop examined, resulted in excluding states that did not track down these series for

a long period. Therefore, we included in our study 17, 31, 46, 39 and 44 states

in the case of cotton, soybean, corn, barley and wheat respectively. The inception

year of available data varies from 1866 (143 annual observations) to 1959 (50 annual

observations).
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Table 1: Correlation Between the Standard Deviation of �Nt and the Distribu-

tional Characteristics of Crop Yield Changes

Jarque-Berra Statistic Skewness Kurtosis

Cotton 0:51 0:34 0:53

Soybean 0:09 0:24 0:14

�yt Corn 0:30 0:25 0:26

Barley 0:34 0:49 0:43

Wheat 0:02 0:30 0:11

Cotton 0:44 0:25 0:54

Soybean 0:32 0:50 0:31

ut Corn 0:36 0:31 0:33

Barley 0:75 0:66 0:70

Wheat 0:08 0:32 0:16
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Table 2: Estimated Regression Coe¢ cients (t-statistics in parentheses) Between

the Standard Deviation of �Nt (explanatory variable) and the Distributional Char-

acteristics of Crop Yield Changes.

Jarque-Berra Statistic Skewness Kurtosis

Cotton 0:10 (2:27) 0:004 (1:40) 0:014 (2:43)

Soybean 0:11 (0:48) 0:00 (1:35) 0:01 (0:77)

�yt Corn 9:60 (2:11) 0:01 (1:72) 0:05 (1:82)

Barley 8:09 (1:02) 0:03 (3:12) 0:11 (1:72)

Wheat 0:48 (0:54) 0:006 (2:13) 0:014 (1; 07)

Cotton 0:04 (1:90) 0:002 (0:98) 0:013 (2:47)

Soybean 0:30 (1:81) 0:01 (3:09) 0:02 (1:76)

ut Corn 9:90 (2:58) 0:01 (2:19) 0:06 (2:30)

Barley 8:81 (6:94) 0:02 (5:34) 0:09 (6:01)

Wheat 0:19 (0:14) 0:006 (1:98) 0:012 (0:71)
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