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Abstract 

The measurement of productivity fluctuations has been the focus of decades-long interest.  In addition to 

broad structural forces driving productivity changes, there is more recent interest in measuring and identifying the 

heterogeneous forces driving these changes.  A major force is learning-by-doing which is used by economists to 

describe the phenomenon of productivity growth arising from the accumulation of production experience by a firm.  

This paper proposes a bounded learning concept with the learning progress function characterized by the 

degree of efficiency and the specification of the learning progress as a logistic function capturing both the slow start-

up and the limit in learning progress. The inter-firm learning inefficiency is defined as the inability of a firm to reach 

the optimal plateau relative to the „best practice‟ firm from the set of comparable firms. We further differentiate 

learning efficiency from the technical efficiency. The key contribution of this research is to provide a measure the 

firm‟s movement along the learning progress curve and explain the existence of firm-level heterogeneity in learning. 

The time varying technical efficiency is estimated based on stochastic production frontier methods and firm-specific 

learning efficiency is disentangled using the residual of the production frontier (productivity).The model is then used 

to decompose the factor productivity growth into components associated with learning, scale, technical efficiency, 

technological change and change in allocative efficiency. This productivity growth decomposition provides useful 

information and policy level insight in firm-level productivity analysis. 

The major econometric issue in production function estimation is the possibility that there are some forces 

influencing production that are only observed by the firm and not by the econometrician. With firm input use being 

endogenous, inputs might be correlated with unobserved productivity shocks. The measure of technical efficiency 

by estimating the production frontier directly in presence of endogeneity of input choice can be biased in the sense 

that the measure of efficiency favors the firms employing higher levels of inputs. The Levinsohn and Petrin (2003) 

approach is extended to overcome this simultaneity problem in stochastic production frontier estimation to generate 

consistent estimates of production parameters and technical efficiency. 

The model is applied to plant-level panel data on Colombian food manufacturing sector. The dataset is 

unique longitudinal data on firms in the sense that it has information on both plant-specific physical quantities and 

prices for both outputs and inputs. In contrast to most of the existing literature which measure productivity by 

deflating sales by an industry-level price index, these data eliminate a common source of measurement error in 

production function estimation. Plant-level productivity growth decomposition and the contribution of learning 

effect are explored by estimating the production frontier and firm-specific learning efficiency.  
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1. Introduction 

Being a source of productivity growth, understanding the influence of learning effect in 

production by the policy maker and business manager can enhance firm performance. Learning-

by-doing is a dynamic process of productivity growth associated with the accumulation of 

production experience (or cumulative output) by a firm. Production experience yields 

information or knowledge, which improves decisions and results in productivity enhancement. 

One representation is a cost-quantity power relationship, ( ) (0) ( )c t c v t   where ( )c t  is current 

unit cost, ( )v t is cumulative past output, and 0  is the learning coefficient. Another way of 

representing learning is the productivity-quantity relation where productivity in time period t is 

an increasing function of cumulative past output or
0( ) ( )A t a v t  . On the one hand, the costless 

by-product of a firm‟s production activity is called passive learning (Rosen, 1972). When the 

firm‟s productivity enhancement is only due to passive learning it is called an experience curve. 

On the other hand, the observed Power relationship of productivity (or unit cost) being an 

increasing (or decreasing) function of cumulative output is called progress curve and it is an 

umbrella where productivity growth is the result of not only passive learning but also a variety of 

complex forces like research, training, capital investment and other unmeasured factors. The 

productivity gain due to learning is used as long run planning and control tool in a variety of 

manufacturing industries. 

The classical learning progress assumes that learning is unbounded. But does the learning 

continue forever? Differences in management, training, and infrastructure lead to varied learning 

abilities of the firms (Adler & Clark, 1991; Argote, 1999). But how can we quantify firm‟s 

heterogeneous learning abilities? What are the contributions of learning and other sources to the 

firm level productivity growth?  
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Considerable empirical research uses the log-linear model to estimate the unbounded 

learning rates and finds a significant relationship of firm productivity with production 

experience. Most recent empirical studies such as (Arrow, 1962; Rapping, 1965; Lieberman, 

1984; Bahk & Gort, 1993; Lucas Jr, 1993; Luh & Stefanou, 1993; Irwin & Klenow, 1994; 

Jarmin, 1994; Benkard, 2000; Thompson, 2001; Thornton & Thompson, 2001) find that firms 

and industries become more productive as they gain more experience of producing goods and 

services. The estimated results from these researches are varied and average finding is 

approximately 10 to 20% reduction in average cost of production for every doubling of 

cumulative output.  

Organizational knowledge through experience is embedded in individual workers, 

technology, and structure of the organization. When passive learning (Rosen, 1972) is the 

dominant factor in learning process, productivity growth is invariably bounded. Conway & 

Schultz (1959), Jovanovic & Nyarko (1995), Baloff (1966, 1971) , and Young (1993, p. 445) 

present evidence that productivity reaches a limit, or a “plateau effect”. On the other hand, the 

recognition of S-shaped learning curve is not new, having appeared in the literature as early as 

Carr (1946) and has been useful for planning and control methods for new product introduction. 

Cochran (1960) also proposes the learning curve as S-shaped, suggesting that an S-shaped 

pattern appears more appropriate than the classical learning model. The idea is during the early 

stage a firm attempts various options and explores different alternative production plans and 

designs which slow down the initial learning rate. After the initial exploration there are fewer 

changes in the production system leading to a higher learning rate (Cochran & Sherman, 1982). 

Both the learning bound and its S-shape character are important in the sense that the learning 
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limit captures the diminishing return of learning on a given technology and the S-shape replicates 

the start-up phase of a firm.  

This paper models the learning phenomenon at the micro level to overcome the 

limitations posed by the classical learning curve literature and to investigate its contribution to 

the firm level productivity growth. The learning progress function is characterized by the degree 

of efficiency and the specified as a logistic function capturing both the slow start-up and the limit 

in learning progress. This paper corrects for endogeneity of input choice problem within the 

stochastic production frontier estimation to generate consistent estimate of the production 

parameters and technical efficiency as we estimate time varying technical efficiency using 

stochastic frontier approach and disentangle learning efficiency from it using the frontier 

residual. The model is then used to decompose the total factor productivity growth into 

components associated with learning, scale, technical efficiency, technological change and 

change in allocative efficiency in Colombian food manufacturing industry.  

The rest of the paper is organized as follows. Section 2 presents the idea of bounded 

learning and learning inefficiency and how to distinguish it from technical inefficiency. Section 3 

describes analytic framework for productivity growth decomposition where learning effect is a 

source of productivity growth. Section 4 describes the methodology for estimation where 

endogeneity of input choice problem is corrected in stochastic production frontier. Section 5 

presents the data and basic estimation results. Section 6 provides concluding comments.  

2. Bounded Learning and Learning Inefficiency 

The conventional learning model is extended by modeling learning progress as a logistic 

function which explains both the initial „start up‟ phase and steady state „plateau‟. Inter-firm 

learning efficiency is defined as a relative measure quantifying the learning progress of a 
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particular firm relative to the „best practice firm‟ from the set of comparable firms in the industry 

and captures heterogeneous learning abilities. The proposed logistic learning progress is 

governed by a differential equation given by  

 2dA
A A A

dV a


     (1) 

and the explicit solution is   

 
(1 )0

0

(1 )
( )

(1 )
1

t
V

a
A V

a a
e
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 



  




 


 (2) 

where A is productive knowledge arising through experience,  and  are instantaneous learning 

rate and level of learning inefficiency, respectively.  

Understanding the difference between maximum potential frontier and potential frontier 

given learning is important to distinguish between learning and technical inefficiency. Learning 

inefficiency parameter ( [0,1) ) is firm specific and reflects the inability of a firm to reach the 

learning progress curve of the „best practice firm‟ given a set of cumulative past output. The 

deterministic kernel of the potential production frontier given learning can be represented as

 ; ( , ; )exp( )t iA V f x t u   . The maximum potential frontier is the production frontier of the 

best learning progress (100% learning efficient) firm and can be represented as

 ; 0 ( , ; )exp( )tA V f x t u  . 

 Figure 1 depicts the deterministic production function of both the maximum potential 

frontier and potential frontier given learning for a single product and one-variable factor of 

production. Point A depicts a firm that produce 
ty  using input 

tx  is technically inefficient 
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because it operates beneath the potential production frontier given learning and the deviation AB 

is measured as technical inefficiency. The impact of learning inefficiency for the firm is 

represented by the deviation of the potential frontier given learning from the maximum potential 

frontier or BC.    

 

 

Technical inefficiency reflects the inability of a firm to obtain the maximum potential 

output given learning, from a certain amount of input use. Technical efficiency compares the 

actual quantity of output achieved to the maximum achievable output for certain inputs given the 

constant learning inefficiency for the firm. |
( ; )
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iit
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   . What are the sources of 

technical efficiency? Increased education and managerial ability to production are widely 

accepted sources of technical efficiency in a firm. Leibenstein calls the technical efficiency an X-

inefficiency (see Leibenstein, 1966; Stigler, 1976; Leibenstein, 1978, 1979)  and constructed a 

                                Figure 1: learning and technical inefficiency 
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theory where difference in motivation was the source of inefficiency. He also points out that 

differences in knowledge among the firms can lead to firm inefficiency. Mundlak‟s (1961) 

covariance analysis to control for managerial bias in production reflects a positive relation 

between managerial ability and technical efficiency. Stefanou and Saxena (1988) find a 

significant impact of education and training on allocative efficiency by a non-frontier approach 

to efficiency. Battese and Coelli (1995) model technical inefficiency effect in a stochastic 

production frontier approach and finds that age has positive and schooling has negative effect on 

inefficiency.  

If the source of technical inefficiency is the difference in motivation, efficiency can be 

improved by introducing appropriate incentives in the firm. On the other hand, if the difference 

in knowledge is the lever of technical inefficiency, its improvement is possible by sustained 

learning process. That means inefficiency due to learning can lead to technical inefficiency. 

Hence, in that sense, learning inefficiency might be one of the sources of technical inefficiency. 

Learning efficiency allow some firms to benefit more than others from equivalent level of 

experience (cumulative volume of past output). In other words, learning inefficiency reflects the 

failure of a firm to obtain the maximal state of knowledge achievable from the given amount of 

experience. Firm-specific learning inefficiency ( ) parameter can be estimated from the learning 

progress function (or productivity experience relationship) where (1 ) is the measure of 

learning efficiency. The learning effect can be realized by the ratio of the actual quantity of 

output achieved given firm-specific learning to the output achieved by the best learning practice 

firm given technical efficiency or 
 

 

; ( , ; )
|

; 0 ( , ; )

t i

TE

t

A V f x t

A V f x t

  

 




 . The productivity gain due to 

learning is not automatic or costless by-product of experience. Sources of the firm-specific 
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learning inefficiency are attributed to the investment in research, training and infrastructure 

which impacts both the intrinsic learning rate and learning inefficiency.  

While technical inefficiency varies with time, the learning inefficiency parameter is 

constant for a firm. However, as the productivity varies with cumulative past output the effect of 

learning on production changes over time. Technical efficiency and learning effect over time is 

illustrated in figure 2, in which a single input is used to produce a single output, and a firm 

operates from 
1 1

( , )t tx y to 
2 2

( , )t tx y . The technical inefficiency changes from time 
1t  to 

2t , and it 

is measured as the deviation of the production point from the new potential frontier given 

learning 
2 2( ; ) ( , ; )t iA V f x t   . The effect due to learning inefficiency is captured by the 

difference between this potential frontier to the maximum potential frontier 

2 2( ; 0) ( , ; )tA V f x t   at time 
2t . Notice that the maximum potential frontiers at the two periods 

will be same if the cumulative volume of the output is such that the learning progress function 

approaches a plateau.    

  

 

 

 

 

 

 

 

 

 

                                 Figure 2: Technical inefficiency and learning effect over time 
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The two definitions are based on two different reference points; one is the deviation from 

the production frontier given learning and the other is the deviation from the progress curve of 

the „best practice firm‟. A firm might face both inefficiencies simultaneously. In next section we 

disentangle the learning and technical efficiency by two steps: a) estimating the technical 

efficiency by stochastic frontier approach and b) estimating learning inefficiency from the 

residual of the production frontier. The change in both the technical efficiency and learning 

progress in a firm contribute to firm productivity growth. After measuring both the efficiencies it 

is interesting to measure their influence to the firm level productivity growth. The next section 

deals with the decomposition of the firm level productivity growth which provides policy 

perspectives on the firm performance.  

3. Analytical framework for productivity growth decomposition 

Literature on productivity growth decomposition acknowledges that along with technical 

change, change in efficiency (both technical and allocative) and scale can contribute to 

productivity growth (Denny, Fuss, & Waverman, 1981; Nishimizu & Page, 1982; Bauer, 1990; 

Kumbhakar, 2000; Kim & Han, 2001). But they do not explore the contribution of learning in 

productivity growth decomposition. This research estimates the contribution of learning to the 

firm-level productivity growth by using the stochastic production frontier approach.   

Single factor productivity reflects the ratio of units of output produced and the units of a 

particular input used. This measure can be affected by the intensity of other inputs use. For 

example, with the same technology, two firms might have very different labor productivity levels 

if one firm uses capital more intensely than another because of different factor prices. To make 
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the productivity measure invariant to the intensity of the factor use, the concept of total factor 

productivity (TFP) is used. While the TFP variation reflects the shifts in isoquants, the factor 

price variation reflects the shifts along the isoquants and hence does not affect TFP.    

TFP is represented by the often-used formulation of production function where output is 

the product of a function of inputs and a Hicks-neutral shifter. The deterministic kernel of a 

stochastic production frontier with Hicks-neutral shifter is written as 

 ( ) ( , ) itu

it it ity A V f x t e


  (3) 

 where 
ity is the scalar output of i

th
 firm at time period t (i = 1,…..,N and t = 1,…..,T), x is input 

vector, the shifter ( )tA V is the TFP contribution due to learning progress, and 0u   reflects the 

technical inefficiency or the gap between frontier technology (or potential frontier given 

learning) and a firm‟s actual production output. Notice that technical efficiency is time varying 

in equation (3). Logarithmic transformation of (3) yields (omitting subscripts) 

 ln ln ( ) ln ( , )y A V f x t u    (4) 

Totally differentiating with respect to time, and denoting „ z ‟ as the rate of change or its 

logarithmic time derivative, we obtain 

 
1 ln ( , ) ln ( )

( )

j

j j

dxdA dV f x t f x du
y

A V dV dt t x dt dt

 
   

 
  (5) 

The first term on the right-hand side of equation (5) measures the change in output growth 

contribution due to learning. The second and third terms measure the change in output caused by 

technical progress (TP) and by change in input use, respectively. The fourth term captures the 
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change in technical inefficiency. Hence, the overall change in production is not only affected by 

technical progress, changes in input use, and change in technical inefficiency but also by the 

change in learning progress. Using 
ln ( , )f x t

TP
t





 and the differential equation (1), equation 

(5) is rewritten as  

 
21

j j

j

du
y A A A y TP x

A a dt


  
 

      
 

  (6) 

where the change in the frontier output due to the change in input use or the output elasticity of 

input j is 
ln ( )

ln
j

j

f x

x






 . Total factor productivity growth is defined as output growth less by 

input growth, where input growth accounts for all factor of production. The familiar definition is     

 
j j

j

TFP y s x   (7) 

where input growth is the sum of the growth of all inputs weighted by their respective cost shares 

(Denny, et al., 1981). Equation (7) can be expanded to  

  j j j

j

du
TFP A y TP s x

a dt


  
 

       
 

  (8) 

The share of marginal product of input j = 
j j j

j

k k k

k

f x

f x





 
 

 because 
j j

j j

j

x xdf
f

dx f f
    

Replacing j j j     equation (8) yields 

  j j j j

j

du
TFP A y y TP s x

a dt


   
 

       
 

   (9) 
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Rearranging the terms and using the definition of returns to scale (
j

j

RTS  ), equation (9) is 

written as 

 ( ) ( 1) ( )it j j j j j

j j

du
TFP y A TP x RTS x s

dt
             (10) 

where (1 )    is learning efficiency. Hence, productivity growth is influenced by technical 

progress, learning inefficiency, technical inefficiency, and components related to input use (scale 

effect and allocative efficiency effect). If 
du

dt
 is negative, technical inefficiency falls, meaning 

technical efficiency increases over time or the production point becomes closer to the frontier. 

The first and second components of the equation (9) represent the growth and the decay in 

knowledge absorption, respectively, and thus, reflect the net knowledge growth accounting for 

the ability to absorb knowledge. The last component of the equation presents the allocative 

efficiency effect which actually depicts the inefficiency in allocating resources resulting from the 

deviation of input prices from the value of their marginal product. All in all, productivity change 

is decomposed into changes in efficiency, both technical and allocative efficiency, change in 

learning progress, technical change, and change in scale, where the first is measured by how far 

the firm is from the production frontier given learning, the second by the inability of the firm in 

allocating resources resulting from the deviation of the input prices from the value of their 

marginal product, the third by net knowledge growth due to learning, the fourth by the shift in 

the frontier, the last by the movement of the firm along the curvature of the production frontier. 
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4. Econometric estimation 

Consider a firm in a competitive market has production function 

  ( ), ( ), ( ),ty F X t K t A V t  (11) 

where ( )X t is vector of variable inputs and ( )K t is a vector of quasi-fixed inputs like capital, and 

( )tA V  is learning progress function reflecting a productivity enhancing factor. How ( )tA V enters 

the production function depends on the nature of the learning progress function. The question is 

does it embody in the inputs or embrace in the organization? Bahk and Gort (1993) decompose 

the firm specific learning-by-doing into labor, capital and organizational learning by modeling 

learning component as (1) separate arguments in labor and capital augmenting term and (2) 

productivity shift parameter (also see Rapping, 1965). The production frontier for a sample of N 

firms for T time periods, can be written as  

 ( ) ( ; ) it itv u

it it ity A V f x e 
  (12) 

ity  denotes production of i
th

 firm at time period t, 
itx  is a vector of input quantities of i

th
 firm at t 

time period,   is a vector of unknown parameters to be estimated, 2~ (0, )it vv N  , and 

2~ (0, )it uu N  . ( )A V is scaling factor that reflects state of organizational knowledge which 

depends not only on experience (cumulative volume of output) but also on learning efficiency for 

a firm. Most of the microeconomic studies on production experience assume a Cobb-Douglas 

form for the production technology (see Rapping, 1965; Irwin & Klenow, 1994; Thompson, 

2001). Following (12) a Cobb-Douglas production frontier with time variant technical efficiency 

can be written as 
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 l m e k it itv u

it it it it it itY A L M E K e
    

  (13) 

where Y is output quantity produced, L, M, E, and K are labor, material, energy, and capital 

inputs, respectively, and 
l , 

m , 
e , and 

k are the their respective coefficients. The 

productivity shock is denoted by A which is influenced by learning of a firm, technical 

inefficiency is represented by u, and v is random statistical noise. Writing in log-linear form 

 ln ln ln ln ln lnit l it m it e it k it it it itY L M E K A v u           (14) 

Writing log terms in lowercase letters 

 
it l it m it e it k it it it ity l m e k a v u           (15) 

Simultaneity problem in stochastic production frontier 

It is well documented in the literature (Marschak & Andrews, 1944; Griliches & 

Mairesse, 1995; Olley & Pakes, 1996; Levinsohn & Petrin, 2003; Ackerberg, Caves, & Frazer, 

2006) that quantities of inputs are likely to be correlated with productivity shocks which lead to a 

biased estimate of production function parameters. Same argument can be applied to the 

stochastic production frontier that can cause potential identification problem in standard frontier 

estimation.  

The efficiency literature assumes that input choices are independent of the efficiency and 

productivity term. However, if a firm observes some part of its efficiency and productivity, its 

input choices may be influenced resulting in a simultaneity problem in stochastic production 

frontier estimation. Production input decision can be influenced by the common causes affecting 

efficiency and hence simultaneity problem is arisen. Inputs are likely to be correlated with the 

components of productivity and efficiency that are observed by the firm but unobserved by the 
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econometrician. The problem is more serious for inputs that adjust quickly like labor and 

materials. The omission of some explanatory variables makes the likelihood estimation of the 

stochastic production frontier biased. In estimating the unobserved productivity as residual of the 

production function and technical efficiency as the deviation from the „best-practice‟ production 

frontier, the frontier estimation encounter omitted and /or simultaneity problem. The anatomy of 

the error term (
it it it ita v u    ) is the following. 

ita represents shocks to production that are 

predictable by firms when making input decision and can be thought of as factors like expected 

rainfall at the firm‟s location, managerial ability of the firm, expected breakdowns or strikes 

time. 
itv

 
represents pure random deviation or measurement error that are not observable by firms 

when making their input decisions. 
itu captures the deviation from the „best-practice‟ firm. The 

basic idea is to throw all the predictable components of the productivity and efficiency into 
ita

term and consolidate endogeneity problem into it. 

The simultaneity issue is neglected by the efficiency literature; however, ignoring this 

problem might have profound policy implications on firm performance. Not only might this 

misspecification lead to a biased inference on the elasticity of inputs and hence the economies of 

scale, but it also provides a faulty measure of technical efficiency. The measure of technical 

efficiency by the traditional frontier method in presence of endogeneity of input choice can be 

biased in the sense that the measure of efficiency favors the firms employing higher level of 

inputs. The regressors are to be uncorrelated with the error term to obtain consistent parameter 

estimates. We present the methodology to solve the endogeneity of input bias problem within 

stochastic production frontier estimation by using the semi-parametric approach proposed by 

Levinsohn and Petrin.   
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Semi-parametric estimation approach 

To correct for the simultaneity issue in stochastic production frontier estimation the 

methodology proposed by Levinsohn and Petrin (2003) is extended for obtaining consistent 

estimates of production parameters and technical efficiency. Olley and Pakes (1996) first 

introduce the approach of using investment as proxy for unobserved productivity shock to 

overcome the simultaneity problem. Levinsohn and Petrin (2003) suggest that investment being 

non continuous, may not respond fully to the productivity shocks and show that intermediate 

inputs can be used to control for the simultaneity problem. The estimation stages are presented 

below.  

Stage 1:  

Selecting energy as a proxy for the unobserved productivity shocks, equation (15) is estimated 

using this approach. 
ita  is consolidated as the observed part of productivity and efficiency. This 

is called predictable „productivity shock‟. We assume 2~ (0, )it vv N  and 2~ (0, )it uu N  . 

Following Battese and Colli (1992) we assume time varying technical efficiency is defined by

exp( [ ])it iu u t T   . The main difference between this productivity shock and the composed 

error is that the former is a state variable, and hence influence firm‟s decision while the later has 

no impact on firm‟s decision. Putting a constant term in equation (15) such that 
0ln it itA a   

 
0it l it m it e it k it it it ity l m e k a v u             (16) 

We use intermediate input electricity as proxy for the unobserved productivity shock. The input 

demand function for electricity can be written as (assuming perfect competition firms facing 

identical prices) 
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 ( , )t t t te e a k  

Imposing monotonicity condition this demand function can be inverted 

 ( , )t t t ta a e k  

Equation (16) can be written as  

 ( , )it l it m it t it it it ity l m e k v u        (17) 

where  

 
0( , ) ( , )t it it k it e it t t te k k e a e k        (18) 

Using the method proposed by Robinson (1988) we take the expectation of equation (17) 

conditional on ,it itk e . 

      | , | , | , ( , )it it it l it it it m it it it t it itE y k e E l k e E m k e e k      (19) 

We use the fact that ( | , ) 0it it it itE v u k e   and  ( , ) | ,t it it it itE e k k e is itself 

Subtracting (19) from (17) 

      | , | , | ,it it it it l it it it it m it it it it it ity E y k e l E l k e m E m k e v u               (20) 

This difference makes ( , )t it ite k out of the regression equation. Using maximum likelihood 

estimation with no intercept we can obtain consistent estimates of the coefficients of freely 

variable inputs except the proxy. Time varying technical efficiency is also estimated in this stage. 

The dependent and independent variables in this regression are based on the local least square 

estimates. Using bootstrap approach we can estimate the standard errors. An alternative approach 

to this is to use polynomial approximation for ( , )t it ite k .   
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Stage 2:  

In the stage 2 coefficients of the proxy input and capital are identified. Coefficients of capital and 

electricity enter twice in equation (18) and hence are not identified without further restrictions. 

For the identification we assume that capital is a state variable and does not instantaneously 

adjust to the unexpected part of productivity shock while it might adjust to the predicted part. To 

formalize the notion we assume that productivity is governed by first order Markov process, or
 

  1|t t t ta E a a    (21) 

Further we assume that the non-forecastable part of productivity is uncorrelated with capital. 

Two moment conditions can be formed from the above two assumptions 

  | ( | ) ( | ) 0t t t t t t tE v k E k E v k      (22) 

  1 1 1| ( | ) ( | ) 0t t t t t t tE v e E e E v e        (23) 

The first moment condition states our assumption that capital does not respond to the innovation 

in productivity. Capital stock in period t is determined by the investment decisions of the 

previous periods, it does not respond to this period‟s productivity innovation
t . The second 

moment says that last period‟s electricity choice is uncorrelated with innovation in productivity. 

We employ Generalized Method of Moments to estimate the parameters of capital and energy. 

The GMM estimation steps are the following. First we choose a starting value *

e  and *

k for the 

estimation algorithm. For this value we write (15) as 

 
* *ˆ ˆ ˆ

it l it m it e it k it it it ity l m e k u a v           (24) 
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Substitution (21) into (24) yields 

 
* *

, 1
ˆ ˆ ˆ ( | )it l it m it e it k it it it i t it ity l m e k u E a a v             (25) 

If we knew 
, 1( | )it i tE a a 

we could compute ˆ
it itv  but we do not know it and hence we estimate

 , 1 , 1( | ) |it i t it it i tE a a E a v a   . 

From (24) we get 

 
* *ˆ ˆˆ ˆ

it it it l it m it e it k it ita v y l m e k u           (26) 

From stage 1 equation (19) and (18) we get 

 
* *

, 1 , 1 , 1 , 1
ˆˆ

i t i t e i t k i ta e k         (27) 

By performing local least squares regression on ˆ
it ita v by 

, 1
ˆ

i ta 
we get 

, 1( | )it i tE a a 
. We can now 

compute an estimate of the residual 
it itv  using (25). We then use the GMM criterion to 

estimate the unknown parameters.  

    
2 2

, 1
ˆ ˆmin it it it it it i t

i t i t

v k v e


  

    
      

     
   (28) 

Ultimately the productivity term can be recovered from the residual using the estimated 

coefficients 

  0
ˆ ˆ ˆ ˆ ˆ ˆexpit it l it m it e it k itA y l m e k           (29) 

This can be thought of as unexplained residual. To understand the productivity growth better our 

effort is to minimize the unexplained residual.  
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Stage 3:  

From this residual we estimate the firm specific learning parameters including the learning 

efficiency. In stage 3 we estimate the firm specific parameters instantaneous learning rate  and 

learning inefficiency   by using the estimation equation given below. 

 2
ˆ

ˆ ˆ ˆdA
A A A

dV a


     (30) 

The discrete analogue of the derivative term 1
ˆ ˆˆ

ˆ
it it

it

A AdA

dV y


  

The estimation equation becomes 

 2

1 1

ˆ
ˆ ˆ( )

ˆ
it

i i i i it i i it it

it

dA
D A D A

y
          (31) 

Alternatively, non linear least square technique can be used to estimate the parameters from the 

equation given below. 

 

 0
1

0

(1 )ˆ
(1 )

1 exp (1 )
it

it

a
A

a a
V

a




  




 
  

 (32) 

We estimate   and  by using nonlinear optimization and by assuming a given initial level of 

endowment of knowledge
0a .     

Stage 4: 

The decomposition of productivity growth following (10) is presented below. In the regression 

(13) we put t

itA e  instead of 
itA  to account for exogenous technical change.    
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1) The learning component ( )itLC y A     

2) Rate of technical progress 
ln ( , )itf x t

TP
t




 


  

3) Technical efficiency change can be obtained by itu
TEC

t


 

   

where  exp( ) |it it it it itu TE E u v u    

4) To find the change of scale component, output elasticity with respect to j-th input is defined 

by 
ln ( , )

ln
j j

j

f x t

x
 


 


. Share of marginal product of input j is 

j

j
RTS


   , where 

j

j

RTS  . 

 

The scale component ( 1) j j

j

SC RTS x                     

5) Allocative efficiency change can be found by ( )j j j

j

AE x s                           

where 
jS can be directly calculated from the data if price information is available.   

 

5. Data and Empirical Results 

The dataset used for this application is the Colombian Annual Manufacturers Survey 

(AMS) and covers the period 1982 to 1998. The data is provided by Departamento 

Administrativo Nacional de Estadistica (DANE) and originally created in a study of the effect of 

structural reforms on productivity and profitability enhancing reallocation in Colombian 

manufacturing industry (Eslava, Haltiwanger, Kugler, & Kugler, 2004). The same data is also 

used by Eslava, Haltiwanger, Kugler, and Kugler (2010) to investigate the plant-level adjustment 

dynamics of capital and labor and their joint interactions in the context of deregulated Colombian 

manufacturers. 
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The dataset is an unbalanced panel of Colombian manufacturing plants with more than 10 

employees or sales over US$35,000 in 1998
1
. The dataset contains annual plant-level 

information on the value of output and prices charged for each product; cost and prices paid for 

each material used; energy consumption in kilowatt per hour and energy prices; number of 

workers and payroll; and book values of capital stock (buildings, structures, machinery, and 

equipment)
2
. The AMS dataset is a unique longitudinal data on plants in the sense that it has 

information on both plant-specific physical quantities and prices for both outputs and inputs. In 

contrast to most of the existing literature which measure productivity by deflating sales by an 

industry-level price index, these data eliminate a common source of measurement error in 

production function estimation.  

We estimate the production parameters and the technical efficiency by using a capital-

labor-energy-materials (KLEM) production frontier. The plant-level price indices of output and 

materials are constructed using Tornqvist indices where 1982 prices are considered base price 

100. While the quantities of materials and output are constructed by dividing the cost of 

materials and value of output by the corresponding price indices, the quantities of energy 

consumption are directly reported in the data. The capital stock variable is constructed by the 

perpetual inventory method using the book values and capital expenditure together with gross 

capital deflators and depreciation rate of capital. Labor is measured as total hours of employment 

which is an improvement over the number of employees as a labor variable. Since the data does 

not have worker hours, a sector-level measure of average hours per labor is constructed as the 

                                                 
1
 For detailed description of the data see (Eslava, et al., 2004) 

2
 We treat plants as firms although there are multi-plant firms in the sample because of data restriction. We do not 

aim to capture the scale or scope economies generally experienced by multi-plant firms.  
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ratio of earning per worker and the sectoral wage which is obtained from Monthly 

Manufacturing Survey of various years.  

The application focuses on Colombian food industries. Summary statistics for the key 

variables are presented in table 1 where the means and standard deviations of the logarithm of 

plant-level physical quantity and price of output and input variables are presented. The units for 

energy consumption and labor use are kilowatt hours and hours of employment, respectively. 

Output, capital, and materials are expressed by thousands of pesos based on the constant price 

index for 1982 being 100. The prices for output, materials, and energy are expressed as prices 

relative to the yearly producer price index to make the prices inflation free (logarithmic 

difference between price index and PPI).  

Table 1: No. of observations per ISIC 4 digit level and summary statistics of key variables 

ISIC Code Food Industry no. of plant no. of obs

3111 Butchering and meat canning 166 1474 Variables Mean Std. Dev.

3112 Dairy products 170 1619 Output 11.002 1.873

3113 Vegetable and fruit canning 70 517 Capital 8.644 2.115

3114 Fish, crustaceans, and other seafood 30 198 Labor 10.774 1.192

3115 Oils, and vegetable and animal fats 89 792 Energy 12.034 1.781

3116 Grain mill products 449 4278 Materials 10.558 1.952

3117 Bakery products 630 5177 Output prices 0.005 0.425

3118 Sugar refining and sugar products 63 565 Energy prices 0.354 0.505

3119 Cocoa, chocolate and confectionary 84 847 Material prices -0.021 0.304

Sum 1751 15467  

Notes: This table reports mean and standard deviations (in the brackets) of the log of quantity variables 

and log of prices deviated from yearly producer price indices to discount inflation. The units of the labor 

and energy variables are hours of employment and kilowatt hours respectively. Rests of the variables are 

expressed by thousands of pesos based on constant price index for 1982 being 100.    

 

 



25 

 

Estimation results with this dataset are in progress and preliminary results will be presented at 

the AAEA session.  
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6. Concluding Comments 

Decomposition of the productivity change can provide useful information and policy 

level insight of firm-level productivity analysis by quantifying the sources of TFP growth. For 

example, if low productivity growth results due to poor learning efficiency then the policy 

recommendation is to invest in training and infrastructure so that the firm can advance to the 

learning progress function of the „best practice firm‟. On the other hand, if there is low 

productivity because of poor technical efficiency, then the recommendation for the firm is to 

improve managerial practices. The productivity growth decomposition directs the firm managers 

to make decisions for improving firm performance.  
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