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An Optimal Rule for Switching over to
Renewable fuels with Lower Price Volatility:

A Case of Jump Diffusion Process

Kavita Sardana Subhra K. Bhattacharya

Abstract

This study investigates the optimal switching boundary to a renewable
fuel when oil prices exhibit continuous random fluctuations along with oc-
casional discontinuous jumps. In this paper, oil prices are modeled to follow
jump diffusion processes. A completeness result is derived. Given that the
market is complete the value of a contingent claim is risk neutral expecta-
tion of the discounted pay off process. Using the contingent claim analysis
of investment under uncertainty, the Hamilton-Jacobi-Bellman (HJB) equa-
tion is derived for finding value function and optimal switching boundary.
We get a mixed differential-difference equation which would be solved using
numerical methods.

Research in progress. Do not quote without authors’ permission.

1. Introduction

In the celebrated paper of option pricing, Black and Scholes (1973) and Mer-

ton (1973) provide an ideal benchmark model to analyse the asset price move-

ments. In their paper, the underlying assets price is modeled to follow a geomet-

ric Brownian motion with constant drift and volatility. Additionally, the assump-

tions of frictionless market and no arbitrage opportunity ensure completeness of

the market. Market is complete in the sense that the portfolio return can be made

riskless. Consistent with Black and Scholes (1973) and Merton (1973), oil price
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movements are modeled to follow a geometric Brownian motion to capture high

degree of random fluctuations. However, for empirical analysis, constant volatil-

ity or homoskedasticity is a restrictive assumption. Hull and White (1987), Scott

(1987), Wiggins (1987), Stein and Stein (1991) and Heston (1993) allows for a time-

varying volatility. The particular specification of time-varying volatility varies

across literature. One famous specification is the ARCH-type model. Kallsen and

Taqqu (1998) modeled time varying volatility as a GARCH-type model to allow

smooth persistent changes in volatility. In their paper, the conditional variance is

modeled as a function of past variances and past innovations. Even a Geometric

Brownian Motion with time varying volatility is restrictive as it fails to capture oc-

casional significant discontinuities or structural breaks explicitly present in time

series data. In modeling oil prices, these structural breaks have been experienced

in the world market for oil over the history of oil prices due to the occurrence of

several sudden major events, starting from the Yom-Kippur war in 1973, to the

Iraq-Iran war in 1980 to some components of the post embargo US-energy policy.

On a less significant basis, Merton (1976) pointed out that these discontinuities

can be a consequence of arrival of some new information. These large sudden

changes can be modeled by a stochastic jump process to capture occasional dis-

continuities that are not captured by the continuous path of Brownian motion. In

such a model, the total change in price is a composition of two components- the

normal vibrations in price, which is modeled by a diffusion process with contin-

uous paths and unusual significant discontinuous changes in price modeled by

a jump process. The mixture of diffusion and jump process is called the jump-

diffusion process. Option pricing in a jump-diffusion model was introduced by

Merton (1976), where he extended the basic Black and Scholes (1973) model to

allow for jumps in asset price. In an incomplete market model with one stock and
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one riskless asset, Merton derived a formula for the value of a call option on a

non-dividend paying stock whose price follows a jump-diffusion process.

In this paper, we extend the Merton (1976) results for two asset prices: natu-

ral petroleum fuel or gasoline and a renewable substitute, namely ethanol blended

gasoline. Prices of both these fuels exhibit high degree of volatility combined with

significant discontinuous jumps over a long period of time and therefore modeled

as jump-diffusion process. Gasoline prices, though relatively cheaper, are highly

volatile when compared to its ethanol blended substitute. The purpose of this

paper is to model the two prices as jump-diffusion processes to derive an optimal

time to switch from gasoline to ethanol blended gasoline. In a stochastic envi-

ronment, the decision to switch over would be influenced not only by the current

price but also by expected future prices, which is crucially contingent on the drift

and volatility of the underlying process. Therefore, the decision rule will take the

form of an optimal exercise boundary which will be of threshold type [Refer to

Dixit and Pindyck (1994) for details].

Previous studies include Tareen et al.(2000) and Vedenov et al. (2006).

Tareen et al. (2000) use the contingent claim analysis of investment under uncer-

tainty. Authors develop a decision rule to switch from petroleum to biodiesel, by

modeling prices of biodiesel and petroleum to follow geometric Brownian motion

with constant drift and volatility. However, their decision threshold is high and

therefore impracticable. This is because Biodiesel is more of a niche fuel which

requires an engine modification. Vedenov et al. (2006) used the same model to

derive an optimal switching rule from gasoline to ethanol blended gasoline by

minimizing the future cost of fuel over a certain time horizon.
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The remainder of the paper is organized as follows. Section 2 describes the

model. Section 3 presents the derivation of a completeness result and the HJB

equation to determine the value function and optimal switching boundary. Sec-

tion 4 and 5 summarize the conclusions and limitations of this study respectively.

Appendix to this paper presents the proof of the Lemma presented in Section 3.

2. Model

We consider a filtered probability space (Ω,F , P) and let F (t), t ≥ 0 be the as-

sociated filtration. Let W(t) be a Brownian motion relative to this filtration F (t)

such that , W(t) is F (t) measurable for every t and for every u > t, the Brownian

increment W(u) − W(t) is independent of F (t). Let us define two independent

Poisson processes N1(t) and N2(t) with intensities λ1 and λ2 respectively, adapted

to the same filtration F (t). From the basic theory of stochastic processes, we know

that by construction the Brownian motion, W(t) and the Poisson processes N1(t)

and N2(t) are independent to each other (Corollary 11.5.3, pg. 487, Shreve, 2008).

We define two sequences of independent and identically distributed random vari-

ables (Y1, Y2 ..) and (Z1, Z2 ..) with mean β1 = EYi and β2 = EZi . The sequence

of random variables are assumed to be independent to each other and also inde-

pendent to the Brownian motion W(t) and the Poisson processes N1(t) and N2(t).

We construct the following process:

Q1(t) =
N1(t)

∑
i=1

Yi, t ≥ 0

Then, Q1(t) is a compound Poisson process where jump arrives at the rate λ1dt

and Yi denotes the size of the ith jump. An immediate implication is the compen-
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sated compound Poisson process

Q1(t)− β1λ1t

is a P− martingale. Similarly, another compound Poisson process is constructed

with the Poisson process N2(t) and the sequence of random variables (Z1, Z2 ..)

as follows

Q2(t) =
N2(t)

∑
i=1

Zi, t ≥ 0

By construction, (Q2(t)− β2λ2t) is a P− martingale and Q1(t) and Q2(t) are in-

dependent of each other and also the Brownian motion W(t).

With this mathematical setting, we model oil prices as a jump diffusion process,

where the total change in price is a mixture of a continuous change, modeled by

diffusion process and, discontinuous jumps modeled as compound Poisson pro-

cess. Specifically, gasoline prices are modeled to follow the following stochastic

differential equation:

dP(t)















= P(t)[µ1dt + σ1dw(t)] + P(t−)[dQ1(t)− λ1β1dt]

= P(t)[(µ1 − λ1β1)dt + σ1dW(t)] + P(t−)dQ1(t)

(1)

The continuous path of the process is modeled as a diffusion process, with con-

stant drift and volatility and denoted by

dP(t)c = P(t)[(µ1 − λ1β1)dt + σ1dW(t)] (2)

The discontinuous part is modeled by a compound Poisson process with random

jump size and is assumed to be the result of arrival of some important information
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(Merton 1976). If such an event occurs then the process exhibits a proportional

jump of random size Yi. Within the time interval "dt" the mean rate of arrival

of jumps is λ1dt and the probability of the event occurring more than once is

zero. In other words, the stochastic price of the gasoline P(t) jumps at random

times t1, t2, ...tN1 and the proportional change in its value at a jump time is given

by Y1, Y2, ...YN1. Between jump times, the gasoline price follows the standard

diffusion process.

Applying Generalized Ito’s Lemma, it can be shown that, the solution to the

stochastic differential equation (SDE) is given by

dP(t)























= P(0)e
σ1W(t)+(µ1−β1λ1−

σ2
1

2
)t

∏
N1(t)
i=1 (yi + 1)

= P(0)e
σ1W(t)+(µ1−β1λ1−

σ2
1

2
t)+∑

N1(t)
i=1 log(yi+1)

(3)

The price process of ethanol blended gasoline is modeled to follow a different

jump-diffusion process as follows -

dB(t) = B(t)[(µ2 − λ2β2)dt + σ2dW(t)] + B(t−)dQ2(t) (4)

Though underlying Brownian motion governing both the price processes is taken

to be the same, the deterministic mean rate of return and volatility is different

across the oil prices. This feature of the model captures the idea that gasoline

prices though relatively cheaper are more volatile compared to its renewable sub-

stitute. However, modeling same Brownian motion governing both the prices is

another way of saying that though mean and volatility are different, the under-

lying source of continuous uncertainty is the same. The discontinuous jumps in

both price processes are independent Poisson with independent and identically
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distributed random jump sizes. Therefore the individual oil prices are driven

by two independent sources of randomness, whereas the continuous randomness

across the prices are perfectly correlated. This assumption is made to obtain the

completeness of the market model which will be explained subsequently.

The resulting sample path of ethanol blended gasoline, which is continuous most

of the time, with finite jumps of random size at discrete points in time is :

B(t)























= B(0)e
σ2W(t)+(µ2−β2λ2−

σ2
2

2
)t

∏
N2(t)
j=1 (zj + 1)

= B(0)e
σ2W(t)+(µ2−β2λ2−

σ2
2

2
t)+∑

N2(t)
j=1 log(zi+1)

(5)

We take the usual money market account D(t) as numeraire that satisfies the

following differential equation

dD(t) = r(t)D(t)dt

where r(t) is the instantaneous risk neutral rate of interest.

3. Results

3.1 Completeness of the Market

Having described the price processes, before going into the option value of the

investment opportunity, we would analyze the issue of completeness of the mar-

ket. According to the first fundamental theorem of asset pricing, a market model

is free of arbitrage and therefore complete if there exists a unique risk neutral

probability measure. When the asset prices are modeled as geometric Brownian
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motion, then in general, market model is complete. On the contrary, in the models

where individual asset prices are driven by two independent source of random-

ness (for example, a jump-diffusion model where price process is governed by

both a Brownian motion and an independent Poisson process), then there exists

more than one risk neutral measures and thus, corresponding market models are

incomplete. To this end, in our framework, we assumed that both the price pro-

cesses are dependent on a common Brownian motion, while having independent

process-specific jump processes. Within this setting, we make the following as-

sumption to make the market model complete and this result is documented in

the following lemma.

Assumption: An absolutely continuous change in measure from the Original to

the Risk neutral would change the intensities of both the independent Poisson

processes by same proportion, denoted by ψ. In other words, under the risk neu-

tral measure P̃, Poisson processes N1(t) and N2(t) will have intensities ψλ1 and

ψλ2 respectively.

Now, having made this assumption, we invoke Girsanov’s theorem regarding

change of measures to obtain the following result which shows that the market

model is complete.

Lemma

(1) There exists a unique risk neutral measure P̃, equivalent to P, such that, the

Radon-Nikodym derivative is given by,

Z(t) = e
(λ1(1−ψ)+λ2(1−ψ)−

θ2

2
)t−θW(t)+(N1(t)+N2(t))logψ

(6)
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0 ≤ t ≤ T, where θ and ψ are uniquely determined from the following system of

equations

µ1 − θσ1 − λ1β1ψ = r(t)

and

µ2 − θσ2 − λ2β2ψ = r(t)

And thus market model is complete.

(2) Under the risk neutral measure P̃

˜W(t) = W(t) + θt

is a Brownian motion and Q1(t) and Q2(t) are Poisson processes with intensities

ψλ1β1 and ψλ2β2 respectively. Consequently,

Q̃1(t) = Q1(t)− ψλ1β1t

and

Q̃2(t) = Q2(t)− ψλ2β2t

are P̃− martingales. Moreover, W̃(t), Q̃1(t) and Q̃2(t) are independent to each

other.

Proof: See Appendix.

3.2 Optimal Decision Threshold

Following Tareen et al. (2000), we assume that the objective of an agent is to

minimize cost while maintaining a reservation level of quality. Given the price
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processes modeled as jump-diffusion process, central problem faced by the agent

is what is the optimal time to switch over to relatively more expensive ethanol

blended gasoline with less volatility. In the stochastic framework described above,

this is an optimal stopping problem, where a threshold type optimal exercise

boundary is determined.

Assuming both fuels are prefect substitutes and the longevity of the machine and

its salvage value is not affected by the fuel used, the expected present value of the

project is:

V = E
∫ T

0
e−r(t)t[P(t)− B(t)]dt (7)

where, T is the finite lifetime of the machine, and r(t) is the instantaneous risk

neutral rate of return to the capital. Following Dixit and Pindyck (1994), the

option value of adopting ethanol blended gasoline, at a random time ς is given

by

F(t, P(t), B(t)) = Ẽ
∫ T+ς

ς
e−r(t)t[P(t)− B(t)]dt (8)

where F(.) is assumed to be a twice continuously differentiable function of the

oil price process and time. Ẽ is the expectation operator with respect to the risk

neutral probability P̃. In a finite lifetime framework, the option value of optimally

switching over to ethanol blended gasoline will be contingent on the remaining

lifetime of the machine and thus, becomes a function of time.

Following the option pricing of investment under uncertainty, by Dixit and Pindyck

(1994), The Bellman equation for the determination of optimal threshold satisfies

the following:

r(t)Fdt = E[d[F(t, P(t), B(t)]]
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Using the multidimensional Ito-Doeblin formula for processes with jumps (Theo-

rem 11.5.4, p.489, Shreve), we have

dF(t, P, B) = Ftdt + FpP[(µ1 − β1λ1)dt + σ1dW] + FBB[(µ2 − β2λ2)dt + σ2dW]

+ 1/2FppP2σ2
1 dt + FPBPBσ1σ2dt + 1/2FBBB2σ2

2 dt

+ d[ ∑
0<s≤t

[F(S, P(S), B(S) − F(S, P(S−), B(S−)]]

Now following Dixit and Pindyck (1994),

Ed ∑
0<s≤t

[F(S, P(S), B(S) − F(S, P(S−), B(S−)] = Ey[λ1F(t, P(1 + yi), B)− F(t, P, B)]

+ Ez[λ2F(t, P, B(1 + zi))− F(t, P, B)]

where Ey is the expectation with respect to jump size Yi

where Ez is the expectation with respect to jump size Zi

3.3 Derivation of Hamilton-Jacobi-Bellman (HJB) equation

Therefore, in case of multidimensional jump diffusion processes, we have,

E[dF(t, P, B)] = [Ft + (µ1 − λ1β1)PFP + (µ2 − λ2β2)BFB +
σ2

1

2
P2FPP

+
σ2

2

2
B2FBB + σ1σ2PBFPB]dt

+ Ey[λ1F(t, P(1 + yi), B)− F(t, P, B)]dt + Ez[λ2F(t, P, B(1 + zi))− F(t, P, B)]dt
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E[dF(t, P, B)]

dt
= [Ft + (µ1 − λ1β1)PFP + (µ2 − λ2β2)BFB +

σ2
1

2
P2FPP

+
σ2

2

2
B2FBB + σ1σ2PBFPB]

+ λ1Ey[F(t, P(1 + yi), B)− F(t, P, B)] + λ2Ez[F(t, P, B(1 + zi))− F(t, P, B)]

Since the option to adopt ethanol blended gasoline has no return till the invest-

ment is undertaken, other than the expected capital appreciation, therefore, the

Bellman equation to derive optimal threshold satisfies

r(t)Fdt = E[dF(t, P, B)]

→ −r(t)F + Ft + (µ1 − λ1β1)PFP + (µ2 − λ2β2)BFB +
σ2

1

2
P2FPP

+
σ2

2

2
B2FBB + σ1σ2PBFPB

+ λ1Ey[F(t, P(1 + yi), B)− F(t, P, B)] + λ2Ez[F(t, P, B(1 + zi))− F(t, P, B)]

= 0

The initial value function satisfies the above mixed partial differential-difference

equation with the free boundary and smooth fit condition. Although linear these

equations are difficult to solve and therefore one should use numerical methods

to solve such equations to obtain optimal switching boundary.

4. Conclusions and Implications

In this paper, gasoline and ethanol blended gasoline prices are modeled as jump-

diffusion processes and result regarding the completeness of the market is de-

rived. Also, to obtain the optimal switching boundary to renewable fuel, the HJB

equation is derived. For our analysis, the HJB equation becomes a linear mixed
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differential difference equation. This would be solved using numerical methods.

5. Limitations and Future Research

For our analysis and mathematical convenience, we have made a few assump-

tions which are restrictive. For our analysis, we assumed that the jump intensity,

parameters of jump size are independent of time. Future research can derive op-

timal threshold relaxing these assumptions to see how results change when the

jump intensity and size parameters are made a function of time.

Appendix

Proof of Lemma Let θ be a constant and λ̃1 = ψλ1 and λ̃2 = ψλ2. Then, we define,

Z0(t) = e
−θW(t)−

θ2

2
t

and

Zm(t) = e(λm−λ̃m)t[
λ̃m

λm
]Nm(t); m = 1, 2

or

Zm(t) = eλm(1−ψ)tψNm(t); m = 1, 2
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Then we define,

Z(t) = Z0(t)
2

∏
m=1

Zm(t)

= e
λ1(1−ψ)t+λ2(1−ψ)t−

θ2

2
t−θW(t)

ψN1(t)+N2(t)

= e
λ1(1−ψ)t+λ2(1−ψ)t−

θ2

2
t−θW(t)+(N1(t)+N2(t))logψ

By construction, since W(t), N1(t) and N2(t) are independent processes, the pro-

cess Z(t) is a martingale and E(Z(t)) = 1 for all t (Lemma 11.6.8, p.502, Shreve).

We invoke Girsanov’s theorem of change of measure to define a probability mea-

sure P̃ s.t.

P̃(A) =
∫

A
Z(T)dP, ∀A ∈ F

Then under the risk-neutral measure P̃

• W̃(t) = W(t) + θt is a Brownian motion

• Nm(t) is a Poisson process with intensity λ̃m = ψλm

• W̃(t) and N1(t), N2(t) are independent to each other.

Therefore, under the risk-neutral measure P̃, W̃(t) = W(t) + θt is a Brownian mo-

tion. Moreover, N1(t) ∼ Poisson(ψλ1), which implies, Q1(t) ∼ Poisson(ψ, λ1 β1)

andtherefore,

[Q1(t)− λ1β1ψ]

is a P̃− martingale

Also, since N2(t) ∼ Poisson(ψλ2) therefore

Q2(t) ∼ Poisson(ψλ2 β2).
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Therefore, the oil price dynamics under P̃ is given by

dP(t) = P(t)[µ1dt + σ1(dW̃(t)− θdt) + dQ1(t)− λ1β1ψdt]

dP(t) = P(t)[(µ1 − σ1θ − λ1β1ψ)dt + σ1dW̃(t) + dQ1(t)]

similarly,

dB(t) = B(t)[(µ2 − σ2θ − λ2β2ψ)dt + σ2dW̃(t) + dQ2(t)]

Since P̃− is a martingale measure, then discounted oil prices would be a martin-

gale for both the prices if θ and ψ are chosen such that

µ1 − σ1θ − λ1β1ψ = r(t)

and

µ2 − σ2θ − λ2β2ψ = r(t)

These two equations uniquely determine θ and ψ, confirming the existence and

uniqueness of risk neutral measure. Q.E.D
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