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Abstract 

 

The Neoclassical theory of production establishes a dual relationship between the profit 

value function of a competitive firm and its underlying production technology. This 

relationship, usually referred to as the duality theory, has been widely used in empirical 

work to estimate production parameters without the requirement of explicitly specifying 

the technology. We analyze the ability of this approach to recover the underlying 

production parameters and its effects on estimated elasticities and scale economies 

measurements, when data available for estimation features typical realistic problems. We 

design alternative scenarios and compute the data generating process by Monte Carlo 

simulations, so as to know the true technology parameters as well as to calibrate the 

dataset to yield realistic magnitudes of noise. This noise introduced in the estimation by 

construction prevents duality theory from holding exactly. Hence, the true production 

parameters may not be recovered with enough precision, and the estimated elasticities or 

scale economies measurements may be more inaccurate than expected. We compare the 

estimated production parameters with the true (and known) parameters by means of the 

identities between the Hessians of the production and profit functions. 

 

 

 

Keywords: duality theory, firm’s heterogeneity, measurement error, data aggregation, 
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Does Duality Theory Hold in Practice? A Monte Carlo Analysis for U.S. Agriculture 

The Neoclassical theory of production establishes that a competitive firm’s optimization 

problem is characterized by a dual relationship between the value function (profit, cost or 

revenue function) and the underlying production function (e.g., Mas-Colell, Winston, and 

Green, Ch. 5). This implies that a given functional form of the production function 

determines a specific form of the profit, cost or revenue function. Alternatively, for a 

given functional form used to approximate the value function of the firm’s optimization 

problem, there exists an underlying production function such that some of the value 

function parameters will appear in it in a specific way.  

This dual relationship has been widely used in empirical work as a tool to estimate 

production parameters without the requirement of explicitly specifying the technology. 

Shumway (1995) and Fox and Kivanda (1994) list more than one hundred applications of 

duality theory in nine agricultural economics journals.  Typically, empirical studies 

consist of 

i. Approximating the value function (profit, cost or revenue function) by a 

parametric functional form. 

ii. Deriving a set of input demand and output supply equations by applying 

Shephard’s lemma or Hotelling’s lemma. 

iii. Using econometric methods to jointly estimate the parameters of the system (in 

some cases together with the parameters of the approximated value function). 

iv. Using the estimated parameters to draw conclusions about substitution elasticities, 

price elasticities, and/or returns to scale. 
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Some widely cited papers relying on this approach are Ball (1985), Ball (1988), 

Baffes and Vasavada (1989), Shumway and Lim (1993), and Chambers and Pope (1994). 

Interestingly, the dataset employed by all of these studies was the one constructed and 

maintained by Eldon Ball for US input/output price and quantities (USDA-ERS). 

Conclusions from applying the duality approach may be heavily influenced by the 

choice of specific functional forms. As a result, a large number of studies intend to test 

the validity of duality theory and focus on investigating the most preferable (flexible) 

functional forms (FFF) for empirical purposes (Guilkey, Lovell and Sickles, 1983; Dixon, 

Garcia and Anderson, 1987; Thompson and Langworthy, 1989). Analyses of this type 

usually consist of the following steps. First, a parametric functional form is selected to 

approximate the production technology. Several parameter scenarios are chosen, and 

simulated observations corresponding to the “true” production data generating process 

(DGP) are obtained for each scenario. Second, a set of input and output prices is 

computed under the assumption of profit maximization. Third, depending on the 

objective, the profit or cost function is approximated by an FFF and the system of input 

demands and output supplies is derived. Fourth, econometric methods are applied to 

estimate the set of parameters of the approximated system, which are finally compared 

with the true (and known) production parameters. 

The aforementioned studies focusing on FFFs assume that the basic tenets 

underlying duality theory (i.e., perfect competition, profit maximizing behavior, and 

certainty) hold. Therefore, they only consider empirical deviations from duality theory 

stemming from the choice of functional form. However, this type of analysis is restrictive 

in the sense that the DGP used to recover the production parameters is free from the 
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problems usually encountered in the data available to practitioners. Therefore, these 

studies provide little guidance regarding how well duality theory applies to the empirical 

analysis of real world data.  

In this paper, we propose to analyze the ability of the duality theory approach to 

recover the underlying production parameters from data featuring typical realistic 

problems. Among other realistic properties, the simulated data for alternative scenarios 

include (i) unobserved heterogeneity across firms; (ii) measurement errors in the 

observed variables; (iii) output and input data aggregation; (iv) omitted variable netputs; 

(v) omitted quasifixed netputs; (vi) endogenous output and input prices; (vii) 

optimization under uncertainty. To make the analysis meaningful, the simulated data are 

calibrated to yield realistic magnitudes regarding the noise arising from each source. 

Monte Carlo simulations are used to compute each DGP scenario, which allows us to 

know the true technology parameters. By construction, the aforementioned elements 

introduce noise in the estimation and prevent duality theory from holding exactly. Hence, 

the true production parameters may not be recovered with enough precision, and the 

estimated elasticities or scale economies measurements may be more inaccurate than 

expected. 

Early efforts intended to test the validity of duality theory in practice (Burgess, 1975 

and Appelbaum, 1978) failed to identify the source of the discrepancy between 

conclusions from the primal and dual approaches. The authors used real-world data 

which are expected to suffer from the aforementioned problems, and therefore they did 

not know the true DGP. As a result, when the primal and dual approaches led to 

conflicting results, they could not establish which one was preferable. In addition, the 
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authors did not use a self-dual functional form to approximate both the production and 

the cost function (translog). This prevented them to attribute the whole divergence in the 

estimated parameters to a failure of duality because there is at least some difference 

attributable to functional specification. An exception is the study by Lusk et al. (2002) 

who analyzed the empirical properties of duality theory simulating data bearing realistic 

problems such as low price variability, length of time series and measurement error. 

Since we are not interested in testing different functional forms, for convenience we 

choose a quadratic production function to generate what we call the true production data 

(input and output quantities) using Monte Carlo simulations. Key advantages of the 

quadratic production function for the present purposes are that (i) it is a self-dual FFF, 

and (ii) its second derivatives depend only on parameters and not on variables, which 

greatly facilitates the analysis. The set of input and output prices is straightforward to 

obtain assuming profit maximization. 

Before proceeding to set up the normalized quadratic profit function, however, noise 

is added to the variables to replicate the aforementioned real-world problems found in the 

data used by practitioners. We aim at generating noise comparable to the noise 

encountered in Eldon Ball’s dataset. This dataset is chosen as a reference because it has 

been widely used in the literature. Given that not all the factors that produce noise are 

directly observable from the data, we select levels of noise close to what we find in the 

dataset (e.g., price variability, length of time series) and solve for the maximum level of 

noise of the other factors (e.g., measurement error, endogeneity of output prices) such 

that the production parameters can be recovered with a reasonable precision. 
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Once the profit function is set up and the system of input demands and output 

supplies is derived, its parameters are econometrically estimated and compared with the 

true (and known) production parameters. Comparisons are performed by means of Lau’s 

(1976) Hessian identities between production and restricted profit functions, which is 

straightforward under the advocated quadratic specification. 

Theoretical Model 

Consider a producer who chooses the level of netputs1 so as to maximize profits. The 

producer’s problem can be described as follows: 

,       (1) 

where  is a vector of  variable netput quantities to be determined,  is a vector of  

variable netput prices normalized by  which is the price of the numeraire commodity 

 (also to be determined). We define the augmented vector , , ′  as a production 

plan of the production possibilities set S which is a subset of  , with  equal to 

the number of quasifixed netputs (denoted as ) that constrain the production 

possibilities set2.  

While we acknowledge that agricultural production is subject to uncertainty (due to, 

e.g., weather, pests, and uncertain output prices) that affects the optimal solution, we 

choose to define a deterministic maximization problem as the baseline for two reasons. 

First, it greatly facilitates the estimation and recovery of the production parameters. 

Second, the deterministic case is commonly used in analyzes employing duality theory. 

                                                            
1 We use the standard definition of netput, where a positive value represents a net output and a negative 
value represents a net input. 
2 The properties of the set S are: i) the origin belongs to S, ii) S is closed, iii) S is convex, iv) S is 
monotonic with respect to , and v) nonproducibility with respect to at least one variable input, which 
implies that at least one commodity is freely disposable and can only be a net input in the production 
process (a primary factor of production).   
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In scenarios vii) and viii) below we redefine the problem assuming a producer optimizing 

under production uncertainty. 

Jorgenson and Lau (1974) showed that there exists a one-to-one correspondence 

between the set S (with properties i-v described in footnote 2) and a production function 

 defined as: 

, 	 	/	 , , ′ ∈     (2) 

We follow the convention that ∅ ∞, where ∅  is defined as the empty 

set, such that the value of the production function is positive infinity if a production plan 

is not feasible 3. The set of quasifixed netputs that constrains the set S also constrains the 

production function	 . The maximization problem can be then rewritten as:  

,       (3) 

The solution to this problem is a set of netput demand equations	 ∗ , , and a 

restricted profit function , , conditional on the vector of normalized netput prices, 

and the vector of quasifixed netputs. 

Lau’s Hessian Identities. Lau (1976) derived the relationships between the Hessian 

of the production function ,  and the Hessian of the restricted profit function 

,  under the assumption of convexity and twice continuously differentiability of 

both functions. Omitting the arguments of each function to simplify notation, the 

identities are as follows: 

 

                                                            
3 The properties of the production function  are: i) the domain is a convex set of  that contains the 
origin; ii) the value of  at the origin, say 0 , is non-positive; iii)  is bounded; iv)  is closed; and v)  
is convex. 
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(4) 

′  

 

These Hessian relationships allow us to “transform” the estimated parameters of the 

restricted profit function into the parameters of the underlying production function, and 

then compare these transformed parameters with the true parameters of the production 

function. The Hessian of the restricted profit function contains the information necessary 

to calculate the matrix of input demand and output supply elasticities with respect to 

(own and cross) prices, and with respect to quantities of quasifixed netputs. Therefore, 

these Hessian identities ultimately allow us to conclude how precisely we estimate these 

price and quantity demand and supply elasticities.  

Simulation of “true” production data 

We generate netput quantities and prices that are consistent with profit maximization 

by solving the optimization problem in (3). We refer to this known dataset as the “true” 

production data because it is used to evaluate the accuracy with which production 

function parameters are recovered in the estimation. To make this problem operational, 

we assume a quadratic FFF for the production function .  

, ; ′ ′ 0.5	    (5) 

where  and  are ( x1) and ( x1) vectors of  coefficients,  is a symmetric and 

nonsingular ( x ) matrix, and  and  are ( x ) and ( x ) matrices. 

Submatrices	 , 	  and  form a symmetric and negative-semidefinite 
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(( x )x( x )) matrix	 		of  coefficients. All  and  coefficients are collectively 

denoted as . This FFF is selected for three reasons. First, it is self-dual, which implies 

that the functional form of the (constrained and unconstrained) profit function consistent 

with this production function is also quadratic. This favors the recovery of the true 

production parameters because the estimation is conducted free from model specification 

errors. Second, the Hessian matrices of both the production and profit function are 

functions of parameters only and not of variables; this proves to be useful when 

evaluating whether production parameters are recovered with enough precision. Third, 

the normalized quadratic profit function is widely used in empirical analysis of 

agricultural production. The first-order conditions (FOCs) of the producer’s problem are: 

	0     (6) 

This system is jointly solved for the vector of variable netput quantities  as a 

function of the vector of variable netput prices , the vector of quasifixed netput 

quantities , and the production parameters . The solution is: 

∗ , ;     (7) 

The data generation process (DGP) consists of generating R = FxT = 7.5 million 

observations for each variable of the vector ∗ , ∗ , ∗ ; ∗  such that, for a given 

variable, each observation corresponds to a firm (farm)  and a period	 .4 The star is used 

to represent the true data which are consistent with profit maximization. Random values 

                                                            
4 This implies F = 150,000 farms over T = 50 years which is close to the 50,000 farms in a given state of 
the Corn Belt, Lake States and Northern Plains regions in the U.S. (Corn Belt states: IA, IL, IN, MO, OH; 
Lake States: MI, MN, WI; and Northern Plains states: KS, ND, NE, SD). State-level datasets with 
information on prices and quantities of agricultural outputs and inputs are available for no more than 50 
years in the U.S. 
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of	 ∗ , ∗  and ∗  are drawn from selected distributions and plugged into (7) to obtain 

the vector of quantities ∗ 	consistent with profit maximization.  

The DGP takes into account that there exist three heterogeneous regions composed 

of heterogeneous firms within each region, such that the heterogeneity of firms across 

regions is higher than that within each region, and that there exists variability of prices 

and quantities over time. Note that the vector of parameters ∗  does not depend on t, 

which implies the assumption that technology remains unchanged from period one 

through T. The study of productivity changes over time and productivity measurement, 

and their effects on the recovery of true production parameters is a topic of future 

research and is beyond the objective of this paper. This also favors the recovery of the 

true production parameters because it is free from misspecification arising from the 

evolution of technology over time.  

Random generation of		 ∗   

We generate the true netput prices ∗  by drawing FxT random deviates for each of the  

netput prices . This DGP is conducted in two steps to account for the variability over 

time and the variability across farmers. In the first step we draw T independent random 

values from a lognormal distribution with mean  and standard deviation	 . Call 

each draw as . The value of  is different for each region and the value of  is 

calibrated according to the observed volatility of prices. Price variability is a key element 

for recovering production parameters, because a high dispersion contributes to the 

identification of a bigger portion of the production function. We select values of 	  that 

are consistent with observed price variability in Eldon Ball’s dataset. In the second step, 

we shock each period-t price draw ( ) to induce variability across farms. This is done 
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by generating F random deviates from a uniform distribution over the interval [

, ]. They are denoted as	 . The value of   is small relative to  to 

acknowledge the contemporaneous low variability of prices that farmers receive and pay. 

When  is an output, we use the ratio between the basis and a futures price to calibrate 

the value of . When  is an input, transportation costs are used to calibrate de value of 

. Also, this value is region-specific to account for the distance between the region and 

one delivery point.   

The independence of the T random draws is made on purpose to avoid 

autocorrelation in the variables and facilitate the estimation of the system. Imposing 

autocorrelation in the DGP and taking that specific form into account during estimation 

to avoid inconsistency in the estimated parameters would yield the same results in terms 

of recovering production parameters as the claimed serial independency, provided that 

the sample size is large enough. The correct model specification is done with the 

objective of favoring the recovery of the true parameters. 

Random generation of 	 ∗   

We obtain the vector of quasifixed inputs and outputs by drawing R random deviates 

from a beta distribution. The beta distribution is chosen because it can accommodate 

different levels of skewness to mimic the observed distribution of these variables at the 

farm level. Data from the U.S. Census of Agriculture (USDA-NASS) is used to calibrate 

the parameters of the beta distribution. For example, if farm size is a quasifixed input, we 

use the 2002 U.S. Census variable “Farms & land in farms, approximate land area” which 

shows a relative abundance of small-sized farms, and therefore the beta distribution is 

positively skewed. In this case we use a Beta(0.7,5). If the value of agricultural capital is 
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a quasifixed input, we use the U.S. Census variable “Farms by value of machinery and 

equipment”, which shows an even more positive level of skewness. In this instance we 

use a Beta(0.8,4). Similarly, if livestock sales is a quasifixed output, we use the variable 

“Sales, Cattle & calves sold, farms by number sold”, which is also negative skewed 

because of the dominance of farms selling a small number of heads. The distribution is 

Beta(0.8,5).5 6 

Random generation of 	 ∗  

The value of ∗  characterizes the firm’s technology. For each firm, ∗  consists of the 

submatrices 	 , 	 , and 	  (formed in turn by	 , 	  and ). As we mentioned 

above, there exists firm’s heterogeneity within and across regions, such that firms have a 

technology that is more similar to that of its peers in the same region than to those in 

another region. We select first a value of 	  for each region such that the symmetric 

(( x )x( x )) matrix 	  is negative-semidefinite. Then, to induce heterogeneity across 

firms within a region, we draw random values for each entry of these matrices and check 

for negative-semidefiniteness of 	 ; if 	  is not negative-semidefinite we reject this draw, 

otherwise we keep it until we reach the required number of ∗’s in each region. 

Random draws from  must imply a distribution of firm’s size that is realistic. We 

also rely on Census data to accomplish this objective by selecting a positively skewed 

beta distribution to draw deviates for matrices 	  and 	  which heavily influence the size 

of the variables ∗ 	 according to equation (7). We use county-level data of the Census 

variable “Total sales, Value of sales, number of farms”, and by fitting a beta distribution 

                                                            
5 A common practice is to include land or agricultural capital as a quasifixed input, and livestock sales as a 
quasifixed output. 
6 Alternatively, the beta parameters can be calibrated by fitting a beta distribution per region using Census’ 
county-level data for each of the mentioned variables. 
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we estimate the parameters used to draw the desired distribution of firm’s size. Draws for 

each entry of the matrices have to be correlated between themselves because their size is 

what determines the ultimate size of the netput quantities ∗ . 

Finally, with the values of 	 ∗ , ∗  and ∗  drawn, we calculate the variable netput 

quantities for each farm  and time t ( ∗ ) consistent with profit maximization using 

equation (7). Next, with the resulting dataset (shown below) we proceed to estimation.  

∗ , ∗ , ∗ ; ∗       (8) 

Following the discussion on the previous paragraph the values of ∗  that imply a 

large value of ∗  are associated with the large values of ∗ , because it is expected that 

big farms in terms of production and input use also hold a higher quantity of quasifixed 

netputs. 

Estimation of Profit Function Parameters 

We approximate the restricted profit function	 ,  solution to the problem in (3) by 

an FFF, and derive the set of input demands and output supplies by Hotelling’s lemma. 

For the reasons mentioned above, a normalized quadratic (NQ) profit function is the 

selected FFF. Therefore, the system used for estimation is the following. 

, ; 0.5   (9) 

													 , ;   

where  and  are ( x1) and ( x1) vectors of  coefficients,  is a symmetric x  

matrix, and  and  are x  and x  matrices. Submatrices	 , 	  and  

form a symmetric (( x )x( x )) matrix  of  coefficients, which is exactly the 

Hessian matrix in the case of the NQ profit function. All  and  coefficients are 

collectively denoted as	 . The restricted profit function is included in the estimation, 
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contrasting many empirical studies, because only in this case the parameters of the 

submatrix  can be estimated. 

This system of equations is estimated by iterated SUR which is the most common 

method employed in empirical works based on duality theory. We assume that the error 

terms  and  are respectively distributed 0,  and , , where  is the 

covariance matrix that induces contemporaneous correlation among the netput equations. 

As we mentioned above, the covariance structure does not impose serial autocorrelation.  

We compare the estimation of the Hessian matrix  with that of the production 

function according to Lau’s Hessian relationships to evaluate how precisely we recover 

the true production parameters, and ultimately the elasticities of input demand and output 

supply with respect to prices and quantities of quasifixed netputs. 

Each proposed scenario makes a different use of the generated data. Below we 

describe in detail each scenario. 

(i) Unobserved heterogeneity across firms;  

We analyze the effects of aggregating production data across heterogeneous firms and 

proceed to the estimation as if it came from a single firm. This is a common practice 

because the majority of the studies applying duality theory use country-, state- or county- 

level data as if it belonged to a single firm; however, such a firm does not exist. We are 

interested in answering the following question: Whose production parameters are we 

recovering when we pool together production data from several firms?  

We take the 2.5 million observations of a region (F=50,000 firms in the region times 

T=50 years). Firm’s heterogeneity arises from their different parameter values	 . For 

each period	 , we aggregate the subvector  ∗ , 	 ∗ , ∗  across firms to obtain a vector 
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of a “single firm” , 	 ,  which still changes over time. Aggregation of netput 

quantities is performed by adding across firms because they are homogeneous 

commodities. The th netput price at period  ( ) is aggregated by means of a weighted 

average of the quantity that each farmer sells or uses.  

∑ ∗ 	  

∑ ∗              (10) 

	∑ ∗ ∗   

where the subscript  represents the th netput. The resulting vector , , ,  of 

quantities and prices is used to estimate the system of netput demands and supplies 

together with the profit function; i.e., the system in (9) is estimated with T observations. 

Note that the coefficients  are not part of the data used for estimation because they are 

the values against which we compare the estimated parameters according to Lau’s 

Hessian relationships in (7). 

We also aggregate the data of the other two regions into single firms, as described in 

(9), and conduct the estimation of the system in (9) with T=50 observations per region 

and including regional dummies. The purpose is to analyze how the precision in 

recovering the parameters worsens as we aggregate firms that are even more 

heterogeneous. It is common practice to include data from different states in order to 

increase the degrees of freedom (limited by having only T years of data) even if these 

states have very different underlying technology. We evaluate this tradeoff in this 

scenario. 

In what follows, the dataset just described, i.e., with length T and aggregated across 

farms within a region, is used in the rest of the scenarios. We do not use the farm-level 
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data with yearly observations because this type of information is not usually available in 

reality. Therefore, when we evaluate the accuracy of parameter recovery in each scenario, 

we use the results obtained in scenario (i) as the baseline point of comparison. For this 

reason, we rename the variables resulting in (10) with a star superscript, as well as the 

estimated values of , to indicate that these are the new points of comparison.  

∗, ∗, ∗; ∗       (11) 

(ii) Optimization under perturbed prices;  

We analyze the effects on recovering the true production parameters when farmers 

optimize under prices that deviate from the values used by the econometrician for 

estimation purposes. This is relevant for the following. Farmers solve the maximization 

problem given a set of output prices that reflects their expectations of the prices at 

harvest. It is commonly accepted that prediction errors make this difference relevant. 

Even in the case of locking in the production prices with instruments such as forward 

contracts, it might be the case that not all the production is sold under this type of 

agreements. In the case of input prices, some of them are known at the optimization 

moment because most inputs are used at the beginning of the production period. 

However, observed prices may differ from true prices as a result of measurement errors 

in collecting the information. For example, if a farmer uses different types of pesticides 

but reports an average or just one price, we observe a price that deviates from its true 

value. In either case, deviations from the true values produce inconsistency in the 

estimated parameters, and as a result in the elasticities of interest.  

The netput price vector  used in the optimization is obtained by adding 

perturbations to the farm-level true prices. 
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	 ∗    ;  	~	N ,      (12) 

We aggregate these prices according to equations in (10) to obtain a new set of prices 

 and construct the dataset ∗, , ∗  that is used in the estimation of system (9). The 

estimated parameters  are compared to ∗ according to the Hessian identities. 

This scenario also captures a different dimension of perturbed prices, which is when 

the measurement error occurs on the already aggregated price. This is the case when, for 

example, input or output prices are not readily available for the econometrician and prices 

from other region or of other similar products have to be used instead.  

(iii) Output and input data aggregation  

The effects on recovering true production parameters from aggregating different types of 

outputs and different types of inputs under the same output or input is studied in this 

section. Production processes employ a variety of inputs to produce several outputs; 

however, the data usually available to practitioners is not at that level of disaggregation. 

Also, in some cases, even if data is available for several inputs and outputs, they are 

aggregated because they are not the objective of the study and/or so as not to excessively 

penalize the degrees of freedom during estimation. 

Aggregation is done as follows: 

∑ ∗
∈ 	  

∑ ∗ ∗
∈                (13) 

     ∑ ∗
∈  

where Ω  is a subset i of netputs, and  and  are subindices indicating an aggregated 

netput. The case of ∈ Ω  indicates the situations of aggregating variable inputs and 

output, whereas ∈ Ω  indicates the aggregation of quasifixed netputs. The quantity 
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aggregation of the variable netputs ( ) is performed using weights given by the share 

of the value of each netput ( ∗ ∗ ) on the total value of the netputs included in Ω ; that 

is ∗ ∗ ∑ ∗ ∗
∈ . The variable netputs prices ( ) are obtained 

as an index by taking the ratio between the total revenue of the netputs in  Ω  and . 

The aggregation of the quasifixed netputs is done by adding quantities across netputs in 

Ω  because prices are not available to construct weights. 

We estimate system (9) using the following data , , , in which some netput 

quantities and prices (those belonging to the sets Ω  and Ω ) are the result of the 

described pooling, and others are the ones obtained in (11). 

Noting that in this case the production and restricted profit function Hessians have 

different dimensions, when we evaluate how precise the true production parameters are 

recovered by the Hessian identities, we have two situations. One situation is with the 

netputs that were not aggregated, in which case we can still tell which entry of the 

production function Hessian corresponds to a given entry of the (transformed) restricted 

profit function Hessian. On the other hand, for the netputs that were aggregated there is 

more than one entry in the production function Hessian that corresponds to a single entry 

in the profit function Hessian.  

(iv) Omitted variable netputs 

Production takes place with several netputs but it is often the case that the econometrician 

does not observe all of them. This situation can arise due to a misreporting of data from a 

surveyed producer in which one or more than one netputs are omitted, or when some 

inputs are not part of the surveyed set of inputs. In either case, while the producer 

optimally chooses a set of  variable netputs to maximize profits, the econometrician 
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only observes ’ of them with ’ . In our setup, we proceed to estimate the system in 

(9) with a dataset , 	 , 	 ∗  defined as follows: 

       	 ∑ ∗ 	 ,           ’	 	1, 2, … , ’ 

	∑ ∗ ∗  ,     ’	 	1, 2, … , ’   (14) 

where the ∗ ’s in the first equation are the first ’ of the vector ∗  in (8); and the 

’s form a vector  , , … , . The prices of the observed variable netputs 

, , … ,  are constructed, similarly to equation (10), as the weighted 

average of the quantity that each farmer sells or uses. Finally, ∗ is the same as in (11) 

because we assume all the quasifixed netputs are observed. 

The estimation of system (9), with the mentioned dataset, produces values of  that 

are compared with ∗ by the Hessian identities, taking into account that, as in the 

previous scenario, the Hessians of the production and restricted profit functions are not of 

the same dimension.  

(v) Omitted quasifixed netputs 

This scenario follows directly from the previous but when only the first ’ of the  

quasifixed netputs are observed by the econometrician. The dataset in this case is 

∗, ∗, , where ∗ and ∗ are given by equation (11) because all the variable netputs 

are observed,  and  is defined as: 

∑ ∗    ’	 	1, 2, … , ’  (15) 

where the ∗ ’s are the first ’ elements of ∗  in (8), and the ’s form a vector 

, , … , . We use the dataset for estimation of system (9) to obtain the 

parameters  that we compare with ∗ taking into account the different dimension of the 

Hessian matrices. 
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(vi) Endogenous netput prices 

The underlying assumption in the maximization problem in (3) is that farmers are price 

takers, and according to this, our DGP in (7) is conducted by drawing random prices that 

completely determine the levels of netput quantities. However, when we deal with 

aggregate data at the country-, state- or sometimes county-level it is likely that the 

quantities have a feedback effect on prices. This effect induces endogeneity between 

prices and quantities, and inconsistency in the estimated parameters and elasticities, if it 

is not taken into account in the estimation. 

To generate data that induces endogeneity between variable netput prices and 

quantities we create a new netput price variable from the true data vector ∗, ∗, ∗  in 

(11) as follows: 

∗ ∗ ∗      (16) 

where the parameter  is negative if  is an output, accounting for the fact that a higher 

aggregate output quantity induces a reduction in the output price; and is positive if  is an 

input because a high aggregate use of inputs drive input prices up. Netput quantities’ 

effect on prices comes from deviations of netput quantity from its mean ( ∗). 

The data used in estimation of system (9) is ∗, , ∗  where  is given by (16) 

and the remaining values are those from (11). The estimated value of the production 

parameters are compared to ∗ in (11). 

(vii) Optimization under uncertainty; 

In this scenario we analyze the effects on the precision of recovering production 

parameters of ignoring the uncertain nature of the farmer’s problem and assuming that it 

is deterministic. Uncertainty in farmer’s decision process comes from events such as 
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random weather, the presence of pests, and unobserved selling prices, among others. In 

particular, the farmer optimizes by choosing the quantity of output that expects to harvest 

at the end of the growing season, given the expected prices at which this production will 

be sold. At the decision moment, the farmer does not observe the true value of these 

variables. 

We generate the data by transforming the problem in (3) into a problem of 

maximization of expected utility of a risk averse farmer. 

	 	 ,     (17) 

where  is a strictly increasing and twice-continuously differentiable concave utility 

function whose argument is the uncertain end-of-period profits . The tilde (~) indicates 

that it is a random variable and  is the expectation operator that integrates over the 

uncertainty of both random variables (  and ). The concavity of the utility function 

determines the degree of risk aversion. We assume a constant absolute risk aversion 

(CARA) utility function of the form  for which the parameter  is the 

coefficient of absolute risk aversion, defined as  where  and  are respectively 

the first and second derivatives of the utility function with respect to the random profits. 

The FOCs of this problem are: 

	0    (18) 

where . This system is solved simultaneously for the optimal values of the 

expected variable netput quantities using numerical methods.  The data generated in this 

scenario is used to estimate the system in (9) which ignores the uncertainty embedded in 

the DGP. 
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In order to isolate the effects on the precision of the estimated parameters from 

ignoring the mentioned uncertainty, we conduct the estimation of system (9) with farm-

level data from of the regions. The DGP of the netput prices, quasifixed netput quantities 

and the true production parameters was already described in page 9 through 12 and 

denoted as ∗ , ∗ ; ∗ . We use these data to numerically solve for the optimal 

expected quantities of variable netputs, according to the system in (18), with the 

parameter  calibrated so that it is consistent with a relative risk aversion coefficient 

equal to 2. We denote the solution vector as 	 ∗ ∗ , ∗ ; ∗  whose entries are 

functions of expected prices ( ∗ ∗ ), quasifixed netputs and the true production 

parameters. Note that in this case we assume no prediction error in prices, such that 

farmer’s price expectations are realized with no deviation from their end-of-season 

values. 

To estimate the parameters  with system (9) we use the data ∗ , ∗ , ∗   and 

then proceed to the comparison of the estimated parameters with the true parameters ∗ 

with the Hessian relationships. 
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