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with micro data...

Bayesian estimation of non-stationary Markov 
models combining micro and macro data 

Objective: Relevance: Farm Structural Change

Background on Markov processes 

Monte Carlo Results Conclusions

Specification of Pt

Computation Monte Carlo Simulation

Hugo Storm, Thomas Heckelei, Institute for Food and Resource Economics (ILR), University of Bonn

(1) Develop a Bayesian estimation framework for non-stationary Markov 
models that allows combining micro and macro data based estimation 
techniques previously considered as alternatives only

(2) Evaluate the derived estimator using Monte Carlo Simulations

General aims: (1) Indentify and quantify factors that determine farm structural 
change (2) Predict structural change in response to these factors

• Often modeled as a Markov Process (Zimmermann et. al 2009)
• But current estimation techniques do not allow using available micro and macro 

data in a satisfying way

• A Markov process allows to model the movement of individuals between a 
finite number of predefined states, i=1,...,k , as a stochastic process

• A Markov process is characterized by a transition probability matrix Pt

• The vector nt denotes the number of individuals in each state and 
develops over time, t, according to a (first order) Markov process:

1t t tn P n

• Pt is assumed to be a function of explanatory variables
• We propose two different specifications for ordered and unordered Markov 

states based on the multinomial logit model and the ordered logit model
• Main differences: (1) Multinomial logit model requires assumption of iid

errors which might be inappropriate with ordered Markov states 
(2) Ordered logit model requires less parameter to be estimated

State A B C

Size Small Medium Large

Farms in t=0 60 30 10 

Farms in t=1 40 40 2 0

Definition:
• The number of individuals in each class, nt, is observed over time 
• Individual transitions are not observed and many different transitions 

could result in the observed data
• Pt needs to be estimated

Example: Macro data

Definition:
• The movements between classes is observed for each individual over time
• The micro transition matrix give the number of individuals transiting from 

a specific state in t-1 to a state in t
• Pt can be calculated directly

Example: 
Micro transition matrix

to

from

A B C ∑

A 30 10 10 60

B 10 10 10 30

C 0 10 0 10

∑ 40 40 20

Macro data based likelihood: nt are distributed 
as weighted sum of independent multinomials
(MacRae 1977)

in Bayesian estimation of Markov models

A micro data based likelihood function is specified 
for the prior weights
Micro transitions are multinomial distributed with 
size equal the number of individuals in the 
corresponding class in t-1 and probabilities of Pt

• A sample from the posterior density is obtained via a random walk Metropolis 
Hastings algorithm 

• The posterior mean, which is the optimal Bayesian estimator under squared 
error loss, is approximated by the mean of the posterior sample

• Aim: Analyse influence of prior on 
posterior and estimator performance

• Separate simulation for 
ordered/unordered Markov states

• 10 true models with 20 repetitions each

Scenarios (1) (2) (3) (4)

Size of micro sample 0 100 500 1000

Markov States (k) 3,4,5

Size of macro sample 10.000

Time periods 100

Expl. variables (nz) 6 (incl. a constant)
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Box-Whisker plots of the (summed) squared deviation from the true values in the 200 
simulation runs and (summed) variance of the posterior density

• Inclusion of micro data as prior information reduces Mean Square Error 
(MSE) and posterior variance

• Improvement stronger the more Markov states are considered
• Prior information increases numerical stability of the estimation
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A large sample approximation is employed 
(Brown and Payne 1986)  

Data availability:
• (Usually) good
• Example: For the analysis 

of EU farm structural 
change it is available from 
the Farm Structure Survey 
at population level 

Data availability:
• (Usually) limited
• Example: For the analysis of EU farm 

structural change a sample is available 
from the Farm Accountancy Data Network
(FADN)
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Post. Var. 0.0416 0.0244 0.0134 0.0089

0.0

0.1

0.2

Four unordered Markov states 

0 obs 100 obs 500 obs 1000 obs

0

2

4

Size of Micro Sample

S
u
m

m
e
d
 S

q
u
a
re

d
 E

rr
o
r

Micro obs 0 100 500 1000

Post. Var. 0.0022 0.0016 0.0011 0.0008
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Exemplary result


