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Abstract 

 

There have long been concerns that federal crop insurance subsidies may significantly impact 

land use decisions. It is well known that classical insurance market information asymmetry 

problems can lead to a social excess of risky land entering crop production. Our conceptual 

model shows that the problem will arise absent any information failures. This is because the 

subsidy is i) proportional to acres planted, and ii) greatest for the most production risky land. 

Using farm-level data, we follow this observation through to establish the implications of 

subsidies for the extent of crop production, with particular emphasis on U.S. regions where the 

cropland growth is likely to have marked adverse environmental impacts. Simulation results 

show that when subsidy rate decreases by 5 percentage points, then about 0.60 percent of 

insured cropped land will be converted to non-cropped land.  When crop price decreases by 5 

percent, then about 1.01 percent of insured cropped land will be converted to non-cropped land.  

Keywords: crop insurance, land use, crop yields, yield risk measurement.  

JEL Code: Q15, Q18, Q24. 
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Land Use Consequences of Crop Insurance Subsidies 

(Preliminary Draft - Please do not Quote without Permission) 

 

1. Introduction 

 

The U.S. government, via subsidies and direct payment programs, contributes to the farm 

sector and incentivizes (directly and indirectly) land use behavior. Some of these payments are 

directly used for conservation and environmental protection but the majority are not. Total 

governmental expenditures on Conservation Reserve Program (CRP), by far the largest federal 

conservation program, accounts for roughly a quarter of the $12.8 billion in total government 

direct payments in 2008. Additionally, the federal government also paid $5.7 billion in the 

form of subsidies to crop insurance premiums. There have long been concerns that such 

payments would have significant impacts on land use decisions and changes to the agricultural 

landscape. Specifically in the case of crop insurance, such payments are generally not covered 

by World Trade Organization agreements on domestic support and so can be coupled to a 

change in land use.  

There are definite patterns in net crop insurance payments (Glauber 2004). Over the period 

2000-2007, crop growers in all of Oklahoma, Montana, Texas, Kansas, South Dakota and 

North Dakota received $2 or more in indemnity payouts per $1 premium paid by the grower 

(Babcock 2008). Typical insurance programs will pay out considerably less than $1 per $1 

premium in order to cover expenses. The states in the Central Corn Belt, namely Indiana, 

Illinois and Iowa, are less drought-prone and the soils are generally more fertile. Yet these 

states all had payouts of between $0.7 and $0.9 per $1 premium paid by the grower. Intuition 

would suggest that subsidizing production activities on risky land will encourage more 

production on such land. To the extent that it has been studied, economic theory supports this 
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intuition (LaFrance, Shimshack, and Wu 2001).  

In this article we seek to ascertain the extent to which land use patterns have been, and are 

likely to be, affected by crop insurance subsidies. We will seek to establish the specific policy 

channels, specific land use conversions, and spatial configurations of such conversions. We 

will also estimate the land use conversion implications of alternative policies surrounding the 

availability of crop insurance. 

Many studies have examined the impacts of government payments on land use decisions. 

A few of them are specifically focused on federal crop insurance programs (Young, Vandeveer, 

and Schnepf 2001; Goodwin, Vandeveer, and Deal 2004; Lubowski et al. 2006; Stubbs 2007; 

GAO 2007; Carriazo, Claassen, and Cooper 2009). Goodwin, Vandeveer, and Deal (2004) 

represents the consensus that while crop insurance subsidies do incentivize cropping, the effect 

is not large. Other evidence is not so sanguine, where Chen and Miranda (2007) conclude that 

in the Central and Southern Plains regions corn and cotton crop abandonments are induced by 

crop insurance programs.  

We discern large gaps in this literature. The focus has been largely at the county level of 

analysis. It has not focused on the region most likely to be impacted, land at the cropping 

fringe in the arid Western Great Plains. The measurement of extent of insurance subsidy has 

been very casual. Existing work has not been able to distinguish between conversion from 

uncultivated rangeland to cropland or between CRP and cropland. And the policy context has 

changed markedly since the more analytic earlier studies, culminating in Goodwin, Vandeveer, 

and Deal (2004) where the latter work considered data over the period 1985-‟93. Biofuels 

policies as well as increasing global demand for food and feed has led to a dramatic increase in 

corn, soybean, wheat and barley prices and an expansion of land under crops during the five 
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years up to 2010. Additional insurance subsidies were provided under the Agriculture Risk 

Protection Act of 2000, while the 2008 Farm Bill introduced further risk protection through the 

ACRE program. The only work we are aware of that has taken a high-resolution look at the 

effects of farm risk management programs on land use decisions is Carriazo, Claassen, and 

Cooper (2009). By constructing representative farms in the Prairie Pothole Region, they 

simulated the consequences of alternative policy scenarios for land use patterns. However, 

their data were meager and the authors acknowledge that little can be drawn from their analysis.  

In this article we examine how federal policies, including agricultural risk management 

policies, affect land conversion decisions using field level data. Regarding the impacts of 

federal crop insurance subsidies on land conversion, some specific policy-relevant questions 

are: 1) to what extent do crop insurance subsidies affect land conversion, 2) are the impacts 

homogenous in all locations or are some locations particularly susceptible, and 3) can the 

objectives of both conservation policy and crop insurance be achieved by allowing measures of 

“insurance riskiness” to influence eligibility or participation in crop insurance programs and 

also programs that fund conservation efforts? 

To address such questions, we first need to understand a typical farmer‟s optimal decision 

problem in the presence of crop insurance. We also need to understand the basic characteristics 

of agricultural land, including its average yield and associated risk profile. Then we can 

consider how current policies can be improved to mitigate the adverse impacts of federal crop 

insurance subsidies. In this article we first develop a model of the decision to change land use. 

The problem here is one of modeling and comparing returns from different land uses: crop 

production versus non-crop production. The return would include payments from government 

interventions, over the indefinite horizon, where simulations would be run over a variety of 
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government program and market price scenarios. Second, we statistically estimate measures of 

crop insurance and related subsidies. We control for yield trends so as to correctly estimate the 

extent of riskiness (Just and Weninger 1999). The approach taken is similar to that in Claassen 

and Just (2010), who utilized USDA Risk Management Agency data at the farm level. An 

insurance loss index like that proposed in Hennessy (2009) is then estimated. Third, we 

calibrate the decision model and simulate the land use effects of crop insurance.   

The article proceeds as follows. In the second section we develop a theoretical model that 

studies how the extent of yield risk can affect planting decisions in the presence of a crop 

insurance subsidy. In the third section we statistically estimate measures yield riskiness relative 

to crop insurance. Section 4 studies the determinants of the yield riskiness. In Section 5 we 

calibrate the theoretical model and simulate the land use effects of crop insurance in different 

scenarios.  Section 6 concludes. 

 

2. Model: Yield Risk and Distorted Planting Decisions 

We consider the matter of how the extent of yield risk can affect planting decisions in the 

presence of a crop insurance subsidy. The analysis pertains to many land units, each with a 

single owner. The land units are homogeneous in that all acres in a unit are the same. But there 

is heterogeneity across units. To explore the effect of yield variability on planting choice, three 

simplifications are made to the model. The planting choice is discrete in that either all acres in 

a land unit are planted or none are. The utility function is of Constant absolute risk aversion 

(Cara) form 
We   where 0   is the coefficient of absolute risk aversion. With 0   and   

[0, ] , we also assume that yield per unit takes the following two-point discrete distribution;  
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(1) 
with Prob.  0.5;

with Prob.  0.5.
y

 

 


 


 

Our interest is in yield variability only, so   is held to be a constant while   is 

heterogeneous with mass distribution function ( )F   normalized such that ( ) 1F   . We will 

assume strictly positive mass density ( )f   throughout, i.e., ( ) / ( ) 0dF d f       

[0, ] . 

Assumption 1: i) All land in a unit is planted, or none is; ii) Preferences follow Cara 

expected utility; and iii) Production follows yield distribution family Z  where { :Z y  

 follows distribution (1) and ( )}y F  . Furthermore, ( ) / ( ) 0 [0, ]dF d f        . 

The alternative to cropping is to leave the land in some non-crop activities, where these 

could include some or all of pastoral livestock farming, hunting preserve or in a conservation 

program. The non-stochastic return on such activities is r  per unit so that utility is 
w rU e    

whenever the land is not planted. In short, three choices exist for the owner of a land unit with 

risk level  . These are:  

A) Do not crop and receive certain utility level 
w rU e   ;  

B) Grow a crop but do not insure (label choice as gni) and face a, yet to be computed, 

expected utility level of ( )gniU  ; and  

C) Grow a crop and do insure (label as gi), where the premium is subsidized at rate s  

[0,1]  and the yet to be computed expected utility level is ( ; )giU s .  

Thus the overall problem is to identify  

(2) ( ; ) max[ , ( ), ( ; )].w gni giV s U U U s    
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In order to understand the decision-making process embodied in (2), it is useful to make two 

comparisons. These are to compare A) with B) and also compare A) with C).
1
  

2.1 Comparing choices A) and B) 

To establish expected utility when the land is planted we need to build up the payoffs. With 

output price 0p   and total cost 0c  , expected market revenue is p c   . Market 

revenue is p   with Prob. 0.5 and p   with Prob. 0.5, so expected payout is:  

(3) 
( ) ( )( ) 0.5 0.5 0.5 ( ).gni p p p pU e e e e e                       

Let  

(4) 
( )( ) 2[ ( ) ] 2 ,ni gni w r p pU U e e e e                

where factor 2e  has been included only for convenience. We seek to identify and understand 

the levels of 0   such that ( ) 0ni   . We show in Appendix A that whenever r   then 

the only positive solution is  

(5)  2 ( )1
ln 1 1 .gni rr

e
p p

 




 
     

As ( )gniU   is decreasing in  , i.e., ( ) / ( ) 0.5 ( ) 0gni gni p pdU d U pe e e    

          , it 

follows that set [0,min[ , ]]gni    will be planted and so the fraction of land that would be 

planted is (min[ , ])gniF   . For future reference, we formalize the rather obvious inference. 

Remark 1: Absent insurance, only the least risky land is planted. 

                                                            
1 The setting we study will allow us to view choices B) and C) as just one choice because risk aversion and a 

subsidy will mean that choice C) is preferred over B) whenever the crop insurance contract is a meaningful 

choice. Therefore we need not compare B) with C). 
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Finally, if r   then 0gni   while 0gni   whenever r  . So whenever the risk aversion 

parameter is strictly positive then land with strictly positive yield risk is planted if and only if 

the expected profit from doing so is strictly positive. Figure 1 depicts the expected utility 

comparison as production risk changes. 

 

2.2 Modeling insurance 

Now crop insurance is introduced. Insured yield is   where (0,1]  so that the indemnity 

payout on each unit is max[ ,0]p y  . As expression ( 1)   arises repeatedly through the 

analysis, we write ( 1)     in order to reduce notation. The indemnity payout on one unit 

is max[ ,0] 0p     with high yield Prob. 0.5 and max[ ,0]p    with low yield Prob. 0.5. 

The matter is only of interest whenever a payout occurs with strictly positive probability, so 

crop insurance will only be taken up by unit owners having yield risk that satisfies    .  

The expected indemnity, and so the unsubsidized actuarially fair premium absent an 

administration loading factor, is 0.5 max[ ,0] 0.5 max[ ,0]v p p         

0.5 max[ ,0]p   . So 

(6) 
0.5( ) ,    whenever   ;

0                     otherwise.

p
v

     
 


 

In the presence of subsidy rate 0s  , the actual premium is (1 ) 0.5(1 ) max[ ,0]s v s p       

while the actual subsidy is 0.5 ( )sv s p   . The following remark is key to understanding 

incentives in what is to follow; 
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Remark 2: Subsidy sv  is increasing in both i) risk parameter   and ii) crop price p .  

The subsidy is more extensive for riskier land, and also for land of a given risk level when 

the crop price increases. Given the subsidy, all growers with     will insure in light of a) 

benefits from risk management, and b) the subsidy. For     there is no benefit to insuring 

as the payout and premium would both equal zero so we assume that the growers do not insure. 

If the land owner plants and insures (or,    ) then profits under the high (h) and low (l) 

yield scenarios are, respectively, (1 )h p s v       and ( ) (1 )l p p s v          , 

or  

(7) 
High : 0.5 [(1 ) (1 ) ];

Low : 0.5 [(1 ) (1 ) ].

h

l

p s s

p s s

   

   

    

    
 

Planting time expected utility when growing an insured crop becomes  

(8)  (1 ) (1 ) (1 ) (1 )( ; ) 0.5 0.5 0.5 ,
h lgi s s s sU s e e e e e e e                      

where 0.5 p   and we note that ( ; ) ( ) ( ; ) 0gi gi

sU s U s             . As will be 

shown, we cannot be sure that ( ; ) 0giU s    without further qualification and so we cannot be 

sure that any solution to { : ( ; ) }gi wU s U    is unique.  

 

2.3 Insurance, but no subsidy 

In general, no closed-form solution is available for the   values that solve ( ; )gi wU s U  , 

which we label as 
gi . However, a closed-form solution does exist when 0s  . It is shown in 

Appendix A that 
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(9)  2 ( )

0

2( ) 1
| ln 1 1 2 0,gi r gni

s

r
e

p

 
   



 




         

upon use of (5). Therefore, 0|gi gni gni

s        and this is positive whenever 
gni   . 

Now, from (8),  

(10)  0.5 ( ) 0.5 ( )

0( ; ) | 0.5 0gi p p

sU s e e e      

      

      

as 0   . So an increase in   decreases expected utility even under unsubsidized insurance, 

and we can conclude: 

Proposition 1: Relative to no crop insurance, the presence of unsubsidized crop insurance 

expands the set of land farmed from ( )gniF   to ( 2 )gniF    whenever 
gni   . It remains 

the case that only the least risky land is cropped.  

This unsurprising result should be viewed as a reference point because presence of an 

insurance subsidy may reverse the relationship between land risk type and the decision to crop. 

 

2.4 Comparing choices A) and C) 

We will inquire now into the properties of expression ( ; ) 2[ ( ; ) ]i gi ws U s U e    . If and 

only if ( ; ) 0i s   will it be privately optimal to crop any land unit with production risk level 

  such that    . From (8)  

(11) 
( ) (1 ) (1 ) (1 ) (1 )( ; ) 2 ,i r s s s ss e e e e e                 

and it is critical to note that ( ; ) 0i s    even in the presence of unsubsidized crop insurance. 

Break-even risk levels solve ( ; ) 0i s  . From the implicit function theorem, as well as 
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discussions surrounding (8) and (10), it is also readily shown that whenever the subsidy is 

small enough to ensure that expected utility from cropping decreases with an increase in 

production risk, then 

(12) 
( ; )

( ; )
| 0.

( ; )
gi gi w

gi gi

s

giU s U

U s

s U s


 




  


 

This means that an increase in subsidy rate expands the set of land units that is cropped. But of 

course this inference would not necessarily apply were ( ; ) 0giU s   . 

Consider now the first derivative of ( ; )i s  with respect to yield risk which, in light of (1), 

reflects how more yield risk will impact optimal land allocation choice. That is, ( ; )i s   0  

would imply ( ; ) ( ; ) 0gi w giU s U U s       and riskier land would be more likely to go under 

the plow. The calculation is 2 2 (1 )( )( ; ) [(1 ) (1 ) ]i ss s e s e e    

          . Thus ( ; ) 0i s    

whenever  

(13) 
1 1ˆ ˆ[0,min[ ( ), ]]; ( ) ln .

2 1

s
s s

s
     



 
    

 
 

It follows that 
2ˆ( ) / 1 / [ (1 )] 0d s ds s    , and so  

Remark 3: The level of   at which expected utility under insurance is maximized, or ˆ( )s , 

is increasing in the subsidy rate.  

Several further comments are in order. Insurance occurs only when     so ˆ( )s  is 

meaningful only on that domain. Notice too that were 0s   and 0   then ˆ( ) 0s   so that 

( ; ) 0i s    for no land units. There exists a critical lower bound on [0,1]s  such that 

( ; ) 0i s    for some land units. That lower bound is given by solving ˆ( ) 0s   to obtain 
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2 2( 1) / ( 1)lbs e e     . When 0  , i.e., mean yield is insured, then 0lbs   but 
lbs  is 

strictly positive under incomplete insurance.  

So the possibility that expected utility under cropping increases with yield variability can 

only arise when a subsidy is in place. As has been stated already, taking out insurance is 

meaningful choice only for land with    . Figure 2 depicts a possible shape for ( ; )V s  in 

(2) as a function of   in the presence of a crop insurance subsidy. So as to understand (2) and 

the figure it is important to elaborate on what happens when    . As implied by the figure, 

the following is readily established: 

Remark 4: Insured and uninsured crop production expected utilities match at    , or 

( ; ) | ( ) |gi gniU s U      , but ( ; ) | ( ) |gi gniU s U        .  

The figure provides just one possible shape and so leaves much unstated. In it, the value of 

  is sufficiently high and the value of r   sufficiently low that no land is insured in this 

situation. Also, the meaning of „subcritical‟ in the caption has yet to be declared while we have 

yet to characterize how the value of s  affects the shape of ( ; )V s . We ask now whether 

ˆ( )s   . If so, then there would be an interval for  , namely ˆ[ , ( ))s     such that 

insurance would be taken up and also ( ) 0i

   . Both conditions apply if and only if ˆs s  

4 4( 1) / ( 1)e e     . The right-hand quantity in this inequality is bounded above in value 

by 1. We refer to any ˆs s  (resp., ˆs s  as a subcritical (resp., supercritical) subsidy. If ˆs s  

then ( ; ) 0giU s    so that a 
gi  that solves ( ; )gi wU s U   is unique. 

We close this section with a summary of what we can infer from the above. 

Proposition 2: (Subcritical subsidy) Suppose ˆs s  and 
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Ii) [See figure 2] 
gni   . Then no land is insured while set [0, )gni   is cropped and set 

[ , ]gni    is not cropped; 

Iii) [See figure 3] 
gni   . Then set [0, )    is cropped but not insured, set   

[ ,min[ , ])gi    is cropped and insured, while set [min[ , ], ]gi     is not cropped, where 

gi  is the unique solution to ( ; )gi wU s U  ; 

(Supercritical subsidy) Suppose ˆs s  and 

IIi) [See figure 4] 
gni   . Then set [0, )    is cropped but not insured, set   

[ ,min[ , ])gi    is cropped and insured, and set [min[ , ], ]gi     is not cropped, where 

gi  is the right-most solution to ( ; )gi wU s U  ; 

IIii) [See figures 5 through 9] 
gni   . Then set [0, )gni   is cropped but not insured and a 

convex set around     is not cropped. The set C of noncropped land may a) extend to    

  (figure 5), or b) be convex in that it does not include an interval around    (figure 6), or 

c) be nonconvex in that it includes an interval around    while excluding an interval 

around ˆ( )s   (figure 7). Further, d) when 0gni   then the set of cropped land can be 

riskier than the set of uncropped land (figure 8) or riskier than some cropped land and less risk 

than other cropped land (figure 9). 

The contrast between figures 2 and 3 is in how the presence of insurance, subsidized or not, 

flattens out expected utility through state-conditioned transfers. This ensures that 
gi gni  , 

with 
gi gni   whenever 

gni   . In figure 4 the subsidy is large enough that more risk 

increases expected utility, and so expands the set of land to be planted. In figure 5 the return to 

noncrop uses is large enough that insurance is not relevant, even under a low but supercritical 
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subsidy rate. Figure 6, however, has this return to the noncrop option low enough and subsidy 

high enough that the set of cropped land is nonconvex. The riskiest and least risky land units 

are cropped, but intermediate lands are not. The cropping of the riskiest land is driven by a 

subsidy so enticing as to overcome the risk exposure and associated high premium cost.  

Figures 7-9 provide what are perhaps the most curious outcomes. In figure 7 neither the set 

of cropped land nor the set of noncropped land is convex. Near   , the premium subsidies 

may be high but the risk incurred is still too high to support cropping. Figure 8, which is a 

special case of IIii) b) and figure 6, provides another interesting possibility. Here, r   so that 

low risk land units will not be cropped. But the subsidy is such that cropping occurs at high 

risk. Figure 9 is the extension of IIii) c) and figure 7 to when r   so that only an interior 

interval in [0, ]   is cropped.  

From the perspective of policy, figures 3 and 8 capture some widely held concerns about 

the land use implications of crop insurance in some parts of the United States. Bear in mind 

that our analysis is not about adverse selection or moral hazard market failures as a result of 

asymmetric information. Information asymmetry is not necessary in order for only the riskiest 

land to be cropped. While information asymmetries and/or mispriced contracts may indeed be 

part of the story, the simplest and most direct story is one of a subsidy that is most valuable on 

the riskiest land. Figure 3 shows that the subsidy brings riskier land into production even if, as 

in our model, higher risk is not generally associated with less risky land. As pointed out in 

Remark 2, the effective subsidy is largest for the land with highest production risk. Figure 8 

shows that the subsidy can be so strong as to reverse the intuitive ordering on how land should 

enter production, i.e., where demand is highest for the least risky land as a factor in production. 

This brings us to the matter of working through circumstances under which cases IIii) b) and c) 

will occur. 
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2.5 Nonconvex choice sets 

When r  , ˆs s  and 
gni    then which among figures 5 through 9 apply depends upon 

the values of ( ; )giU s  when i) evaluated at ˆ( ) argmax ( ; )gis U s   and when ii) evaluated 

at  . We will first consider i) when ˆ( )s  , i.e., an interior maximum. If ˆ( )
( ; ) |gi

s
U s

 



  

wU  then figure 5 applies, i.e., insurance is never taken out. If ( ; ) |gi wU s U     then figure 6 

applies so that the most risky and the least risky units are cropped but intermediate risk units 

are not. If ˆ( )s  , ˆ( )
( ; ) |gi

s
U s

 



  

wU  and ( ; ) |gi wU s U     then figure 7 applies, i.e., the 

set of non-cropped land is nonconvex with some in the locality of     and some in the 

locality of    while the set of cropped land is also nonconvex. So the evaluation 

ˆ( )
( ) |gi w

s
U U

 



  determines the applicable case.  

Insert ˆ( )s  into (11) to obtain the maximum value of ( )i   given subsidy rate s , i.e.,
2
  

(14) 

( ) 2 [0.5(1 ),0.5(1 )]

ˆ( )

1 2 1 1 2 2

( ) | 2 ;

[ , ] ln( ) ln( );

i r s H s s

s
e e

H x x x x x x

  

 
     


  

  
 

where 1 2[ , ]H x x  is the entropy function. So ˆ( )
( ) | 0i

s 



   whenever  

(15) 
( ) ln(2)

; ( ) 2 [0.5(1 ),0.5(1 )].
s

r s s H s s 


 
         

Here if the difference in expected profits, or r  , exceeds [ ( ) ln(2)] /s    then there exists 

a risk type that will take out the subsidized insurance.  

                                                            
2 Details are provided in Appendix A. 
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We proceed at this point to investigate ( )s , which has properties 

(16) 

 

0 1

2

( ) | ln(2) 0; lim ( ) ln(2) 2 ln(2) 0;

1 1 ˆ( ) 2 ln ( ) 0
2 1

ˆ(as ( ) for the problem to be meaningful);

1
( ) 0 [0,1).

1

s s

s

ss

s s

s
s s

s

s

s s
s



   

 

        

 
        

 

 

     


¡

 

Figure 10 depicts expression [ ( ) ln(2)] /s    as a function of s  over the relevant range, 

i.e., when ˆs s . It is concerned with whether a supercritical subsidy is such as to bring land 

into production. There are two cases where the first and most straightforward is that depicted in 

panel a), where 1lim ( ) ln(2) 2 ln(2) 0s s        , or 
2 2pe e    . On the horizontal 

axis is subsidy rate while on the vertical axis is the expected profit gap r   absent subsidy 

effects. If cropping is quite profitable then one does not need a subsidy rate much larger than 

the critical rate to ensure that cropping occurs under subsidized insurance. So the interval of 

subsidy rates such that some land types are cropped and insured is large. Panel b) provides the 

more interesting case, corresponding to figure 8, in which 2pe    so that 1lim ( ) ln(2)s s    

0 . Then it is possible for a subsidy rate above the supercritical subsidy rate to induce 

cropping under insurance even when r  . As ( ) 2 0s s     , an increase in the value of 

  toward zero (or subsidized, risk-free insurance) pushes curve [ ( ) ln(2)] /s    everywhere 

and so makes this outcome more likely. With a less negative value of  , the situation where 

risky land will be cropped while risk-free land will not will arise at a lower subsidy rate. 

If instead we consider ii) where ˆ( )s  , i.e., a boundary maximum, then the question is 

whether ( ; ) | 0i s     . This resolves to whether 
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(17) 
 

( ) ( )

*

ln ( )
ln cosh[( ) ] ( )2

.
( ) ( )

e e
r

r
s s

     

 
    

     

   
        

 
 

We make two notes at this point. First, and as one would expect, 
* / ( ) 0ds d r    or the 

critical subsidy such that the riskiest land is cropped becomes smaller as the incentive to crop 

the least risk land increases. Second, 
* / 0ds d   so that, as with i) when ˆ( )s  , under ii) 

and a less negative value of   a smaller subsidy value will lead to the situation where risky 

land is cropped while risk-free land is not. 

The theoretical model predicts that subsidized crop insurance expand the set of land farmed. 

It also shows that there exists a critical subsidy rate such that if the subsidy rate higher than this 

critical rate then the expected utility from cropping increases with yield risk. Our empirical 

investigation in what follows will cast light on the extent to which the set of land that is 

cropped expands in response to insurance subsidies, and also on whether there are parts of the 

United States where only the most risky land will be cropped.  In the next section we first study 

yield risk that is relevant to crop insurance, i.e., yield risk in the lower tail of a yield 

distribution.   

 

3. Yield Risk Relevant to Crop Insurance  

In this section we measure an insurance loss index that is proposed in Hennessy (2009). We 

need to control for yield trends so as to correctly estimate the extent of riskiness (Just and 

Weninger 1999). The detrending approach taken here is the same as the approach in Claassen 

and Just (2010). We first describe the data we utilize in this section and then introduce the 

method to obtain the yield risk relevant to crop insurance.  
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3.1 Data 

The data set utilized in this section covers corn and wheat yields in 12 Midwest states (IA, IL, 

IN, KS, MI, MN, MO, ND, NE, OH, SD, and WI) and two states (OK and TX) on the Southern 

Great Plains. The field-level yield data are obtained from the Risk Management Agency (RMA) 

of the U.S. Department of Agriculture (USDA). The RMA yield data contain yield history on 

each insured unit under the federal crop insurance program. An insured unit can be a single 

field or several fields of a farm. The yield history has up to 10 years yield record for each 

insured unit. To avoid very small samples for some insured units, we restrict the RMA yield 

data such that each record contains 10 years of actual yield.  

County-level yield data of corn and wheat over 1960-2009 in these 14 states are obtained from 

National Agricultural Statistics Service (NASS) of USDA. The county-level NASS yield data 

are used to detrend RMA field-level data as the former are available over a longer time frame. 

Not every county has yield data for each year in the time range 1960-2009. To have time series 

spans sufficient for trend estimation, we require that every county selected for our data set have 

45 or more years of yield data in the time range 1960-2009. In our selected data set, the 

missing values of the county-level yield are filled by using multiple imputation method. Then 

the county-level yield trend is estimated by locally weighted regression to capture the   non-

linearity of yield trend (Claassen and Just 2010).   

3.2 Measuring Yield Risk 

Let       be the yield of unit i of farm j in county k and year t. Here the unit means the crop 

insurance unit, which can be a single field of a farm or the entire farm. Then       can be 

written as 
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(18) ˆ ,ijkt ijkt ijkty y   

where  ̂     is the unit level trend yield, and       is an error term with mean zero.  

Unit level yield trend,  ̂    , is constructed as 

(19) ˆ ,ˆc

ijkt kt ijky y    

where   ̂  
  is the county-level yield trend, and 

(20) 
| |

ˆ( ) ( ).c

ijk t ijk ijkt t ijk ktE yy E    

The acreage-weighted average operator,              , is defined as  

(21) 
| ( ) ,

t ijkt ijkt

t ijk ij

ijkt

kt

t

a x
E

a
x 




 

where       is acreage related with       . For units,        is acres of the unit. For counties,     

is acreage “Harvested” of county k in year t. 

From equations (18) to (20), we have the detrended yield as 

(22) 
| |     ( ) ( )

ˆ ˆ

ˆ .ˆ

c

ijkt ijkt ijkt ijkt kt ijk

c c

ijkt kt t ijk ijkt t ijk kt

y y

y E y

y y

Ey y

    

   
 

Clearly we have       (     )        (
| |) ˆ( )ˆ (c c

ijkt kt t ijk ijkt t ijk kty E y Ey y   )     

Now let us construct a risk (or insurance loss) measure. Since the insurable yield is calculated 

using the average of 10-year historical actual yields, then a risk measure same as the Insurance 

Loss Index in Hennessy (2009) is 

(23) 
| | |

| |

max[ ( ) ( ( ) ),0] max[( 1) ( ) ,0]
,

( ) ( )

t ijk ijkt t ijk ijkt ijkt t ijk ijkt ijkt

ijkt

t ijk ijkt t ijk ijkt

E y E y E y
r

E y E y

    
   

where         is coverage level. Once we obtain      , we can calculate weighted average 

county-level yield risk of one policy year. Please recall that we use RMA data of four policy 
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years: 1994, 1999, 2004, and 2009. Each RMA data set of one policy year contains 10 years of 

yield history of one unit. Let      
 

 be the acreage of unit     
 

 in year t in the data set of policy 

year p. Then in the data set of policy year p, the total acreage over all units and all 10 years in 

county k are 

(24) ( ) .( ( ( )))p p p

k ijt ijkt t j i ijktA        

 Then the weight of      
 

 in data set of policy year p is 

(25) .

p

ijktp

ijkt p

k

a
w

A
  

Therefore, the weighted average county-level yield risk of policy year p is 

(26) .( )p p

ijt ijkt ijk

p

tkr w r  

Let  

(27) ,p

k p kA A  

that is,    is the total unit acreage of county k over all units, all 10 years, and all policy year 

data sets. Then the weighted average county-level yield risk over policy years can be written as 

(28) ( ).
p p

k k
k p

k

A r
r

A
  

Figures 11 and 12 present the geographical distributions of county-level risks in equation (28) 

of corn and wheat, respectively. The risk values in these two maps are calculated by assuming 

coverage level,   in equation (23), as 75%. For Figure 11, the missing counties in North 

Dakota (ND) and South Dakota (SD) are majorly because we excluded counties that have more 

than five missing values on county-level yield observations.  
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From Figures 11 and 12 we can see that, at least for ND and SD, the risk distributions of corn 

and wheat have similar pattern. For example, the south-eastern part and the north-western part 

are low risk area for wheat production in ND. This is true as well for corn production in ND. 

An econometrical explanation of yield risks is provided in next section. 

 

4. Explaining Riskiness 

In this section we regress county-level yield risks in equation (28) on county level growing 

degree days, precipitation, Land Capability Class configurations (explained below), and 

farming practice. We obtained reasonable values of goodness-of-fit (around 0.4) from 

regressions. The coefficients of almost all variables are consistent with intuition. In what 

follows we first explain the constructions of the independent variables and then report the 

regression results. 

4.1 constructing independent variables 

Growing degree days 

For growing degree days, we use the same data as Schlenker and Roberts (2009) did. A 

detailed data description can be found by the link 

http://www.columbia.edu/~ws2162/dailyData/dataDescription.pdf . Following Schlenker et al. 

(2006), we set the upper and lower thresholds of growing degree days as 8 degree Celsius and 

32 degree Celsius, respectively. We also assume the threshold temperature is 34 degree Celsius 

when calculating the over-heat degree days. That is, temperature over 34 degree Celsius is 

thought harmful to crop‟s growth.  

http://www.columbia.edu/~ws2162/dailyData/dataDescription.pdf
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The data set of Schlenker and Roberts (2009) contains county-level monthly average degree 

days of the United States over period 1950-2005. The time period we select is from 1975 to 

2005. We selected growing season as April to September, following Following Schlenker et al. 

(2006) and Deschȇnes and Greenstone (2007). Then we sum up monthly degree days in the 

growing season for each county in a year to calculate the total degree days of one county in one 

year‟s growing season. Then we calculate the county-level simple average of growing season 

degree days between 8 °C and 32 °C, as well as degree days beyond 34 °C over 1975-2005. 

The results are named as dday8_32 and dday34, respectively. We also calculate the standard 

deviations of growing season degree days between 8 °C and 32 °C, as well as degree days 

beyond 34 °C over 1975-2005. The results are denoted as dday_8_32_std and dday_34_std, 

respectively. Summary statistics of the four variables (i.e., dday8_32, dday34, dday_8_32_std, 

and dday34_std) are listed in Table 1.   

Precipitation 

The precipitation data are also from Schlenker and Roberts. The simple average of growing 

season precipitation of each county over 1975-2005 (prec from hereon) are calculated by using 

the same ways of calculating growing degree day variables discussed above. So is the standard 

deviation of precipitation (prec_std from hereon). The summary statistics of variables prec and 

prec_std are provided in Table 1.  

Land Capability Classes (LCC) 

The LCC data are obtained from National Resource Inventory (NRI) data set. Instead of 

calculating a weighted average of LCC for each county as we did in DU Report No. 2, this 

time we are interested in the effect of sub-classes of LCC on county-level yield risks. Since 
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LCC higher than 4 are not suitable for crops, we only focus on LCC from 1 to 4. In this range 

of LCC, there are 13 sub-classes. They are: 1, 2C, 2E, 2S, 2W, 3C, 3E, 3S, 3W, 4C, 4E, 4S, 

and 4W (see Table 2). Here C means climate; E means erosion; S means shallow, drought or 

stony; and M means water. For each county in our sample, we calculate the percentage of 

acreage under each of these 13 sub-classes over the total acreages under LCC 1-4. The 

acreages are from “Expansion Factors” column in the table “point” of NRI data set. Therefore, 

we obtain 13 variables, namely LCC1, LCC2C, LCC2E, LCC2S, LCC2W, LCC3C, LCC3E, 

LCC3S, LCC3W, LCC4C, LCC4E, LCC4S, and LCC4W. The percentage of acreage under LCC 

2, 3, and 4 can be calculated by using 

(29) 

2 2 2 2 2 ,

3 3 3 3 3 ,  and

4 4 4 4 4 ,

LCC LCC C LCC E LCC S LCC W

LCC LCC C LCC E LCC S LCC W

LCC LCC C LCC E LCC S LCC W

   

   

   

 

respectively. The summary statistics of these variables are presented in Table 1. 

Practice Types 

For corn, there are two practice types in our RMA data sample. They are irrigated (coded as 2) 

and non-irrigated (coded as 3). For wheat, the practice types are irrigated (coded as 2), non-

irrigated (coded as 3), continuous cropping (coded as 4), and summer fallow (coded as 5). As 

we did for LCC, for each county we calculate the percentage of unit acreages under each 

practice types. Hence for corn, we obtain variables prac2 and prac3, which stand for the 

percentage of unit acreages under practice types 2 and 3, respectively. For wheat, we obtain 

variables prac2, prac3, prac4, and prac5. The summary statistics are in Table 1. 

Explanations for Table 1 
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In Table 1 variables “cty_risk_mul” and “cty_risk_add” mean the county-level yield risk 

calculated by using the multiplicative method and additive method, respectively.(?????explain 

these two methods) Variable “dday34_sqrt” is the square root of variable “dday34.” We are 

interested in “dday34_sqrt” because Schlenker et al. (2006) documented that “the square root 

gives the best fit” (footnote 13 of Schlenker et al. 2006). The summary statistics of LCC 4C 

(i.e., variable lcc4c) are all zeros because in our sample no acreage is under this sub-class. 

Please note that Table 1 shows that the number of observation points in the NRI data of the 14 

states (1,385 counties) is only 25. However, the total number of observation points is 212,368. 

The counties with LCC 4C land are not included in our sample.  

4.2 regressions and results      

We tried multiple regressions for corn yield risk and for wheat yield risk (Table 3 and Table 4). 

The dependent variable is “cty_risk_mul”. Results show that about 40% of the variation of the 

county-level yield risks can be explained by variables we discussed in section 2.1. Extra 

explanatory variables could include more land-quality information (such as land slope) and 

information about farmers in one county (such as average age and education), etc.    

Corn yield risk 

From Table 3 we can see that, higher land quality has larger effect on mitigating corn yield 

risks. For example, in regression (1) of Table 3, the coefficient of variables LCC2E and LCC3E 

are -0.000189 and -0.000031, respectively. This means that everything else equal, increasing 

acreage of LCC2E land will decrease yield risk by 0.000189, which is about 0.4% of the mean 

risk in our sample. However, increasing acreage of LCC3E land will only decrease yield risk 
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by 0.000031, which is about 0.08% of the mean risk in the sample. Regression (3) show that 

increasing the percentage of LCC 4 land will increase the yield risk. 

Regression results also show that for degree days between 8 °C and 32 °C, both coefficients of 

dday8_32 and dday8_32_squa are significantly affect yield risks. However, the standard 

deviations of degree days between 8 °C and 32 °C do not significantly affect yield risks. 

Variable dday34, the measure of over-heat, has positive coefficient no matter in a linear or 

square root specification, which means over-heat increases yield risks. Variable dday34_std 

has significant negative coefficients in regressions (1) and (3). One possible interpretation 

could be that evenly happened over-heats cross years are worse than a dramatic over-hear in 

one year but no over-heat in other years, which may be because “when crops are sufficiently 

adversely affected by the heat, the incremental damage from further increases is sharply 

reduced” (Schlenker et al. 2006) . Taking an extreme example, we assume that crop will be 

completely destroyed when dday34 is higher than or equal to 1. We then consider a 30-year 

period. If during this period dday34 is equal to 1 in each year (here the standard deviation is 0), 

then crops in every year will be completely destroyed. However, if during this period there is 

only one year with dday34 equal to 30 and no over-heat in the other 29 years, then crop in this 

period will only be destroy once. 

The effect of precipitation on yield risks is ambiguous, since the squared term of precipitation 

shows different signs. To determine the effect of precipitation one needs to know the specific 

precipitation levels because the coefficient of prec_squa is significant. We also can see that 

irrigation reduces yield risks.  

Wheat yield risk 
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For wheat yield risk, most variables show the same effect pattern as variables in corn yield risk 

regressions discussed above. What is different from corn yield risk analysis is that the 

percentage of LCC1 land does not significantly affect wheat yield risk. I do not have a 

confident explanation for this. By studying that whether LCC1 land is devoted to grow wheat 

may provide an explanation to this or provide hints for further exploration. Specifically, if 

LCC1 land is largely used to grow corn, then naturally LCC1 acreage does not affect wheat 

yield risk.  

 

5. Simulations on the Land Use Effect of Crop Insurance Subsidy Rate and Crop Prices 

In this section we simulate the expected utility to be derived from putting land of a given 

production capability and climate profile into production under a given cropping system as 

coverage level  , subsidy rate  , and returns to non-cropping   change. We will then ask such 

questions as i) which RMA counties are most likely to be influenced to enter cropping as the 

subsidy rate changes, and ii) how commodity prices affect incentives to convert production 

risky land. In what follows we first describe the model calibration and then discuss the 

simulation results.  

5.1 Model Calibration 

In order to calculate the expected utility a farmer obtains from non-cropping, gni, or gi, we 

need to know coefficient of absolute risk aversion (ARA), output prices, production costs, 

return to non-cropping, yield distribution, and coverage level as well as the subsidy rate 

corresponding to each coverage level. Due to the limitation of data, in our simulation we focus 
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on corn. Since we do not have corn prices in TX, the simulation does not cover TX. We now 

discuss the values of these variables applied in our simulation.  

Coefficient of ARA 

Babcock et al. (1993) suggested a method that utilized risk premium and probability premium 

to determine appropriate range of ARA coefficients. They showed that the reasonable range of 

ARA coefficients is determined by the variation of the possible payment of a lottery. Their 

calculation showed that when the gamble size is between $100 and $10,000 and when the 

probability premium is in [0.005, 0.49], then the ARA coefficient range is [0.0002, 0.000462]. 

Since the average acreage of a unit is 98 acres and the average unit-level yield standard 

deviation is 31 in our data set,  ARA coefficient range at [0.0002, 0.000462] can be a 

reasonable range for our study. Therefore in our simulation we set ARA coefficient equal to a 

value from set                       . 

Output Prices 

For output prices of corn, we utilize the county-level annual average cash price in 2009 market 

year. Corn cash prices are obtained from CashGrainBids.com. In the original cash price data 

obtained from CashGrainBids.com there may be multiple markets in one county. We average 

the prices across these markets in the county to generate the output prices. 

Production Costs 

Production costs (i.e., parameter   in the model) in the simulation are obtained from state-level 

crop budgets, which are publicly available on websites of extensions at the major land-grant 
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university in each state.
3
  For states SD and OK, we could not find the crop budgets in 2009. 

So we utilize the crop budgets in 2011 of the two states times discount factors to approximate 

production cost in 2009. For fixed cost, the discount factor is 0.96; and for the variable cost, 

the discount factor is 0.93. The way we obtained the two discount factors is dividing the 

average fixed cost (or variable cost) in 2009 in ND by the same kind of cost in 2011 in ND. 

The state-level production costs used in our simulation are presented in Table 5. The 

production costs include cash rent of land but do not include crop insurance premium because 

we have an individual term for the premium,  .    

Yield Distribution  

We assume that the unit-level yield has beta distribution. We then utilize the maximum 

likelihood method to estimate each unit‟s distribution based on the detrended yield 

observations of each unit. We draw 1,000 draws from the estimated distributions. These draws 

are used as yield realizations to calculate expected utilities from cropping.   

Returns to Non-cropping 

We employ average county-level rental payments of Conservation Reserve Program (CRP) in 

2009 as the return to non-cropping. The CRP rental payments are obtained from the website of 

Farm Service Agency (FSA) (web link: 

http://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=rns-css). In our 

simulation we assume that crop insurance subsidy has a complete pass-through into CRP rental 

payment. That is, the CRP rental payments fully reflect the change of crop insurance subsidies.    

Coverage Levels and Corresponding Subsidy Rates 

                                                            
3 Website links of the crop budgets are provided in Appendix B.  

http://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=rns-css
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The coverage levels and corresponding subsidy rates as of May 2011 are presented in Table 6. 

Farmers can choose any coverage level in Table 6 and then the government subsidizes at a rate 

corresponding to the coverage level chosen. The subsidy rate ranges from 38% to 80% and 

decreases as the coverage level increases. In the simulation a typical farmer chooses a coverage 

level that maximizes her expected utility.  

5.2 Simulation Results 

In the simulation we are interested in the land-use effect when the crop insurance subsidy rate 

or crop price varies, ceteris paribus. Our preliminary results show that when subsidy rate is 

decreased by 5 percentage point at each coverage level, then averagely 0.60% of cropped land 

in our data set will be converted into non-cropped land. The state-level land use effect of this 

subsidy rate decrease is presented in Table 7. In addition, when crop price is decreased by 5%, 

then averagely 1.01% of cropped land in our data set will be converted into non-cropped land. 

The state-level land use effect of crop price decrease is presented in Table 7 as well.  

The county-level land use effects when subsidy rate (crop price) decreases by 5 percentage 

points (5 percent) are visually presented in Figure 13 (Figure 14). From the maps in Figure 13 

and Figure 14 we can see that the southeastern part of ND and the middle part of KS are areas 

that mostly affected by decreases of subsidy rate or crop price. However, Iowa, southern 

Minnesota, middle Illinois, eastern South Dakota, and eastern Nebraska are least affected by 

such decreases. The reason for this land-use effect pattern is that marginal land are more 

sensitive to the changes of subsidy rate or crop prices than high productive land are. By 

comparing Figure 11 and Figure 13 (or Figure 14) we can see that the risky area is basically the 

same as the most affected area by subsidy or price decreases.     
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6. Conclusions 

In order to understand how federal crop insurance subsidies influence land-use decisions, in 

this study we develop a conceptual mode about optimal land allocation in the presence of crop 

insurance subsidies. Our conceptual model shows that the social excess of risky land entering 

crop production will arise solely due to the subsidy. This is because the subsidy is i) 

proportional to acres planted, and ii) greatest for the most production risky land which usually 

includes newly converted grassland.  

Using farm-level data, we follow the conceptual results through to establish the implications of 

subsidies for the extent of land use. We first complement USDA Risk Management Agency 

(RMA) insurance unit yield data with USDA NASS county-level yield data to develop a risk 

measure that reflects expected payout. Then we explain riskiness by regressing the risk 

measure on county average values for land quality and whether data. The regressions can show 

what sorts of land are most risky for production and the magnitude of subsidies the land 

receives. Finally, we simulate the expected utility to be derived from putting land of a given 

production capability and climate profile into production as subsidy rate and returns to non-

cropping change. Our empirical estimation and simulation show that risky land is more 

sensitive to the changes of crop insurance subsidy rates and crop prices. The geographic 

configurations of the land use change effects of crop insurance subsidies and crop prices are 

provided.     
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Appendix A 

Demonstration of eqn. (5): Write 
px e  . Then the breakeven   such that ( ) 0ni   , or 

gni  , satisfies  

(A1) 
( ) 2 ( )2 0.r re x x e          

Apply the quadratic formula to solve: 

(A2) ( ) ( ) 2 ( )1 .r r rx e e e            

Note that were 1x   then 0  , which we have ruled out without loss of generality. Write 

( )re    and consider whether the smaller root has value no larger than 1, i.e., whether 

2 0.5(1 ) 1      . Re-arrange to obtain condition 
2 0.51 (1 )       where quantities on both 

sides are positive in value whenever r   so that squaring will not change the ordering. So we 

ask whether 1  . This is true, so 1x  , the negative root can be precluded and we consider 

only the larger root. 

Demonstration of eqn. (9): Then ( ; )gi wU s U   becomes 
( )0 2 re e e e e           

from (8). Label 
( )y e      where of course 1y  . We seek to solve 

(A3) 
( ) 2 ( )2 0.r re y y e          

This has the same form as (A1), so that 

(A4) ( ) ( ) ( ) 2 ( )1 ,r r ry e e e e                  

and the first equation in (9) follows. Use (5) to obtain the second equation in (9).  

Demonstration of Remark 4: From (8) and (3),  
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(A5)  ( ; ) | 0.5 ( ) | .gi p p gniU s e e e U    

     

      

Also,  

(A6) 

 

 

 

0.5 (1 ) 0.5 (1 ) 0.5 (1 ) 0.5 (1 )( ; ) | 0.25 (1 ) (1 )

0.25 (1 ) (1 ) ;

( ) | 0.5 ;

gi p s p s p s p s

p p

gni p p

U s p s e e s e e e

p s e s e e

U pe e e

        

  

    

    

  

 



 

      



 

 



   

   

 

 

so that  

(A7)    
sign

( ; ) | ( ) |

0.25 (1 ) (1 ) 0.5

(1 ) (1 ) 2 2 0.

gi gni

p p p p

p p p p p p p p

U s U

p s e s e e pe e e

s e s e e e se se e e

     

         

               

 

 

 

   

   



     

          

 

Demonstration of Eqn. (14): Write eqn. (11) as  
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(A8) 

1 1 1 1
(1 ) ln (1 ) ln

2 1 2 1( ) (1 ) (1 )

ˆ( )

1 1
0.5(1 ) ln 2 0.5(1 ) ln 2

1 1(1 ) (1 )

(1

( ) | 2

s s
s s

s si r s s

s

s s
s s

s ss s

e e e e e

e e e e

e

   
    

 

 
 



       
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

       
                   



    

  

 

1 1
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Appendix B 

The website links of crop budgets utilized in this article. The links were accessed between 

April 12
th

, 2011 and April 20
th

, 2011.  

IA: http://www2.econ.iastate.edu/faculty/duffy/extensionnew.html  

IL: http://www.farmdoc.illinois.edu/manage/2009_crop_budgets.pdf  

IN: http://www.agecon.purdue.edu/extension/pubs/index.asp  

KS: http://www.agrisk.umn.edu/Budgets/Display.aspx?RecID=9&Pg=1  

http://www2.econ.iastate.edu/faculty/duffy/extensionnew.html
http://www.farmdoc.illinois.edu/manage/2009_crop_budgets.pdf
http://www.agecon.purdue.edu/extension/pubs/index.asp
http://www.agrisk.umn.edu/Budgets/Display.aspx?RecID=9&Pg=1
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MI: 

https://www.msu.edu/~steind/1%20%20Crop%20Budget%20MID%20Mich_2010%20Winter%

20MASTER%201_28_10.pdf  

MN: http://faculty.apec.umn.edu/wlazarus/documents/cropbud.pdf  

MO: http://www.fapri.missouri.edu/farmers_corner/mktng_newsletter/Mar09DM.pdf  

ND: http://www.ag.ndsu.edu/farmmanagement/crop-budget-archive  

NE: http://www.agrisk.umn.edu/Budgets/Display.aspx?RecID=4831&Pg=2  

OH: http://aede.osu.edu/programs/farmmanagement/budgets/  

OK: http://www.agecon.okstate.edu/budgets/sample%20files/Corn2.1ctc.pdf  

SD: http://www.sdstate.edu/sdces/districts/north/3/farmmanagement.cfm  

WI: http://cdp.wisc.edu/crop%20enterprise.htm  

  

  

https://www.msu.edu/~steind/1%20%20Crop%20Budget%20MID%20Mich_2010%20Winter%20MASTER%201_28_10.pdf
https://www.msu.edu/~steind/1%20%20Crop%20Budget%20MID%20Mich_2010%20Winter%20MASTER%201_28_10.pdf
http://faculty.apec.umn.edu/wlazarus/documents/cropbud.pdf
http://www.fapri.missouri.edu/farmers_corner/mktng_newsletter/Mar09DM.pdf
http://www.ag.ndsu.edu/farmmanagement/crop-budget-archive
http://www.agrisk.umn.edu/Budgets/Display.aspx?RecID=4831&Pg=2
http://aede.osu.edu/programs/farmmanagement/budgets/
http://www.agecon.okstate.edu/budgets/sample%20files/Corn2.1ctc.pdf
http://www.sdstate.edu/sdces/districts/north/3/farmmanagement.cfm
http://cdp.wisc.edu/crop%20enterprise.htm
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Table 1. Summary Statistics of Variables 

 

Corn (obs: 937) Wheat (obs: 727) 

Variable Mean 

Std. 

Dev. Min Max Mean Std. Dev. Min Max 

cty_risk_mul 0.038 0.030 0 0.249 0.057 0.033 0 0.219 

cty_risk_add 0.041 0.046 0 0.732 0.061 0.095 0 2.431 

lcc1 6.3 9.2 0.0 58.7 5.6 8.8 0.0 58.7 

lcc2c 2.5 7.9 0.0 70.9 3.9 9.3 0.0 70.9 

lcc2e 23.2 13.8 0.0 77.4 23.1 13.6 0.0 77.4 

lcc2s 2.5 5.2 0.0 44.0 2.6 5.7 0.0 44.0 

lcc2w 20.9 18.1 0.0 89.9 19.3 18.9 0.0 89.9 

lcc3c 0.6 4.9 0.0 61.4 0.9 5.7 0.0 61.4 

lcc3e 20.4 15.5 0.0 78.5 20.8 15.5 0.0 78.5 

lcc3s 2.1 4.3 0.0 34.4 2.4 4.7 0.0 34.4 

lcc3w 6.4 9.1 0.0 74.5 6.7 9.9 0.0 74.5 

lcc4c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

lcc4e 10.6 12.2 0.0 96.8 11.0 11.9 0.0 64.1 

lcc4s 2.7 7.3 0.0 75.1 2.0 4.8 0.0 41.0 

lcc4w 1.8 4.6 0.0 62.7 1.7 4.8 0.0 72.1 

dday8_32 1997.7 293.5 1331.8 2855.1 2074.3 365.2 1297.7 2908.7 

dday34 3.7 5.4 0.0 28.3 6.3 8.4 0.0 46.4 

prec 54.5 8.7 27.9 69.5 51.9 10.1 27.9 69.5 

dday8_32_std 127.6 9.0 99.8 158.2 126.5 9.8 99.8 156.0 

dday34_std 4.1 4.1 0.1 22.3 5.9 5.8 0.1 28.9 

prec_std 12.0 2.5 6.1 18.1 11.6 2.8 6.1 18.1 

prac2 15.5 30.8 0.0 100.0 1.1 4.9 0.0 55.7 

prac3 84.5 30.8 0.0 100.0 80.1 39.4 0.0 100.0 

prac4 - - - - 6.6 20.0 0.0 99.4 

prac5 - - - - 12.2 28.6 0.0 100.0 

lcc2 49.0 21.8 0.0 98.4 48.9 21.5 0.0 98.4 

lcc3 29.6 16.6 0.0 93.5 30.8 16.6 0.0 93.5 

lcc4 15.1 15.0 0.0 96.8 14.7 13.2 0.0 81.9 

dday8_32_squa 4076789 1189565 1773689 8151551 4435807 1531226 1684039 8460452 

prec_squa 3042.8 881.8 776.9 4825.7 2796.0 993.9 776.9 4825.7 

dday34_sqrt 1.6 1.1 0.2 5.3 2.0 1.5 0.2 6.8 

dday34_squa 42.5 111.8 0.0 801.2 110.3 259.5 0.0 2156.8 
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Table 2. Number of Observation Points under Each LCC in the 14 States 

LCC 1 2C 2E 2S 2W 3C 3E 

No. of Obs. Points 15,179 8,978 6,6383 8,139 45,493 1,926 66,270 

Percentage (%) 7.1 4.2 31.3 3.8 21.4 0.9 31.2 

LCC 3S 3W 4C 4E 4S 4W Total 

No. of Obs. Points 7,540 15,689 25 31,515 8,467 4,525 212,368 

Percentage (%) 3.6 7.4 0.0 14.8 4.0 2.1 100.0 

 

 

Table 3. Regressions on Corn Yield Risk 

 

(1) (2) (3) 

Variable Coef. t-value Coef. t-value Coef. t-value 

lcc1 -0.000526 -5.41 -0.000577 -5.78 -0.000336 -3.48 

lcc2e -0.000189 -2.87 -0.000231 -3.43 - - 

lcc2w -0.000263 -3.96 -0.000325 -4.84 - - 

lcc3e -0.000031 -0.37 -0.000064 -0.75 - - 

lcc3w -0.000171 -1.64 -0.000196 -1.83 - - 

lcc2 - - - - -0.000044 -0.82 

lcc3 - - - - - - 

lcc4 - - - - 0.000378 4.99 

dday8_32 -0.000386 -9.50 -0.000246 -7.17 -0.000377 -9.62 

dday34 0.010444 7.90 - - 0.011266 8.83 

prec -0.004386 -4.04 -0.005827 -5.46 -0.005429 -5.19 

dday8_32_std 0.000119 1.09 -0.000015 -0.14 0.000172 1.59 

dday34_std -0.005266 -5.00 - - -0.005378 -5.22 

prec_std 0.002388 3.78 0.001662 2.60 0.002538 4.28 

prac2 -0.000447 -10.46 -0.000408 -9.38 - - 

prac3 - - - - 0.000480 11.36 

dday8_32_squa 0.000000 9.02 0.000000 6.63 0.000000 9.06 

dday34_squa 0.000031 2.93 - - -0.000286 -8.81 

prec_squa -0.000273 -8.11 0.000044 4.15 0.000041 4.00 

dday34_sqrt - - 0.007098 3.46 - - 

constant 0.541414 11.79 0.472135 10.48 0.488611 10.95 

R-squared 0.410 0.374 

 

0.429 

 F-value 42.61 

 

42.36 

 

53.31 

     Note: Since we record results to 6 decimal places, coefficient with value “0.000000” in the  table is 

not necessarily equal to 0. 
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Table 4. Regressions on Wheat Yield Risk 

 

(1) (2) (3) 

Variable Coef. t-value Coef. t-value Coef. t-value 

lcc1 0.000179 1.27 0.000164 1.17 -0.000057 -0.39 

lcc2e -0.000358 -3.91 -0.000303 -3.31 - - 

lcc2w -0.000196 -2.14 -0.000103 -1.12 - - 

lcc3e -0.000112 -0.96 -0.000120 -1.04 - - 

lcc3w -0.000219 -1.63 -0.000195 -1.45 - - 

lcc2 - - - - -0.000514 -6.31 

lcc3 - - - - -0.000441 -4.13 

lcc4 - - - - - - 

dday8_32 -0.000093 -2.10 -0.000161 -3.35 -0.000053 -1.22 

dday34 0.003473 3.36 - - 0.003569 3.59 

prec -0.006792 -4.57 -0.005334 -3.76 -0.007310 -5.18 

dday8_32_std 0.000156 1.04 0.000036 0.26 0.000230 1.57 

dday34_std -0.003598 -3.29 -0.004443 -3.89 -0.003625 -3.39 

prec_std 0.002065 2.49 0.001367 1.68 0.001997 2.58 

prac2 -0.000420 -1.75 -0.000305 -1.30 -0.000275 -1.16 

prac3 0.000048 0.76 0.000065 1.04 0.000040 0.65 

prac4 - - - - 

  prac5 0.000084 0.98 0.000068 0.80 0.000043 0.51 

dday8_32_squa 0.000000 2.91 0.000000 3.82 0.000000 2.03 

dday34_squa -0.000033 -2.06 

  

-0.000030 -1.95 

prec_squa 0.000057 3.86 0.000047 3.44 0.000061 4.42 

dday34_sqrt - - 0.022010 4.30 - - 

constant 0.271820 5.11 0.308769 5.75 0.262331 5.02 

R-squared 0.368 0.372 0.388 

F-value 24.29 26.33 30.05 

     Note: Since we record results up to 6 decimal places, coefficient with value “0.000000” in 

the  table is not necessarily equal to 0. 
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Table 5. State Level Average Production Cost of Corn in 2009  

($/acre) 

State: IA IL IN KS MI MN MO ND NE OH OK SD TX WI 

Cost: 696 670 694 358 557 599 516 306 402 693 263 439 573 544 

Note: The cost includes cash rent of land but does not include crop insurance premium 

   

 

 

Table 6. Crop Insurance Premium Subsidies on Yield- and Revenue-Based Coverage 

(government-paid portion of premium as a percent of total premium, 2009 crops) 

Yield coverage level (%) CAT 50 55 60 65 70 75 80 85 

Premium subsidy (%) 100 67 64 64 59 59 55 48 38 

Source: Table 1. of Shields (2010). 

 

 

Table 7. Land Use Effects when Subsidy Rate Decreases by 5 Percentage 

Point or when Price Decreases by 5 Percent 

(%) 

State Decrease Subsidy Rate Decrease Price 

IL 0.15 0.32 

IN 0.44 0.89 

IA 0.05 0.10 

KS 1.50 4.25 

MI 0.30 0.37 

MN 0.12 0.24 

MO 2.38 2.65 

NE 0.12 0.20 

ND 1.12 1.21 

OH 0.77 0.89 

OK 0.08 0.77 

SD 0.10 0.15 

WI 0.70 1.01 

Average 0.60 1.01 
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Figure 1. Maximum of uninsured expected utility 

and noncropping expected utility as risk changes
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Figure 2. Subcritical subsidy rate and high return 

on noncrop option
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Figure 3. Subcritical subsidy rate and low return 

on noncrop option
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Figure 4. Supercritical subsidy rate and low 

return on noncrop option
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Figure 5. Supercritical subsidy rate that does not 

create nonconvex set of uncropped land units
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Figure 6. Supercritical subsidy rate that creates 

interior convex set of uncropped land units
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Figure 7. Supercritical subsidy rate that creates 

nonconvex set of uncropped land units
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Figure 8. Supercritical subsidy rate where only 

the riskiest land is cropped
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Figure 9. Supercritical subsidy rate where only 

the least and most risky lands are uncropped
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Figure 10. When supercritical subsidy brings 

most risky land only into production
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