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1. Introduction

FROM an ecological or environmental perspec-
tive, the assumption is often made that eco-

nomic growth is bad for the environment. But, what
story does the empirical data tell us? Ones intuition
may lead to the belief that pollution will continue
unabated as a country’s economy grows through
time. An examination of the empirical relationship
between economic growth and emissions, how-
ever, often reveals different results as evidenced
by the environmental Kuznets curve (EKC) hypoth-
esis. The EKC hypothesis describes the time path
that pollution follows through a country’s economic
development. This hypothesis claims that environ-
mental degradation follows an inverted U-shaped
relationship as a countrys economy develops over
time.

Figure 1: This figure displays US state-level, per-
capita CO2 for 2001 in terragrams (Tg) of CO2
equivalent

One of the major shortcommings of past EKC
studies is that the spatiotemporal aspects within
the data have largely been ignored. By ignoring
the spatial aspect of pollution emissions past esti-
mates of the EKC implicitly assume that a regions
emissions are unaffected by events in neighboring
regions (i.e., assume there are no transboundary
relationship with emissions). By ignoring the spa-
tial aspects within the data several past estimates
of the EKC could have generated biased or incon-
sistent regression results. By ignoring the temporal
aspect within the data several past estimates of the
EKC could have generated spurious regression re-
sults or misspecified t and F statistics.

To address this potential misspecification we
estimate the relationship between state-level car-
bon dioxide (CO2) emissions and income (GDP)
accounting for both the spatial and temporal com-
ponents within the data. More precisely, we esti-
mate a spatiotemporal panel model using a newly
proposed robust, spatial fixed effects model.
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Figure 2: This figure displays the dot plots of per-
capita CO2 emissions in each state in 2001 in Tg
CO2 equivalent

2. Data

The CO2 emissions data were obtained from
the Carbon Dioxide Information Analysis Center
(CDIAC) within the U.S. Department of Energy
(Blasing et al., 2004). CDIAC estimates the emis-
sions by multiplying state-level coal, petroleum,
and natural gas consumption by their respective
thermal conversion factors. Carbon dioxide ac-
counted for 84% of U.S. greenhouse gas emissions
in 2005 and is one of the largest contributors to
climate change (Brown et al., 2008). The emis-
sions estimates are based on the combustion of
fossil fuels which is one of the main sources of
CO2 emissions in the U.S. Figures 1 and 2 pro-
vide geographic map of state-level, per-capita CO2
emissions and a count of the same emissions re-
spectively. According to a U.S. Environmental Pro-
tection Agency report, fossil fuel combustion pro-
duced 94.1% of the CO2 emitted in the U.S. in 2008
(U.S. Environmental Protection Agency, 2008).

3. Methodological Approach

To estimation the pollution-income relationship
we can either specify a standard panel estimation
scheme or a dynamic panel which includes a lag of
the dependent variable on the RHS. The standard
panel model is specified as

yt = Xtβ + µi + ηt + ut, (1)

where µi denotes the fixed effect, ηt denotes a time
trend, Xt denotes an (N x K ) matrix of explanatory
variables including GDP, and β denotes an (K x 1)

vector of coefficients on the explanatory variables.
The subscript t denotes time; a subscript i for each
state has been suppressed for exponsitionary pur-
poses. Alternatively, the dynamic panel model is
specified as

yt = ρyt−1 +Xtβ + µi + ηt + ut, (2)

where ρ is the coefficient on the lag of the depen-
dent variable on the RHS. The dynamic specifica-
tion controls for temporal dependence within the
CO2 variable. We move beyond the traditional EKC
explanation by positing that local state emissions
are affected by neighboring state emissions. We
model the transboundary relationship as follows

ut = λWut + εt, (3)

where λ is the spatial autocorrelation coefficient on
the spatial weighting matrix (W) and εt is white
noise. The spatial weighting matrix is specified a
prior. One of the simpler specifications is a binary
matrix to indicate whether two states share a com-
mon border. We define a weighting matrix based
upon the inverse distance between state centroids
(for a sensitivity analysis we experimented with
other weighting specifications and got similar re-
sults). The specification of (3) is often refered to as
the spatial error model.

If we estimate (1) or (2) without accounting for
(3) then the estimates are potentially inefficient. To
obtain asymptotically efficient estimates we pro-
pose an iterated spatial panel estimation proce-
dure. More information about this iterated pro-
cedure can be found in Burnett and Bergstrom
(2010). This iterated procedure is in principal sim-
pler to compute then the standard spatial econo-
metrics models and it is robust to heteroskedastic-
ity and serial correlation.

4. Results

 Model Types 

Explanatory 

Variables 

LSDV Elhorst FE Dynamic 

Elhorst FE 

SFE SFD Dynamic SFE Dynamic 

SFD 

CO2,t-1 N/A N/A 0.9706*** 

(185.852) 

N/A N/A 0.1182*** 

(3.5021) 

0.0036 

(0.7865) 

GDP 12.6768*** 

(18.4822) 

15.325*** 

(10.8307) 

1.564*** 

(4.7597) 

12.5123*** 

(4.4893) 

5.6676** 

(2.2663) 

9.7176*** 

(5.1727) 

5.3303* 

(1.9810) 

GDP
2
 -0.6196*** 

(-18.4207) 

-0.7666*** 

(-10.992) 

-0.078*** 

(-4.8157) 

-0.6112*** 

(-4.5091) 

-0.2685** 

(-2.1535) 

-0.4777*** 

(-5.2082) 

-0.2522* 

(-1.8834) 

CDD -0.0179 

(-0.8664) 

0.3222*** 

(23.0336) 

0.0212*** 

(5.9369) 

-0.0175 

(-0.2104) 

0.0131 

(1.0407) 

0.0109 

(0.2132) 

0.0137 

(1.0273) 

HDD 0.0692 

(1.3415) 

0.3497*** 

(16.5263) 

0.0277*** 

(5.4346) 

0.0618 

(0.3752) 

0.1024 

(3.4171) 

0.1052 

(1.0375) 

0.1045*** 

(3.3073) 

Coal 0.0015*** 

(10.1853) 

0.0037*** 

(26.4352) 

0.0001*** 

(2.672) 

0.0016* 

(1.6760) 

0.0011*** 

(1.2924) 

0.0015** 

(2.6017) 

0.0011 

(1.2189) 

Oil -0.0008*** 

(-3.1082) 

0.0036*** 

(25.4736) 

0.0003*** 

(9.0636) 

-0.0006 

(-0.4934) 

0.0005 

(0.5286) 

-0.0001 

(-0.1490) 

0.0005 

(0.5182) 

λ N/A 0.056* 

(1.7845) 

0.02 

(0.63) 

-0.0150 

(0.0000) 

0.0071 

(0.4538) 

0.0324 

(0.0000) 

0.0075 

(0.4578) 

R
2
 0.9402 0.6028 0.9796 0.6028 0.6019 0.7347 0.7347 

Adjusted R
2
 0.9371 0.5894 0.9789 0.5932 0.5934 0.7291 0.7289 

Robust SE No No No Yes Yes Yes Yes 

Notes:  The numbers in the parentheses denote t-statistics.  The superscripts “***”, “**”, “*” denote a significance level 0.01, 0.05, 

and 0.10 respectively.  LSDV denotes the least squares dummy variable estimate. Parentheses for spatial autocorrelation coefficient 

(λ) represent chi-squared statistics determined by Burridge’s LM test. 

 

 

Table 1: Estimation Results for CO2 Emissions-
Income Relationship (Quadratic Specification) with
Distance-Based Spatial Weighting Matrix

Table 1 provides our estimation results. For
a sensitivity analysis we provide three other es-
timation procedures: the Least Squares Dummy
Variable (LSDV), a spatial fixed effects estimator
(Elhorst FE), and a dynamic fixed effects estima-
tor (Dynamic Elhorst). If the procedure includes
a lag of the dependent variable on the RHS as in
(2) then the estimator is dynamic, otherwise it is a
standard panel or longitudinal estimator. SFE and
SFD in columns 5 and 6 denote our spatial fixed
effects and spatial first-difference iterated proce-
dures respectively. Columns 6 and 7 present dy-
namic versions of these iterated procedures. The
variables (listed in column one) include a quadratic
specification of GDP, cooling degree days (CDD),
heating degree days (HDD), state-level coal pro-
duction (coal), and state-level oil production (oil).
λ denotes the spatial autocorrelation coefficient.
Since the SFE, SFD, Dynamic SFE, and Dynamic
SFD do not estimate the standard error estimates
we provide the p-values based upon Burridge’s
(1980) Lagrange multiplier test for spatial depen-
dence within the data–these p-values are high-
lighted in red.

Looking across the different estimation
schemes we find robust evidence for the inverted
U-shaped relationship between per-capita CO2
and per-capita GDP. Coal is statistically signifi-
cant across all the estimation schemes with the
exception of the dynamic spatial first-difference
estimator.

If we find evidence that CO2 and GDP are non-
stationary then the estimation procedures could
yield spurious results and misspecified t and F
statistics. To test for stationarity we conducted
panel unit-roots (not shown) which provided some
evidence that CO2 and GDP are characterized as
first-difference, trend stationarity processes (Bur-
nett and Bergstrom (2010). An implication of non-
stationary variables is that the first-differencing pro-
cedures offer properly specified t and F tests. The
most appropriate estimator depends on whether
CO2 emissions are first-difference or second-
difference stationary.

In Figure 3 we offer projections of the pollution-
income relationship based upon the estimation re-
sults in Table 1. GDP is offered in a log scale.
The value of 10.5 in the table is equivalent to ap-
proximately $36,000 per-capita income. One will
notice the consistency with the peak and general
shape of the projections which this seems to offer
evidence of asymptotic consistency within our esti-
mation procedures.
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Figure 3: Projections of estimates based upon re-
sults in Table 1

5. Conclusions and Limitations

Consistent with the EKC hypothesis we find
the inverted-U shaped relationship between CO2
emissions and income. Further, we find ade-
quate evidence that the underlying economic pro-
cesses driving carbon dioxide emissions and state-
level GDP are temporally and spatially dependent.
These findings offer policy implications for both in-
terstate energy trade and pollution emission regu-
lations.

One limitation is that λ is estimated numeri-
cally so we do not calculate its second moment
to perform inference. However, we conducted La-
grange multiplier test (not shown) proposed by Bur-
ridge (1980) which offered some evidence in favor
of spatial dependence within the data–again the
reader is referred to Burnett and Bergstrom (2010).
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