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Modeling Crop Yield Distributions from Small Samples 

 

Abstract 

Accurately modeling crop yield distributions is important for estimation of crop insurance 

premiums and farm risk-management decisions. A major challenge in the modeling has 

been due to small sample size. This study evaluated potentials of L-moments, a recent 

concept in mathematical statistics, in modeling crop yield distribution. Five candidate 

distributions were ranked for describing the wheat yields. The selected distribution was 

robust for small sample and was invariant to de-trending. The result was consistent with 

that from the maximum likelihood and goodness-of-fit method. 
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Modeling Crop Yield Distributions from Small Samples 

 

Accurately modeling crop yield distributions is important for estimation of crop insurance 

premiums and farm risk-management decisions. Accurate modeling of crop yield typically 

requires longer time series observations. In general, a lack of consistent series of farm-

level yields of sufficient length is a major concern in modeling crop yield distribution. 

Researcher’s responses have been to use the available regional aggregate yields or the 

augmentation of temporal variation with spatial variation. 

Various crop modeling approaches are proposed in the agricultural economics 

literature (Day; Gallagher; Just and Weninger; Goodwin and Ker; Nelson; Ramirez, Misra 

and Field). The modeling approach varies from non-parametric to parametric. Few 

researchers favour the semi-parametric and non-parametric approaches for modeling crop 

yield distribution (Goodwin and ker; Ramiraz, Misra and Field; Chen and Miranda). 

However, parametric approaches are usually preferred due to small samples. The 

parametric approach of modeling yields usually involves selection of candidate 

distributions, parameter estimation and assessment of goodness-of-fit. Several distributions 

could be selected as candidate distributions based on literature: Beta distribution (Nelson), 

Gamma distribution (Gallagher), Normal distribution (Just and Weninger), Weibull 

distribution (Chen and Miranda), Lognormal (Day), and Logistic (Sherrick et al.). 

Maximum likelihood (ML) is an efficient method for parameter estimation, but when the 

sample size is small it is difficult to distinguish the distribution precisely. L-moment ratio 

estimator is a recent development in mathematical statistics (Hosking). L-moment ratio 

diagrams have been successfully used for distribution selection in hydrology (Kroll and 
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Vogel; Pandey, van Gelder and Vrijling). L-moment ratios could have a potential use in 

crop modeling because they do not have sample size related bounds and are more robust to 

the presence of outliers compared to product moment ratios.  

The literature also varies on sources of crop yield: experiment, field, farm and 

regional aggregate data. Several studies based their modeling on aggregate time series data 

(Gallagher; Goodwin and Ker). Aggregate farm level data usually does not provide impact 

of input decisions on crop yield distributions. Just and Weninger (1999) indicated that 

recent literatures mostly used aggregate time-series data and none used experimental data 

to evaluate crop yield distribution. Day (1965) used long term experiment data to evaluate 

the impact of nitrogen fertilizer on wheat yield distribution. However, it is rare to find long 

term crop yields from the same experiment.  

The objective of this study is to rank candidate yield distribution based on L-

moment and conventional maximum likelihood based methods. The impact of trend 

removal will be assessed on the ranking of the distributions. Alternate methods will be 

tested using wheat yields from a long term experiment at Lethbridge, Alberta. 

Characteristics of wheat yield distributions will be assessed under fallow and fertilizer 

decisions.  

 

METHOD 

L-moments are summary statistics for probability distributions as ordinary moments. They 

provide measures of location, scale, and shape of probability distributions. L-moment is a 

linear combination of order statistics and it is less prone to the effect of sampling 

variability as compared to conventional moments. Hosking (1990) provides details on 
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underlying theory and application of L-moments as summary statistics for probability 

distributions. 

Let nnnn XXX ::2:1 ... ≤≤  be the order statistics of a random sample of size n drawn 

from a distribution of X. The rth L-moment ( rλ ) of the random variable X are defined as: 
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where )( :rkrXE −  is the expectation of an order statistic. 

The first four L-moments of the random variable X is given as: 

)(1 XE=λ  

)(2/1 2:12:22 XXE −=λ  

)(3/1 3:13:23:33 XXXE −−=λ  

)(4/1 4:14:24:34:44 XXXXE −−−=λ  

Unlike L-moments, L-moment ratios are neutral to the scale of measurement. L-

moment analogue of the coefficient of variation, skewness and kurtosis are computed as: 

122 /λλτ ==− cvL  

233 /λλτ ==− skewnessL  

244 /λλτ ==− kurtosisL  

L-moment ratios are bounded. For non-degenerate distributions with finite means, 

1<rτ  for r = 3 and 4, and for positive random variables, X>0, 10 2 << τ  (Stedinger, 

Vogel and Foufoula-Georgiou).   
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L-moments from a sample 

Let x be a sample of random yields from year 1 to n with mean µ and standard 

deviation σ. L-moments for the sample are estimated using probability weighted-moments 

estimator: 
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For a random sample x, the estimate of first four L-moments are computed as: 

01 bl =  

012 2 bbl −=  

0123 66 bbbl +−=  

01234 123020 bbbbl −+−=  

 

L-moment ratio diagrams 

L-moment ratio diagrams are useful for identifying the underlying data distribution 

(Hosking). L-moment diagrams include plots of 2τ versus 3τ for choosing among two-

parameter distributions and 4τ versus 3τ  for choosing among three-parameter distributions 

(Stedinger, Vogel and Foufoula-Georgiou). If the observations are drawn from a normal 

distribution, then πµσ /2 =l  and l3 has mean 0 and var [l3] = (0.1866+0.8/n)/n. If the 

sample average L-moment ratio is closer to the expected L-moment ratio for a specific 

family of distribution then that distribution is implied by the diagram. Polynomial 

approximations are useful for showing the expected L-moment ratios for different 
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probability distributions. The polynomial approximation of 2τ   in terms of 3τ  could be 

estimated with a reasonable accuracy (Hosking; Vogel and Wilson) by: 

 ∑
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where jA  are given in table 1.  

 

Maximum likelihood estimation 

Maximum likelihood (ML) based method involves parameter estimation using ML 

and assessing the goodness-of-fit of the simulated distribution with that from sample 

distributions. It is an acceptable practice to test for normality before parameter estimation 

for non-normal distributions. Identification of distributions is sensitive to trend and 

heteroskedasticity in the data. Therefore, data are corrected for any trend and 

heteroskedasticity before parameter estimation. Several tests are available for decision on 

normality (Just and Weninger). However, decision on normality would be based on 

Shapiro-Wilk (S-W), Kolmogorov-Smirnov (K-S), Cramer-von Misses (C-M), and 

Anderson and Darling test (A-D).  

 

Goodness-of-fit measure 

Anderson and Darling (AD) is an appropriate distribution free goodness-of-fit test 

(Sherrick et al.). Yield realizations over time would be judged against the simulated yields 

from candidate distributions using the AD statistic. The smaller the AD statistic, closer the 

fit of the hypothetical distribution to the historical sample of crop yields.  

The AD test statistic is defined as (Law and Kelton, p. 368): 
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probability density functions, respectively and n is the sample size. The AD statistic can be 

estimated as: 
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Candidate yield distributions 

Any theoretical distribution with desirable characteristics can be selected as a 

candidate distribution. Candidate distribution can be univariate or multivariate. Univariate 

distributions can be further classified based on number of parameters. Five two-parameter 

univariate distributions were selected based on the literature: Gamma, Lognormal, Normal, 

Weibull, and Pareto. Among them lognormal and normal are symmetric distributions. 

Gamma, Weibull and Pareto allows the yield distribution to be skewed.  

 

DATA 

Wheat yields were obtained from a long term single site experiment since 1906 at 

Lethbridge Research Centre at Alberta, Canada. However, yields used in this study were 

from 1972 to 2004, the period of fertilization. Annual yields for 16 treatment decisions 

were recorded from the entire large plot of about 0.25 acres. Treatment decisions included 

the frequency of fallow in sequence with wheat and application of nitrogen (N) and/ or 

phosphorus (P) fertilizer. There were four crop rotations including continuous wheat (W), 
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wheat followed by fallow (FW) in a two-year rotation and, wheat followed by fallow in a 

three-year rotation (FWW) and wheat followed by wheat in a three-year rotation (WWF). 

Each sequence received four fertilizer treatments (zero fertilizer, 45 kg ha-1N, 20 kg ha-1P, 

45 kg ha-1N and 20 kg ha-1P).  

 

Trend and normality 

The sample of wheat yields failed to show evidence for higher order polynomial 

trend and non-normal yield distributions (Table 2). Positive linear trend was found 

significant for 12 and 14 treatment decisions at 5% and 10% level, respectively. Positive 

linear trend witnessed the positive impact of technological change on wheat yields. Linear 

trend was positive but not significant for FW and FW-P decisions. Presence of linear trend 

in the majority of treatment decisions justified the use of de-trended yields for parameter 

estimation.  De-trending was done by rotating the data around the mean: 

 µ++−= )*( tbaxx t
d
t  

where d
tx  is the de-trended yield at time t, tx  is actual yield, a is the intercept and b is the 

slope parameters from the regression, and µ  is the average yield. 

There is no evidence of single consistently superior test for normality. Past studies 

have used multiple tests to overcome this limitation. In this study, yield normality was 

tested using four recently popular tests: K-S, C-M, A-D and S-W tests. Just and Weninger 

(1999) cautioned against the use of multiple tests due to the potential for conflicting 

information. However, this study showed that all tests were consistent in failing to reject 

normality of actual as well as de-trended wheat yield at Lethbridge (Table 2). This shows 

that normality was not conditional on de-trending for technological change over time. 
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Failure to reject normality may not necessarily imply that non-normal models could not fit 

better. Five candidate distributions were ranked based on their fit to the sample wheat 

yields. 

 

RESULTS 

Wheat yields for 16 treatment decisions over 33 years, before and after trend removal, are 

summarized in Table 3. Treatment decisions included fallow and fertilizer decisions.  

Yield distributions are summarized using mean, standard deviation, skewness and kurtosis 

statistics.   

Fallow had an impact on wheat yield distribution. Continuous wheat generated low 

yields, negative skewness, and negative kurtosis. This indicated the influence of few 

extreme years with low yields on continuous wheat yield distribution at Lethbridge. Fallow 

in the rotation increased the mean wheat yield compared to without fallow. Fallow helps 

conserve soil moisture, which is available for the subsequent wheat crop in this semi-arid 

region. Frequency of fallow also had an impact on yield. Fallow in a two year rotation 

compared to in a three year rotation generally increased the mean yield, increased positive 

skewness and decreased kurtosis. Positive skewness is expected for dry land wheat 

production in semi-arid regions because of few good years with many not-so-good years in 

terms of precipitation. 

Fertilizer had a consistent positive impact on wheat yield. For any crop and crop-

fallow sequence, nitrogen (N) or phosphorus (P) increased the mean yield. Application of 

N and P together consistently generated the highest mean yields. Application of N, 

compared to without N, generated a more symmetric wheat yield distribution. When the 
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wheat yield without N had negative (positive) skewness, N increased (decreased) 

skewness.  Kurtosis generally decreased due to application of N. 

Trend removal had an impact on higher moments of the yield distribution (Table 

3). As expected, first moment about the origin (mean) was not affected by the trend 

removal. De-trending the data by rotating around the mean reduced the second moment 

(variance) and third moment about the origin (skewness), except for FW. The FW 

treatments also failed to show a significant impact of technological progress (Table 2). The 

impact on fourth moment about the origin (kurtosis) was not as conclusive as for other 

lower order moments. However, kurtosis generally increased with the trend removal except 

for W-N, WWF, WWF-P and WWF-NP treatment decisions.  

 

L-moment diagrams 

L-moment diagram compared the sample estimates of L-moment ratios with their 

population counterparts for the four out of selected five distributions: Gamma, Lognormal, 

Normal, Weibull, and Pareto. Theoretical relationships among L-cv and L-skewness for 

two and three-parameter distributions are available in exact form from Hosking (1990) and 

Stedinger, Vogel and Foufoula-Georgiou (1993). Polynomial approximations used in this 

study for two-parameter Gamma, Lognormal, Weibull, and Pareto distributions are 

summarized in Table 1.  

L-moment diagrams were generated from historical wheat yields from all 16 

treatment decisions using actual (Figure 1) and de-trended (Figure 2) yields. Each series of 

yields, actual and de-trended, were also grouped into 3 separate subsets of equal lengths 

(1972-82, 1983-93 and 1994-2004) to analyze the impact of sample size on distribution 
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ranking. Each diagram shows L-skewness along the horizontal axis and L-cv along the 

vertical axis. Since L-moment ratio estimators are approximately unbiased, regardless of 

the underlying probability distribution, one expects the best fitted theoretical curve to 

separate the sample data points into approximately half on each side of the distribution 

(Vogel and Wilson). 

Figure 1 compares the observed and theoretical relations between L-cv and L-

skewness from actual wheat yields among four probability distributions and for four yield 

samples. A 33 year sample of wheat yield showed that L-cv points for Weibull distribution 

separate the sample L-cv points approximately into two halves indicating that Weibull 

distribution could be the appropriate wheat yield distribution. Pareto distribution was a 

poor fit because it over predicted the observed L-cv. Similarly, Lognormal and Gamma 

distributions were poor fit because they consistently under predicted L-cv. The pattern of 

result was similar across all samples, except for the period 1972-82.   

For the best fitted distribution, sample statistics should approximate the population 

parameters. The sample average L-cv and L-skewness for actual wheat yields (1972-2004) 

was 0.2438 and 0.0251, respectively (Table 4). For Normal distribution L-cv and L-

skewness are 0.2094 and 0, respectively (Stedinger, Vogel and Foufoula-Georgious). 

Comparing sample L-cv with Normal and Weibull (0.2052), Normal distribution seems 

more appropriate for wheat distribution. The Normal distribution was consistently better 

fitted among selected candidate distributions in all periods. 

Similarly, Figure 2 compares the observed and theoretical relations between L-cv 

and L-skewness for the de-trended wheat yields. Among the four fitted distributions, 

Weibull distribution was a better fit for the sample in all periods, except for 1972-82. In 
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the exceptional period Gamma and Lognormal had a better fit than Weibull. Pareto 

distribution was consistently a poor fit due to over prediction of L-cv. When normal 

distribution was included in the comparison, Normal distribution had consistently better fit 

in all period (Table 4).  

The selected distribution using L-moment ratios and L-moment diagrams were 

robust across all small samples and de-trending. This consistent pattern of better fit of 

Normal over other candidate distributions across all sample periods indicated the 

robustness of L-moment ratios even under small sample condition (Table 4). L-moment 

diagrams were also consistent in selecting distribution before and after trend removal 

(Figures 1 and 2). This indicated that selected distribution is invariant to trend removal. 

However, the L-moment ratios from the de-trended data approximated Normal distribution 

more closely than the actual data (Table 4). This support the finding of Atwood, Shaik and 

Watts (2003) that the de-trending of trended data makes the distribution closer to Normal.   

 

Maximum Likelihood and Goodness-of-fit 

Parameters for candidate distributions were estimated from de-trended wheat yields 

generated from 16 treatment decisions over 33 years (Table 5). The Normal and Weibull 

distributions were found superior to other candidate distributions for representing wheat 

yield at Lethbridge. The Pareto distribution was consistently the most inferior distribution. 

Lognormal and Gamma distributions were also generally inferior fitted compared to 

Normal distribution. Normal or Weibull distribution was selected for 12 out of 16 

treatment decisions, which indicated that these management decisions had less roles in 
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determining the yield distribution compared to environmental factors. However, 

management decisions did have impact on parameters of the distribution (Table 3). 

 

SUMMARY AND CONCLUSIONS 

Several candidate crop yield distributions have been offered in the agricultural economics 

literature. Accurately identifying the yield distribution is important due to its potential use 

for farm risk management, policy, and crop insurance premium identification. A major 

challenge in modeling crop yield distributions has been small sample size. This study seeks 

to introduce an alternate method of modeling crop yield distribution and apply it to wheat 

yields.  

L-moments are relatively recent introduction in mathematical statistics. The L-

moment based method for distribution selection has some advantages over the 

conventional ML based method. L-moments are linear combination of order statistics and 

are less biased than ordinary moments. L-moment ratios can be plotted as L-moment 

diagrams which provide a simple and visual way of identifying a best fitting distribution. 

Selected distributions based on L-moment are also less likely to be sensitive to trend 

removal.  

Five two-parameter candidate crop yield distributions were ranked for describing 

the wheat yield distribution: Gamma, Lognormal, Normal, Weibull, and Pareto. Ranking 

was based on both L-moment and ML based methods. Both methods consistently ranked 

Normal as the best fitted distribution. L-moment based methods were also tested under 

small sub samples and de-trending. Best fitted distribution remained robust across all small 

sub samples. Trend removal had no impact on the ranking of distributions. Normally 
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distributed wheat yield have several economic implications. It simplifies the economic 

decision making to mean-variance approximation of expected utility. Furthermore, normal 

yield may imply lower insurance premium compared to some thicker tail distributions. 

Several specific conclusions can be drawn for wheat yields at Lethbridge. 

Continuous wheat was found to generate negative skewness and kurtosis for yields at 

Lethbridge exposing the farmer to few extreme financial risks. Fallow had positive impact 

on wheat yield due to increased expected yield and lower risk of being below an expected 

yield. Fertilizer consistently increased wheat yield. Application of nitrogen fertilizer had an 

impact on wheat yield distribution making it more symmetric. 

This study found that L-moment based method could be useful for distribution 

identification even in the case of a small sample. The method should also be tested with 

several crops and locations to gain further insight on its usefulness for crop yield modeling.   
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Table 1. Coefficients of polynomial approximations for L-moment diagram 

Two-parameter Distributions 

Coefficient Lognormal Gamma Weibull Pareto 

A0 . . 0.17864 0.33299 

A1 1.16008 1.7414 1.02381 0.44559 

A2 -0.05325 . -0.17878 0.16641 

A3 . -2.5974 . . 

A4 -0.10501 2.0991 -0.00894 . 

A5 . . . 0.09111 

A6 -0.00103 -0.3595 -0.01443 . 

A7 . . . -0.03625 

Source: Vogel and Wilson 1996 
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Table 2: P-values for linear trend and normality tests for actual wheat yields, 1972-2004. 

Treatments Trend S-W K-S C-V A-D 

W 0.08 0.94 >0.15 >0.25 >0.25 

W-N 0.03 0.89 >0.15 >0.25 >0.25 

W-P 0.05 0.65 >0.15 >0.25 >0.25 

W-NP 0.02 0.67 >0.15 >0.25 >0.25 

FW 0.36 0.36 >0.15 >0.25 >0.25 

FW-N 0.06 0.09 >0.15 >0.25 >0.25 

FW-P 0.25 0.23 >0.15 >0.25 >0.25 

FW-NP 0.04 0.21 >0.15 >0.25 >0.25 

FWW 0.01 0.54 >0.15 >0.25 >0.25 

FWW-N 0.02 0.29 >0.15 >0.25 >0.25 

FWW-P 0.03 0.68 >0.15 >0.25 >0.25 

FWW-NP 0.05 0.36 >0.15 >0.25 >0.25 

WWF 0.02 0.33 >0.15 0.24 >0.25 

WWF-N 0.03 0.84 >0.15 >0.25 >0.25 

WWF-P 0.01 0.10 0.08 0.08 0.10 

WWF-NP 0.05 0.54 >0.15 >0.25 >0.25 

Note: Treatments: W= continuous wheat, FW= fallow-wheat, FWW= fallow-wheat-wheat 

(after fallow), WWF= wheat-wheat-fallow (after wheat), N= 45 kg ha-1 N and P= 20 kg 

ha-1P. Quadratic and higher order trend was not significant for all variables and therefore 

not reported. S-W, K-S, C-V and A-D stands for Shapiro-Wilks, Kolmogorov-Smirnov, 

Cramer-von Mises and Anderson and Darling tests, respectively. 
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Table 3. Summary statistics of wheat yield (t ha-1) distribution, 1972-2004 

Treatments  Before trend removal After trend removal 

 Mean StDev Skewness Kurtosis StDev Skewness Kurtosis

W 1.44 0.58 -0.13 -0.25 0.55 -0.15 -0.09 

W-N 1.90 0.89 0.02 -0.60 0.82 -0.07 -0.84 

W-P 1.60 0.59 -0.34 -0.40 0.55 -0.37 -0.33 

W-NP 2.40 1.15 -0.06 -0.70 0.99 -0.24 -0.56 

FW 2.83 0.74 0.46 -0.05 0.73 0.60 0.27 

FW-N 2.98 0.93 0.22 -1.06 0.88 0.06 -0.88 

FW-P 2.92 0.78 0.36 -0.72 0.77 0.34 -0.16 

FW-NP 3.29 0.97 0.30 -0.83 0.91 0.14 -0.75 

FWW 2.50 0.75 -0.11 -0.72 0.74 -0.22 -0.38 

FWW-N 2.73 0.90 0.51 0.06 0.87 0.41 0.09 

FWW-P 2.90 0.88 -0.46 0.85 0.84 -0.89 3.07 

FWW-NP 3.22 1.01 0.13 -0.80 0.86 -0.45 -0.09 

WWF 1.45 0.72 0.52 -0.19 0.69 0.35 -0.39 

WWF-N 1.99 0.88 0.07 -0.57 0.81 -0.09 -0.52 

WWF-P 1.34 0.60 0.81 1.11 0.59 0.61 0.59 

WWF-NP 2.38 1.08 0.25 0.14 0.95 -0.03 -0.06 

Note: Treatments: W= continuous wheat, FW= fallow-wheat, FWW= fallow-wheat-wheat 

(after fallow), WWF= wheat-wheat-fallow (after wheat), N= 45 kg N ha-1 and P= 20 kg P 

ha-1. 
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Table 4. Sample L-moment statistics for historical wheat yields at Lethbridge, Alberta 

Period Sample L-cv for probability distributions 

(Years) L-cv L-skewness Lognormal Gamma Weibull Pareto 

------------------------------------------------Actual----------------------------------------------- 

1972-1982 0.199 0.1032 0.118 0.1654 0.2872 0.3838

1983-1993 0.248 0.0061 0.0061 0.0139 0.1823 0.3385

1994-2004 0.1759 -0.0491 -0.0591 -0.0739 0.1181 0.3171

1972-2004 0.2438 0.0251 0.0288 0.0437 0.2052 0.3453

------------------------------------------------De-trended-------------------------------------------- 

1972-1982 0.1599 0.1247 0.1427 0.1993 0.3103 0.3941

1983-1993 0.2839 0.0224 0.0248 0.0353 0.1997 0.3464

1994-2004 0.2094 -0.0083 -0.0116 -0.0082 0.1638 0.3346

1972-2004 0.1983 -0.0003 -0.0006 -0.0006 0.1775 0.3336

Note: For normal distribution: L-skewness =0 but L-cv= 0.2094 for actual historical 

data and L-cv = 0.1959 for de-trended data. 
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Table 5. Ranking of alternate wheat distributions based on goodness-of-fit 

measure-detrended data 

Treatments Gamma Lognormal Normal Pareto Weibull 

W 3 4 2 5 1 

W-N 3 4 1 5 2 

WP 3 4 1 5 2 

W-NP 3 4 2 5 1 

FW 1 2 3 5 4 

FW-N 3 4 2 5 1 

FW-P 3 4 2 5 1 

FW-NP 2 3 1 5 4 

FWW 3 4 1 5 2 

FWW-N 2 1 4 5 3 

FWW-P 3 4 2 5 1 

FWW-NP 3 4 2 5 1 

WWF 4 1 3 5 2 

WWF-N 3 4 1 5 2 

WWF-P 2 1 4 5 3 

WWF-NP 3 4 1 5 2 

Average 2.75 3.25 2 5 2 

Treatments: W= continuous wheat, FW= fallow-wheat, FWW= fallow-wheat-wheat (after 

fallow), WWF= wheat-wheat-fallow (after wheat), N= 45 kg N ha-1 and P= 20 kg P ha-1. 
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Figure 1. L-moment diagrams for actual historical wheat yields 

Note: o in the diagram represents the sample average L-cv. 
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L-moment diagram, 1983-93
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Figure 2. L-moment diagrams for de-trended wheat yields at Lethbridge 

 Note: o in the diagram represents the sample average L-cv. 

 


