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Abstract

    We investigate the dynamics of nonrenewable resource abundance on economic growth and
welfare in a two-country world. One country is endowed with a nonrenewable-resource,
otherwise, countries are identical, except possibly for their initial endowments of capital. Unlike
previous studies analyzing small open economies, we show that once interactions between
resource-rich and resource-less economies are considered the effect of the nonrenewable resource
on the resource rich economy's performance can be positive. We derive the necessary condition
for the nonrenewable resource to have a positive (negative) effect on the growth rate of the
resource-rich economy. The endowment of the nonrenewable resource has a positive effect on the
growth rate of the resource-rich country provided the elasticity of the initial price of the resource
with regard to the initial stock of the resource is greater than minus one. An analytical solution to
the model confirms that this elasticity is greater than minus one, and numerical simulations with a
very large range of parameter values confirm the same.
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1. Introduction

The economics of nonrenewable resources has received increased attention following the empir-
ical observations of Jeffrey D. Sachs and Andrew M. Warner (1995). They perform cross-country
growth regressions and find that economies with large natural resource based exports to GDP ratios
in 1971 tended to experience relatively low growth rates in the subsequent period (1971-89). More
recent research has led to contradicting results. For example Daniel Lederman and William F.
Maloney (2003) account for measures of exports’ concentration and intra-industry trade and find
that the coefficient of resource abundance has a positive sign on the growth regression. Jean-Phillip
Stijns (2001) employs different indicators of natural resource abundance than those used by Sachs
and Warner and finds no evidence that resource abundance is a detriment for economic growth.
Ning Ding and Barry C. Field (2004) distinguish between natural resource endowments and nat-
ural resource dependence and find that, across countries, natural resources do not affect growth.
A common feature of these empirical studies is that they also control for corruption (except for
Lederman and Maloney, 2003) and openness, despite this, contradicting results about the effect of
resource abundance on growth are found. Given this puzzling empirical evidence, the challenge is
whether a theoretical model can help advance our understanding of how resource abundance affects
economic growth.

Several hypothesis explaining why resource-rich economies have underperformed resource-poor
economies have been proposed. Aaron Tornell and Philip. R. Lane (1995) argue that this under-
performance may be explained by the struggle of groups attempting to extract natural resource
rents. Sachs and Warner (1995 and 2001) argue in favor of Dutch Disease causes. Francisco Ro-
dríguez and Jeffrey D. Sachs (1999) argue that “resource-rich countries may grow more slowly
because they are likely to be living beyond their means...” (p. 278). In particular, they indicated
that a sufficiently large initial natural resource stock will generate an overshoot (above long-run)
of capital and GDP. In such a case, an economy will converge from above to its long-run value of
GDP and thus, will perform “poorly in terms of GDP per capita growth.” (p. 289). Moreover, they
show that, even in the absence of any type of distortions (trade barriers, rent-seeking activities,
Dutch-Disease possibilities etc.), larger initial stocks of a nonrenewable resource are sufficient to
generate negative growth. They consider a single economy which exports all of the oil extracted,
eventually totally depleting the nonrenewable resource stock. In their setting the economy does
not use oil for their own production or consumption, implying that the rest of the world must be
different than the economy they study, and that the rest of the world’s growth cannot impact the
resource-rich country.

We study a two country world economy and investigate if in the absence of distortions resource
abundance can be a detriment to economic growth, as some studies indicate. In particular, this
paper analyzes how initial factor endowments of nonrenewable resources and accumulable resources
influence income, growth and welfare in a two country world. We provide the necessary condition
for a nonrenewable resource to have a positive (negative) effect on the relative economic performance
of a resource-rich economy.

Previous work in this area includes Geir B. Asheim (1986) and John M. Hartwick (1995) who
study a two country world and investigate whether constant consumption paths are achievable
when the economies invest resource rents into new capital. Carl Chiarella (1980) focuses on in-
ternational trade aspects of a world economy with two countries and shows that if countries are
equally patient then consumption growth across countries is identical. This implies that the ratio
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between consumption levels (across countries) must be constant over time. Chiarella determines
the long-run ratio (steady state) of consumption levels between the two countries when the utility
function is logarithmic and discount factors across countries are different. Jan H. van Geldrop
and Cees A. Withagen (1993) generalize Chiarella’s (1980) approach, by introducing n number of
trading partners. Among others things, they concentrate on equilibrium existence, but they do not
study cross-country differences on consumption, income or growth.

Our analysis provides insights into how differences in nonrenewable resources and capital en-
dowments affect economic performance. Consequently, we ignore other differences across countries.
The economies considered are thus identical, except for the initial endowments of assets (capital)
and the nonrenewable resource. As in other models of trade, factor price equalization across coun-
tries occurs. The rental rate of capital across countries is equal even in the absence of international
borrowing and lending. This result implies that the growth rate of consumption across countries
is equal. Thus, as in Chiarella (1980), the ratio of consumption across countries is constant over
time. Regardless of income growth, relative welfare across countries is shown to remain unchanged.
The ratio of the consumption levels between the two countries is determined by the ratio of their
respective value of assets at any point in time. The wealth of the nonrenewable resource-rich
country, and hence its relative welfare, is shown to increase with the initial stock of the resource.
This effect is counterbalanced, to some degree, by the negative effect of the initial stock of the
depletable resource on the price of the nonrenewable.

We also prove that the initial endowment of the nonrenewable resource has a positive effect on
the GDP growth rate of the resource-rich country as long as the elasticity of the initial price of
the resource with regard to the initial stock of the resource is greater than minus one. That is,
depending upon structure, a non-renewable resource rich economy can grow faster or slower than an
economy without this resource. An analytical solution of the model under a parameter restriction
demonstrates that indeed this elasticity is greater than minus one3. Thus, the result of Rodríguez
and Sachs (1999) that the initial stock of the resource negatively influences the GDP growth of an
economy exporting a nonrenewable resource is shown not to hold in general. This result is mostly
derived from the fact that Rodríguez and Sachs (1999) consider a small open economy and do not
account for inter-country linkages, via the terms of trade, that influence the resource-rich economy’s
performance. While it is possible that nonrenewable resources rich economies are growing slower
because of rent-seeking activities and failures to invest in market supporting institutions. Most
importantly, we confirm that previous conclusions, suggesting that owning a large amount of the
resource alone is sufficient to generate negative growth, do not hold.

An overview of the model is as follows. Similar to Chiarella (1980), we model a world economy
with two countries that are engaged in international trade. Different to Chiarella (1980), we allow
the two countries to be engaged in the production of a final good as in Geldrop and Withagen
(1993). Capital and a nonrenewable resource are used as factors of production and we assume that
both countries have access to the same technology to produce the final good. A single country
owns the entire stock of the nonrenewable. This country has an extracting sector that depletes
the nonrenewable by maximizing discounted profits. The economies trade the final good and
the nonrenewable internationally, but international borrowing and lending is not allowed. Each
country has a representative consumer that derives satisfaction from consuming the final good and
maximizes discounted instant utility, subject to a budget constraint. The rental rate of capital

3Numerical simulations indicate the same.
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of each country is determined endogenously and equals the marginal physical product of capital
in that country. Finally, a market clearing condition for the nonrenewable resource endogenously
determines its price.

The paper is organized as follows. In section two we introduce the model where a nonrenew-
able resource and capital are used as inputs in production. In section three we characterize the
equilibrium, prove the stability of the system and look at the impact of the nonrenewable resource
on income growth and relative welfare. In section four we provide an analytical solution under a
restriction on parameter values. In section five we provide numerical simulations and conclude in
section six.

2. The model

2.1. Set-up

Consider the environment of a two-country world in which one of the countries is endowed with
a nonrenewable-resource (referred to as country one) and the other is a nonrenewable-resource-
less country (referred to as country two). The representative consumer of each country seeks
to maximize discounted utility of consumption subject to a budget constraint. Across countries
consumers have identical preferences and identical discount factors. Whereas country one owns and
can deplete the nonrenewable, both economies have an amount of capital that each combines with
the nonrenewable resource to produce an identical final good. The final good technology is given
by

Yi = F (Ki, Ri) = Kα
i

¡
eηtRi

¢1−α (1)

where Ki and Ri for i = 1, 2 denote the amount of capital and the amount of the nonrenewable
resource employed in the production of output Yi of country i and η is the growth rate of a resource
saving technological progress. The price of the final good is numéraire. Let ri denote the rental
rate of capital in country i. To maximize profits the final good sector of country i sets the marginal
physical product of each input factor equal to its rental rate/price as follows:

ri = α
Yi
Ki

q = (1− α)
Yi
Ri

, (2)

where q denotes the price of the nonrenewable resource. Since country one exports the nonrenewable
to country two, in the absence of trade distortions, the nonrenewable is traded at the same price
in both countries. Rearranging these expressions we obtain

Yi = q
Ri

1− α
= ri

Ki

α
⇒ Ki =

α

1− α

q

ri
Ri. (3)

Substituting for Ki from (3) in (1) yields

Yi =

µ
α

1− α

q

ri

¶α

e(1−α)ηtRi. (4)
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Equating this expression to Yi from (3) provides a relationship between the rental rate of capital r
and the price of the nonrenewable resource:

ri =
³
αα (1− α)1−α

´ 1
α

µ
eηt

q

¶ 1−α
α

. (5)

Equation (5) suggests that, the Heckscher-Ohlin tendency for factor price equalization is satis-
fied. Using r1 = r2 = r and (3) implies

Ri =
1− α

α

r

q
Ki (6)

indicating that the ratio of Ri/Ki across countries is the same.4

2.2. Extracting sector

Since the final good serves as numéraire, r is the gross interest rate of country one. Define

ω (t) = e−
R t
0 (r(τ)−δ)dτ , (7)

where δ is the constant depreciation rate of capital. Note that holding one unit of capital yields a
gross return r (τ) at instant of time τ, but, since capital depreciates, the net return from holding
one unit of capital at time τ equals r (τ )−δ. Presuming perfect capital markets in country one, as in
Geldrop and Withagen (1994 p. 1014), ω (t) is a present-value factor that converts a unit of revenue
at time t into an equivalent unit of revenue at time zero. We presume that extractions are costless.
Using ω (t) to discount profits, the extracting sector finds the optimal path of extractions R (t) that
maximizes the present value of profits subject to the constraint that cumulative extractions do not
exceed the initial stock of the nonrenewable, i.e.,5:

max{
Z ∞

0
q (t)R (t)ω (t) dt

¯̄̄̄Z ∞

0
R (t) dt ≤ S0}. (8)

The Lagrangian of this isoperimetric problem is given by

L = qRe−
R t
0 (r(τ)−δ)dτ − λR (9)

and the necessary conditions for a maximum and transversality condition are, respectively, given
by

4If the profit maximization problem of the final good sector were set as a dynamic problem, as in Geldrop and
Withagen (1994), the same first order conditions would be obtained.

5 If we had integrated the extracting activity into the optimization problem of the consumer of country one the
same results would had been obtained.
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q = λe
R t
0
(r(τ)−δ)dτ , λ̇ = 0, lim

t→∞qRe
− R t

0
(r(τ)−δ)dτ = 0. (10)

A differential equation for q is obtained by applying Leibniz’s rule to (10) which yields

·
q

q
= r − δ. (11)

This condition indicates that the real price q, of the nonrenewable resource must grow at the real
interest rate, or equivalently, the Solow-Stiglitz (Robert M. Solow, 1974 and Joseph E. Stiglitz,
1974) efficiency condition holds. That is, (11) indicates that the nonrenewable is an asset and for
the economy to have incentives to hold the nonrenewable its price must grow at the real rate of
interest. Substituting r from (5) into (11) , we obtain an equation describing the motion of the
nonrenewable resource price q:

·
q

q
= r − δ =

³
αα (1− α)1−α

´ 1
α

µ
eηt

q

¶ 1−α
α

− δ. (12)

Indeed, this differential equation has an analytical solution given by

q (t) =

µ
Λ

η + δ
e
1−α
α

ηt +
1

e
1−α
α

δt

µ
q (0)

1−α
α − Λ

η + δ

¶¶ α
1−α

, (13)

where Λ =
³
αα (1− α)1−α

´1/α
and q (0) remains to be determined. Note that the price of the

nonrenewable resource can transitionally decline depending on the size of q (0). In particular,
q̇/q < (=) 0 if

µ
Λ

η + δ

¶ α
1−α

Ã
ηe

1−α
α
(η+δ)t + δ

δ

! α
1−α

< (=) q (0) (14)

Observe from (5) , (12) and (13) that the long-run growth rate of q equals

lim
t→∞

q̇

q
= η (15)

Thus, the rate of growth of the resource saving technological change, η, positively influences
the long-run growth rate price of the nonrenewable resource. Similar to the standard Ramsey
model in which labor augmenting technological change positively influences the long-run labor
wage rate, here a resource saving technological change positively affects the long-run price of the
nonrenewable resource. Moreover, if (14) holds for the case < then the price of the nonrenewable
resource is U-shaped over time.
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2.3. Consumers’ optimization problems

2.3.1. Resource-rich country

The representative consumer of country one solves the problem of maximizing discounted utility
of consumption subject to an intertemporal budget constraint as follows:

max

Z ∞

0

c1 (t)
1−θ − 1
1− θ

e−ρtdt (16)

subject to

K̇1 (t) = (r1 (t)− δ)K1 (t) + π (t)− c1 (t) , (17)

given K1 (0) = K0,1 > 0,

where 1/θ > 0 is the elasticity of intertemporal substitution, ρ > 0 is a discount factor, and δ is
the constant rate of capital depreciation. π denotes the profits of the extracting sector. Initial
and instant t stock of capital for country one are K0,1 and K1 (t), respectively. Since extraction is
costless, π (t) = q (t)R (t) holds. Thus, the budget constraint of country one (equation 17) can be
rewritten as

K̇1 = (r1 − δ)K1 + qR− c1. (18)

Since only country one owns the resource, the rate of extraction consists of what is used for domestic
consumption plus an amount that is exported.

2.3.2. Resource less country

The representative consumer of country two solves the problem of maximizing discounted utility
of consumption subject to an intertemporal budget constraint, i.e.,

max

Z ∞

0

c2 (t)
1−θ − 1
1− θ

e−ρtdt (19)

subject to

K̇2 (t) = (r2 (t)− δ)K2 (t)− c2 (t) , (20)

given K2 (0) = K0,2 > 0
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where K0,2 and K2 (t) are, respectively, the initial and instant t capital stocks of country two.
The Euler condition of the consumer’s problem of country i is given by

ċi
ci
=

ri − δ − ρ

θ
for i = 1, 2 (21)

with transversality condition

lim
t→∞

Ki

eρtcθi
= 0 for i = 1, 2. (22)

The result r1 equaling r2, implies that c1 and c2 grow at identical rates. Using r1 = r2 = r, and
r − δ = q̇/q, (21) yields

ċi
ci
=
1

θ

µ
q̇

q
− ρ

¶
for i = 1, 2. (23)

The solution to this differential equation is

ci (t) =

µ
q (t)

q (0)

¶ 1
θ ci (0)

e
ρ
θ
t

for i = 1, 2. (24)

Since q (t) can transitionally decline or increase, ci (t) can follow a similar pattern, albeit influenced
by the discount factor and the elasticity of intertemporal substitution. Using (24) , the transversality
condition of country i can be rewritten as

lim
t→∞

Ki (t)

q (t)
= 0 for i = 1, 2. (25)

3. Equilibrium characterization

3.1. Equilibrium

An equilibrium for this economy are paths of quantities ci (t), Yi (t), Ki,(t) Ri (t), R (t) and
prices q (t), and ri (t) for i = 1, 2 such that ci (t), and Ki (t) solve the consumer’s optimization
problem of country i, Yi (t), Ki (t), and Ri (t) solve the optimization problem of the final good
sector of country i, R (t) solves the maximization problem of the extracting sector of country one,
and the nonrenewable resource market clears, i.e.,

R1 (t) +R2 (t) = R (t) . (26)

Proposition 1. The ratio c1 (t) /c2 (t) is constant for all t and equals the present value of the
ratio of the assets of country one and country two (q (t)S (t) +K1 (t)) /K2 (t) at time t.
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Proof. See proof in Appendix A.

Let µ ≡ c1 (t) /c2 (t) where µ is a constant. Since µ = (q (t)S (t) +K1 (t)) /K2 (t) for all t then,

µ =
c1 (t)

c2 (t)
=

q (0)S0 +K0,1

K0,2
(27)

Remark: This result implies that relative consumption is determined from time zero. This
result suggests that consumption is influenced forever by each country’s initial wealth, i.e., by the
value of each country’s assets in time t = 0. Since S0, K0,1 and K0,2 are given, then µ can be
determined if q (0) were known.

We have shown thus so far that:

Corollary 1.
i) Factor price equalization across countries results. The rental rate of capital across countries

is equal even in the absence of international borrowing and lending.
ii) The Solow-Stiglitz efficiency criterion is satisfied, that is, the price of the nonrenewable

resource grows at the real interest rate.
iii) The price of the nonrenewable resource can transitionally decline.
iv) The Harrod rate of growth positively influences the long-run growth rate of price of the

nonrenewable resource.
v) The ratio of consumption levels of the resource-rich to the resource less country is constant

over time.
vi) The ratio c1 (t) /c2 (t) equals the ratio of the value of the assets of each country q (t)S (t) /K2 (t)+

+K1 (t) /K2 (t).

3.2. The reduced system

To study the long-run stability properties of the model, it is useful to normalize the variables
of the model, and decrease the dimensionality of the system.

Proposition 2. An equilibrium, if it exists, converges to a balanced growth path with growth
rates

gq = η, gKi = gci =
η − ρ

θ
≡ gK , gRi = gR = gS =

(1− θ) η − ρ

θ
(28)

for i = 1, 2 and r is constant. Where gv denotes the long-run growth rate of variable v.
Proof. See appendix A.

Remark: Thus, as in Chiarella (1980) a sufficiently large exogenous technological change can
lead to sustainability. Here the economies are sustainable in the long run (gci = 0) if the growth
rate of the resource saving technological change is equal to or greater than the consumers’ discount
factor.

Let K = K1 +K2. Variables are now normalized by their corresponding growth rate as follows
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K̂ =
K

egK t
, K̂i =

Ki

egK t
, ĉi =

c1
egK t

, (29)

q̂ =
q

eη t
, Ŝ =

S

egS t
, R̂ =

R

egS t
, R̂i =

Ri

egS t

In this way the normalized variables (b) will remain constant along the growth path. To study the
stability of the model we find it useful to reduce the system of equations to the smallest possible
number of differential equations. Let

T ≡ Ŝ

K̂
, g ≡ ĉ2

Ŝ
, ĉ1 = µĉ2 (30)

where T is a state variable and g is a control like variable, and µ > 0 is a constant. Since all the
variables have been normalized, T and g will remain constant in the long-run. Recall that since c1
and c2 grow (forever) at the same rate, then ĉ1 (t) = µĉ2 (t) for all t. Taking the time derivative of
q̂, T and g we obtain:

·
q̂ = (r − δ − η) q̂ (31)

Ṫ = −r
q̂

1− α

α
− T

³ r
α
− δ − η − (1 + µ) gT

´
. (32)

ġ =

µ
r − δ − ρ

θ
− η +

r

q̂

1− α

α

1

T

¶
g (33)

with

r =

Ã
αα (1− α)1−α

q̂1−α

! 1
α

. (34)

In deriving Ṫ we have employed the following
·
Ŝ = −R̂−gSŜ, (6) and (26) so that R̂ = (1− α) (r/q̂)

³
K̂/α

´
,

ĉ2 = gŜ and ĉ2/K̂ = gT. Thus, the first order conditions of the model can be reduced to a system
of three differential equations, (32), (33) and (31) in three variables T, g and q̂.

3.2.1. Stability

Here we investigate the stability properties of the long-run equilibrium of the reduced system.
The equilibrium is locally unique if the Jacobian of the reduced system has two eigenvalues with
positive real parts and one with a negative real part. The reason is because the initial condition
T (0) is given, but q (0) , and g (0) are free. Let



11
·
q̂
ġ

Ṫ

 ≡
 f q̂ (q̂, g, T )
f g (q̂, g, T )
f T (q̂, g, T )

 . (35)

By setting
·
q̂, Ṫ and ġ equal to zero and employing (34) we obtain the long-run or steady-state

values of q̂, T , g, and r, respectively, given by

q̂∗ =

Ã
αα (1− α)1−α

(δ + η)α

! 1
1−α

, T ∗ =
r∗

q̂∗
1− α

α

1

η − gK
(36)

g∗ =
µ
η + δ (1− α)

α
− gK

¶
1

(1 + µ)T ∗
, and r∗ = η + δ, (37)

where variables with the superscript ∗ denote steady-state values. The eigenvalues (ξi) of the
Jacobian matrix of (35) are given by

ξ1 = −
1− α

α
r∗ = −1− α

α
(η + δ) ξ2 = −gS > 0 ξ3 = (1 + µ) g∗T ∗ > 0.(38)

This leads to the next proposition.

Proposition 3. The equilibrium is locally unique.

Proof. Notice that ξ1 = − (1− α) (η + δ) /α is negative. In Appendix A we show that ξ1, ξ2
and ξ3 are the eigenvalues of the Jacobian matrix of (35). Since there is a single negative eigenvalue
the equilibrium is locally unique and stable.

Remark: This result facilitates an empirical analysis as it eliminates the need to search for
other equilibria.

3.3. Growth

To provide insights on how the nonrenewable resource affects GDP growth, we proceed by
examining the share of country i GDP in aggregate (global) GDP. If the share of country i0s GDP
in the world’s GDP changes along the growth path, then one of the countries transitionally grows
slower than the other. We, therefore, want to obtain information about country i0s GDP share in
the world’s GDP at the begging of time and at the steady state.

Let si (t) denote the share of GDP of country i on global GDP as follows

si (t) =
GDPi (t)

GDPw (t)
, (39)
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where GDPw (t) equals GDP1 (t)+GDP2 (t) . In particular,6 s2 (t) = αK2 (t) /K (t) where as before
K equals K1 +K2.

Proposition 4. At time zero, the share of GDP of country i for i = 1, 2 on global GDPw does
not depend on the level of the nonrenewable resource and

s1 (0) =
K0,1 + (1− α)K0,2

K0
, s2 (0) = α

K0,2

K0
(40)

where K0 denotes the sum of the initial stocks of capital of country one and two (K0,1 +K0,2) .
Proof . Country-i’s GDP is, respectively, given by

GDP1 = rK1 + qR GDP2 = rK2. (41)

Equation (6) and the market clearing condition (26) yield R = (1− α) (r/q) (K1 +K2) /α. Sub-
stituting this result into the definition of GDP of country one and computing GDPw yields the
proposition.

Remark: Proposition 4 indicates that the shares si (0) do not depend on the stock of the
resource S0, but rather on capital, and any price effect can be eliminated.

Let κi be the share of capital of country i in total (global) capital as follows

κi =
Ki

K
=

K̂i

K̂
(42)

Since Ki and K growth at the same rate in the long run, the share of capital of country i in the
long run is given by

κi = κ∗i =
K̂∗
i

K̂∗ (43)

where at time zero κ0,i = K0,i/K0 are given to the world economy.
In Proposition 1 we showed that the ratio of consumption across countries equals

c1 (t)

c2 (t)
= µ =

q (t)S (t) +K1 (t)

K2 (t)
, (44)

where µ is a constant for all t. This also implies that

q (0)S0 +K0,1

K0,2
=

q̂∗Ŝ∗ + K̂∗
1

K̂∗
2

(45)

6Note that GDPw = rK + qR = rK + (1− α) rK/α = rK/α.
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where, as before, variables with the superscript ∗ denote steady-state values and ˆ denote normalized
variables. Equation (45) can be rewritten as

q (0)S0 +K0,1

K0,2
=

q̂∗Ŝ∗

κ∗2K̂∗ +
1− κ∗2
κ∗
2

. (46)

Using T ∗ = Ŝ∗/K̂∗ we obtain

q (0)S0 + (1− κ2 (0))K0

κ2 (0)K0
=

q̂∗

κ∗2
T ∗ +

1− κ∗2
κ∗2

. (47)

Solving for κ∗2 we obtain

κ∗2 =
κ2 (0)K0 (1 + q∗T ∗)

K0 + q (0)S0
. (48)

Since the share of GDP of country two in total GDP equals s2 (t) = αK2 (t) /K (t), in the long
run s2 equals

s∗2 = ακ∗2 = α
κ2 (0)K0 (1 + q∗T ∗)

K0 + q (0)S0
. (49)

Thus, if

s2 (0) = α
K0,2

K0
< s∗2 = α

κ2 (0)K0 (1 + q∗T ∗)
K0 + q (0)S0

, (50)

we have the result that the resource-less country is transitionally growing faster than the resource-
rich economy. This is a result that would seem consistent with the results of Sachs and Warner
(1995).

But, to what degree is s∗2 affected by the natural resource and how? Our problem relies on the
fact that in general it is not possible to solve for the price of the resource at time zero (q (0)). If
q (0) is a relation of S0, (perhaps) also of K0, lets presume that such solution for q (0) exists and
denote this solution as

Q0 (S0,K0) (51)

The effect of S0 on s∗2 is given by

∂s∗2
∂S0

= −ακ2 (0)K (0) (1 + q∗T ∗)
(K (0) + q (0)S0)

2 q (0)

µ
1 +

∂Q0
∂S0

S0
q (0)

¶
. (52)
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Proposition 5. If s2 (t) is a monotonous function of time and if 1+ (∂Q0/∂S0) (S0/q (0)) > 0,
then the nonrenewable resource enhances the GDP growth of the resource-rich economy.

Proof. Inspection of (52) shows that if 1 + (∂Q0/∂S0) (S0/q (0)) > 0 holds the effect of S0 on
s∗2 is negative. Since

s∗1 = 1− s∗2 (53)

the effect of S0 on s∗1 is positive.

Remark: We have thus established conditions whereby either empirical results of Sachs and
Warner (1995) or the contrary results of Stijns (2001) are obtainable.

However, we cannot claim that 1 + (∂Q0/∂S0) (S0/q (0)) > 0 since we expect ∂Q0/∂S0 < 0.
That is, as the stock of the resource increases we expect the price q (0) to decline. While in general
we are not able to prove that (∂Q0/∂S0) (S0/q (0)) > −1, our numerical solutions, for a very large
range of parameter values, confirm this inequality. Moreover, an analytical solution indicates that
(∂Q0/∂S0) (S0/q (0)) = −α.

We next proceed to an analytical solution for the special case where α = θ.

4. Analytical solution

So far integration techniques have provided a general analytical solution. We now proceed with
an analytical solution for the case where the parameter values are restricted to α = θ. The first
step is to determine what the solution for this case reveals about evolution of the two economies.

Proposition 6. If α = θ the price of the nonrenewable resource and aggregate consumption
(C ≡ c1 + c2) at time zero equal

q (0) =
(1− α)αα

(ρ− (1− α) η)α

µ
K0

S0

¶α

C (0) = K0

µ
δ
1− α

α
+

ρ

α

¶
, (54)

and the rate of extraction and aggregate capital (K ≡ K1 +K2) for all t equal

R (t) =
ρ− (1− α) η

α
S0e

(1−α)η−ρ
α

t K (t) = K0

µ
q (t)

q (0)

¶ 1
α

e−
ρ
θ
t. (55)

Proof. See appendix B.

Remark: Notice that

dQ0
dS0

S0
q (0)

= −α. (56)
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Proposition 5 implies that with a sufficiently large initial endowment of the nonrenewable resource,
the resource-rich economy can experience larger GDP growth rates than the resource-less economy.
This result contradicts previous results (e.g. Rodríguez and Sachs (1999)). This contradiction comes
from the fact that previous analysis have considered isolated countries (small open economies), and
thus they do not take into account the inter-country linkages and the effects of these linkages on
the world’s transition dynamics. In particular, the effects of the terms of trade (the evolution of the
price of the nonrenewable resource) on the resource-rich economy, has previously been neglected.

From (54) we observe that aggregate consumption at time zero (C (0)) depends on the aggregate
level of capital K0. Moreover, consumption at time zero is not influenced by the initial level of
the nonrenewable resource. In Appendix B, we show that the transversality condition holds if
ρ− (1− α) η > 0, which also guarantees q (0) > 0. Finally, the restriction α = θ also implies that
the rate of depletion of R declines at the negative constant rate of ((1− α) η − ρ) /α.

Proposition 7. If α = θ, the constant µ (≡ c1 (t) /c2 (t)) equals

µ =

(1−α)αα
(ρ−(1−α)η)α (K0,1 +K0,2)

α S1−α0 +K0,1

K0,2
. (57)

Proof. Substituting q (0) into (q (0)S0 +K0,1) /K0,2 we yield the result.
Remark. From simple calculations one can obtain the effect of K0,2 on µ. The effect of

country two’s initial capital endowment on µ is negative. Thus, the capital stock of country two
negatively influences the consumption of the resource rich country relative to the resource less
economy. Furthermore, the ratio c1/c2 is positively influenced by the stock of the resource at time
zero. The effect of S0 in µ equals

∂µ

∂S0
=
(1− α) (1− α)αα

(ρ− (1− α) η)α
1

K0,2

µ
K0,1 +K0,2

S0

¶α

. (58)

However, this effect is important to the extent by which the share of the resource is large. In
particular, if (1− α) is small, country one consumer’s benefit from owning the resource is relatively
small. Our conclusion comes from observing that (1− α) is the exponent of the stock of resource¡
S1−α0

¢
. Thus, a relatively small (1− α) severely reduces the effect of the resource.

Interestingly, the consumption of country one (the resource-rich economy) relative to the con-
sumption of country two (the resource-less economy) increases with the size of the growth rate of
the resource saving technological change η.

5. Simulations

At this point our main concern is that the analytical solution’s result indicating that larger
amounts of the resource positively affect the growth rate of the resource rich economy (presented
in section 4) may only be coincidental. To verify if this is the case we simulate the model under
parameter values that are more consistent with other features of the data. First, we want to verify
if indeed the ratio c1/c2 is constant over time.



16

Later we find initial endowments of the nonrenewable resource stock and capital that are consis-
tent with c1/c2 = (q (0)S0 +K0,1) /K0,2 as the model indicates. To this end we use the consumption
levels in purchasing power parity obtained from the World Bank’s (WB) World Development Indi-
cators (WB, 2004) of all countries for which data is available for the period 1980-2000. To obtain
consumption levels in purchasing power parity (PPP) we have computed the share of consumption
in total GDP for each country in the sample, and multiplied this share by GDP in purchasing
power parity. When it was impossible to obtain the share of consumption on GDP from the WB
(2004) we have obtained consumption share data from the International Monetary Fund Interna-
tional Financial Statistics Yearbook (2002). Combining both sources of data allows us to include
most of the non-oil-exporting and oil-exporting countries, including Saudi Arabia, Kuwait and Iran.
To follow the model’s setting as much as we can, we have divided the world into two regions, a
nonrenewable-resource-rich region (countries whose oil exports are more than 25 percent of total
merchandise exports) and a resource-less region otherwise. Our sample includes 71 resource-less
and 197 resource-rich countries. We have added the consumption level in purchasing power parity
of the countries of each region and have divided this number by its respective population, and
obtained what we call per-capita consumption of a resource-rich (c1) economy and resource-less
(c2) economy. Figure 1 shows the ratio µ = c1/c2 from 1980-2000:

Figure 1. c1/c2 ratio
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The larger ratio c1/c2 observed at the beginning of the 80’s likely relates to the oil crises
experienced during that period. Interestingly, the ratio of the per-capita consumption levels remains
within the 56-68 percent interval. In particular, during the 1990’s this ratio only fluctuated between
the 56-61 percent interval. For illustrative purposes, Figure 2 shows the growth experience of the
two regions. The oil-rich countries on average grew slower during the 1980-2000 period (the yearly
average of the oil-rich economies was 1.1 percent versus 2 percent for the oil-less economies). Since
our objective is to verify if, in the absence of any distortion, owning larger amounts of the resource
is sufficient to generate smaller or negative growth rates, as Rodriguez and Sachs indicate, Table 2
does not speak against or in favor of any argument.

7Since counties with large mining activities represents another set of nonrenewable-resource-rich countries, we
have excluded Bolivia, Chile, Jordan and South Africa due to their large mining activity. Their inclusion, however,
does not affect the results.
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Figure 2. Per-capita GDP in PPP growth rates
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The following parameter values are assumed for the simulations: α = 0.82, θ = 2.5 (a relatively
large number, but we want to depart from the value of α) δ = 0.04, ρ = 0.03 and η = 0.1 (the
value η = 0.1 generates a long run growth of 2.8 percent (gK = (η − ρ) /θ)). We then choose
values for S0 (= 1) 8, K0,1 (= 10), and K0,2 (= 90) that generate a ratio of c1/c2 = 0.629. The
simulations consist of increasing the endowment of the nonrenewable resource to assess whether
larger endowments generate lower growth rates for the resource-rich region than the growth rates
of the resource-less region. In Figure 3 we have plotted the GDP growth (percent) difference

between the resource rich and the resource less country
µ ·
GDP 1/GDP1 −

·
GDP 2/GDP2

¶
∗ 100

for three different levels of the stock of the nonrenewable resource (1, 2 and 10). From Figure 3
we observe that increasing the endowment of the nonrenewable resource increases the difference
between the growth rates, indicating that as the initial stock of the resource increases the more the
resource-rich economy grows. We have performed many other simulations, using a large range of
parameter values, that are not reported here, but in all the cases larger endowments of the resource
do not negatively affect the GDP growth rate of the resource-rich country as our analytical solution
indicates.

8An initial resource stock equal to one (S0 = 1) implies a value of the resource stock (q (0)S0) equal to 45.88.
9The value of 0.62 corresponds to the average between the smallest and the largest value of the ratio c1/c2 observed

during 1980-200.
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Figure 3
µ ·
GDP 1/GDP1 −

·
GDP 2/GDP2

¶
∗ 100
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In Table 1 we also report how the price of the nonrenewable resource at time zero and the value
of µ change as a result of a change in the resource endowment S0.

Table 1 Effect of S0 on q (0) and µ = c1/c2

S=1 S=2 S=10
q(0) 45.8833 23.3479 4.8472

µµµµ 0.6200 0.6300 0.6497

Table 1 shows that, for an initial stock of the resource equal to one, the price of the resource
equals 45.88. If we double the stock of the resource to S0 = 2 the price of the resource declines and
equals 23.35. Note, however, that this decline is less than proportional to the increase of the stock
of the resource, indicating that the elasticity of the price of the resource is negative and greater
than minus one. This result is thus consistent with Proposition 5, which states that if the elasticity
of the price of the resource at time zero with regard to the stock of the resource is greater than
minus one, the stock of the resource will positively influence the relative income growth rate of the
resource-rich economy. In Table 1 we have also included the value of µ = c1/c2 for the different
levels of the initial stock of the resource considered. Our simulations show that the effect of the
increase of the resource on relative welfare (c1/c2) is small but positive. Interestingly, increases on
the stock of the resource (even by ten times) as indicated in Table 1 affect the ratio µ only by small
amount (from 0.62 to 0.65). This reflects the fact that larger endowments of the nonrenewable
negatively affect the price of the resource and thus its overall effect on µ = (q (0)S0 +K0,1) /K0,2

is highly counterbalanced.

6. Conclusions

This paper examines the impact of nonrenewable resources on economic growth and relative
welfare in a two country world economy. We introduce a nonrenewable-resource-rich economy and
a nonrenewable-resource-less country in an otherwise standard neoclassical growth model. As in
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other models of trade, factor price equalization across countries is shown to result. In particular,
the rental rate of capital across countries is equal even in the absence of international borrowing and
lending. This result implies that the growth rates of consumption across countries are equal and
therefore, the ratio of consumption levels is constant. We show that the ratio of the consumption
of the resource-rich country to the consumption of the resource-less economy equals the ratio of
the value of assets at any point in time. While the resource-rich country wealth increases with the
initial stock of the resource, this effect is counterbalanced, to some degree, by the negative effect
of the initial stock of the resource on the price of the nonrenewable.

We show that the initial endowment of the nonrenewable resource has a positive effect on the
GDP growth rate of the resource-rich country as long as the elasticity of the initial price of the
resource with regard to the initial stock of the resource is greater than minus one. An analytical
solution of the model under a parameter restriction indicates that indeed this elasticity is greater
than minus one. Numerical simulations under a large rage of parameter values provide the same
conclusion about the elasticity of the initial price of the resource with regard to the initial stock of
the resource. Thus, we find the result of Rodríguez and Sachs (1999), indicating that the initial stock
of the resource influences negatively the GDP growth of an economy that exports a nonrenewable
resource, does not to hold in general. This contradiction comes from the fact that Rodríguez and
Sachs (1999) consider an isolated country, and thus fail to account for any iteration between the
economy they analyze and the rest of the world transitional dynamics. In particular, they failed to
account for the dynamic price effect of the nonrenewable resource on the oil-exporting economy.

While data indicates that GDP growth of resource-rich economies has underperformed that of
resource-poor economies, the model presented here indicates that owning a nonrenewable is not
sufficient to generate relatively lower GDP growth. We believe that the point of view of Warner
and Sachs (1995 and 2001) in the lines of Dutch-Disease arguments or “crowding-out stories” such
as rent seeking or over compensation of workers in the oil industry can offer an explanation. On
the other hand the explanation presented by Rodríguez and Sachs (1999) that the resource alone
can generate lower GDP growth rates does not seem to provide the answer once interactions across
countries are introduced.
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Appendix A

Proof of Proposition 1.
Using (24) , and r − δ = q̇/q the budget constraint of country two can be rewritten as

K̇2 (t)

q (t)
− q̇ (t)

q (t)

K2 (t)

q (t)
= −

µ
q (t)

q (0)

¶ 1
θ c2 (0)

e
ρ
θ
t

1

q (t)
. (59)



21

Note that the left hand side of expression (59) equals the derivative of K2/q with respect to time
(d (K2/q) /dt) , integrating (59) we obtain

lim
t→∞

K2 (t)

q (t)
− K2 (τ)

q (τ)
= − c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt. (60)

Employing the transversality condition (25) implies

K2 (τ) = q (τ)
c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt. (61)

Since the ratio c1/c2 is constant for all t, let c1 (t) = µc2 (t) where µ is a constant. (6) and (26)
imply

R =
r

q

1− α

α
(K1 +K2) . (62)

The budget constraint of the consumer of country one can be rewritten as

K̇1 − (r − δ)K1 + µc2 = q
r

q

1− α

α
(K1 +K2) . (63)

Using q̇/q = r−δ, Ṡ = −R, setting c2 (t) = (q (t) /q (0))
1
θ c2 (0) e

−(ρ/θ)t, dividing by q and integrating
we get:

Z ∞

τ

Ã
K̇1 (t)

q (t)
− q̇ (t)

q (t)

K1 (t)

q (t)
+

µ

q (t)

µ
q (t)

q (0)

¶ 1
θ c2 (0)

e
ρ
θ
t

!
dt =

Z ∞

τ
R (t)dt (64)

= S (τ)− lim
t→∞S (t) .

Since depletion is costless lim
t→∞S (t) = 0. Therefore, (64) can be written as

Z ∞

τ

dK1
q

dt
dt+ µ

c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt = S (τ) (65)

or

lim
t→∞

K1 (t)

q (t)
− K1 (τ)

q (τ)
+ µ

c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt = S (τ) . (66)
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Using the transversality condition (equation 25) and rearranging we obtain

µq (τ)
c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt = q (τ)S (τ) +K1 (τ) . (67)

From (61) we yield

q (τ)
c2 (0)

q (0)
1
θ

Z ∞

τ

q (t)
1−θ
θ

e
ρ
θ
t

dt = K2 (τ) , (68)

and therefore,

µ =
q (τ)S (τ) +K1 (τ)

K2 (τ)
. (69)

Proof of Proposition 2
First note from (5) , (12) and (13) that the long-run growth rate of q and the long-run value of

r equal

lim
t→∞

q̇

q
= η = gq, lim

t→∞r = η + δ ≡ r∗ (70)

hence, r is constant in the long run. Thus, the per country growth rate of consumption is constant
in the long run and given by

lim
t→∞

ċi
ci
= lim

t→∞
r − δ − ρ

θ
=

η − ρ

θ
= gci . (71)

The first order conditions of the final good sectors in each country (equation (6)) and the market
clearing condition for R (equation (26)) imply

R =
1− α

α

r

q
(K1 +K2) ⇒ α

1− α
q
R

K
= r (72)

where K = K1 +K2. Since r is constant in the long run, (72) indicates that in the long run the
growth rate of K and R must satisfy the following relation

lim
t→∞

q̇

q
+ lim

t→∞
Ṙ

R
− lim

t→∞
K̇

K
= 0 ⇒ lim

t→∞
K̇

K
− lim

t→∞
Ṙ

R
= η. (73)
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Next notice that Ṡ = −R, thus the growth rate of S equals the ratio Ṡ/S = −R/S. Since extraction
is costless, as time goes to infinity both R10 and S approach zero. Using L’Hôpital’s rule we have
that

lim
t→∞

Ṡ

S
= lim

t→∞−
R

S
= lim

t→∞−
Ṙ

Ṡ
= lim

t→∞
Ṙ

R
. (74)

Implying that as t→∞ both R and S grow at the same rate, (this result was previously derived by
Partha Dasgupta and Geoffrey Heal, 1974). What remains to be shown is that gci = gKi . Observe
that (72) implies that qR/K is constant in the long run, since in the long run S and R grow at the
same rate, then, it is also the case that χ ≡ qS/K is constant in the long run. Taking the log time
derivative of χ, using Ṡ = −R, and qR = (1− α)Kr/α we obtain

χ̇

χ
= q̇

S

K

1

χ
+

qṠ

K

1

χ
− qS

K

K̇

K

1

χ
. (75)

Taking the limit we obtain

lim
t→∞

χ̇

χ
= 0 = η − lim

t→∞
1− α

α

r

χ
− lim

t→∞

µ
r − δ + r

1− α

α
− C

K

¶
(76)

where C = c1 + c2. Since both c1 and c2 grow at the same rate, then C also grows at the same
rate as ci. Note that since χ is constant in the long run (χ̇/χ = 0) , thus, for (76) to hold it must
be that C/K is constant in the long run and therefore, C and K must asymptotically grow at the
same rate. Therefore, gci = gK . Employing (73) we obtain

lim
t→∞

Ṙ

R
=

η (1− θ)− ρ

θ
= gR. (77)

For the transversality condition (10) to hold it must also be the case that gR = gS < 0. Finally,
since K = K1 +K2 then it is straightforward to show that

gKi = gK . (78)

Proof of Proposition 3. The Jacobian matrix of (35) evaluated at the steady state equals

J∗ =


−1−αα r∗ 0 0

f gq 0 − g∗

(T∗)2
r∗
q∗
1−α
α

f Tq (1 + µ) (T ∗)2 (1 + µ) g∗T ∗ − gS

 , (79)

10For the tranversality condition (10) to hold it must be that lim
t→∞

R = 0.
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where f gq denotes the partial derivative of f g with respect to q evaluated at the steady state, and
similarly for f Tq . The eigenvalues of J

∗ are the values of ξ that solve the characteristic equation

µ
−1− α

α
r∗ − ξ

¶µ
−ξ ((1 + µ) g∗T ∗ − gS − ξ) +

r∗

q∗
1− α

α
(1 + µ) g∗

¶
= 0. (80)

One of the solution to (80) is given by

ξ1 = −
1− α

α
r∗ < 0. (81)

The other two are values of ξ that solve the quadratic equation in ξ given by

ξ2 − ξ ((1 + µ) g∗T ∗ − gS) +
r∗

q∗
1− α

α
(1 + µ) g∗ = 0 (82)

or

ξ2 + bξ + d = 0 (83)

where

b = − ((1 + µ) g∗T ∗ − gS) , d =
r∗

q∗
1− α

α
(1 + µ) g∗. (84)

Using g∗ from (36) we obtain

η + δ (1− α)

α
− gK = (1 + µ)T ∗g∗. (85)

Substituting T ∗ from (37) into (85) we get

r∗

q̂∗
1− α

α
(1 + µ) g∗ = (η − gK)

µ
η + δ (1− α)

α
− gK

¶
. (86)

Substituting (85) into (86) yields

r∗

q̂∗
1− α

α
(1 + µ) g∗ = (η − gK) (1 + µ)T ∗g∗ ⇒ r∗

q̂∗
1− α

α
= (η − gK)T

∗. (87)

From (28) it is the case that (η − gK) = −gS . Using (87) note that d can be rewritten as

d = −gS (1 + µ) g∗T ∗. (88)
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Thus the other two eigenvalues of J∗ equal

ξ2,3 =
−b±√D

2
(89)

where D = ((1 + µ) g∗T ∗ − gS)
2 + 4gS (1 + µ) g∗T ∗. Further manipulation of D yields

D = (1 + µ)2 (g∗T ∗)2 + 2gS (1 + µ) g∗T ∗ + g2S = ((1 + µ) g∗T ∗ + gS)
2 , (90)

substituting into (89)

ξ2,3 =
−b± ((1 + µ) g∗T ∗ + gS)

2
(91)

the remaining eigenvalues of J∗ equal

ξ2 = −gS ξ3 = (1 + µ) g∗T ∗ (92)

which are positive.

Appendix B
Proof of Proposition 6. Here we show that

q (0) =
(1− α)αα

(ρ− (1− α) η)α

µ
K0

S0

¶α

(93)

when α = θ. Since R = (1− α) r (K1 +K2) q
−1/α. To determine R we need to find a solution for

aggregate capital K = K1 +K2. Since K̇ = K̇1 + K̇2 using both budget constraints and denoting
C = c1 + c2, K̇ equals

K̇ = (r − δ)K +
1− α

α
rK −C, (94)

which is a first order differential equation with a variable coefficient. Using q̇/q = r− δ, its general
solution is given by

K (t) = K0e
R t
0

³
r(ε)
α
−δ
´
dε −

Z t

0
C (τ) e

R t
τ

³
r(ε)
α
−δ
´
dε
dτ (95)

= K0

µ
q (t)

q (0)

¶ 1
α

eδ(
1−α
α )t −

Z t

0
C (τ)

µ
q (t)

q (τ)

¶ 1
α

eδ(
1−α
α )(t−τ)dτ. (96)

Using α = θ and C (t) = (q (t) /q (0))1/θ C(0)

e(ρ/θ) t
from (24) we get
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K (t) = K0

µ
q (t)

q (0)

¶ 1
α

eδ(
1−α
α )t − C (0)

q (0)
1
θ

Z t

0
q (t)

1
α
q (τ)

1
θ

q (τ)
1
α

eδ(
1−α
α )(t−τ)

e
ρ
θ
τ

dτ

= K0

µ
q (t)

q (0)

¶ 1
α

eδ(
1−α
α )t +

C (0)

q (0)
1
θ

q (t)
1
α

³
e−

ρ
θ
t − eδ(

1−α
α )t

´
δ
¡
1−α
α

¢
+ ρ

θ

. (97)

Using r =
³
αα (1− α)1−α e(1−α)ηtq−(1−α)

´1/α
from (5), we obtain that the ratio r/q equals

r

q
=

α (1− α)
1−α
α e(

1−α
α )ηt

q
1
α

. (98)

Using R = (1− α) rKq−1/α = (1− α)1/α e((1−α)/α)ηtKq−1/α,
R∞
0 Rdt = S0 and (97) we obtain

Z ∞

0
R (t) dt = (1− α)

1
α

Z ∞

0

 K0

q (0)
1
α

e
1−α
α
(η+δ)t +

C (0)

q (0)
1
θ

³
e(

1−α
α

η− ρ
θ )t − e

1−α
α
(η+δ)t

´
1−α
α δ + ρ

θ

 dt (99)

=
(1− α)

1
α

q (0)
1
α

lim
t→∞

α
³
e
1−α
α
(η+δ)t − 1

´
(η + δ) (1− α)

Ã
K0 − C (0)

1−α
α δ + ρ

θ

!
+

C (0)
³
e(

1−α
α

η− ρ
θ )t − 1

´
¡
1−α
α η − ρ

θ

¢ ¡
1−α
α δ + ρ

θ

¢
 .

For (99) to converge to the constant S0 it must be that

C (0) = K0

µ
δ
1− α

α
+

ρ

θ

¶
. (100)

For the transversality condition to hold
¡
((1− α) /α) η − ρ

θ

¢
< 0 must be satisfied, this implies that

(99) converges. Solving for q (0) we get,

q (0) =
(1− α)αα

(ρ− (1− α) η)α

µ
K0

S0

¶α

(101)

also
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K (t) = K0

µ
q (t)

q (0)

¶ 1
α

eδ(
1−α
α )t − C (0)

q (0)
1
θ

Z t

0
q (t)

1
α
q (τ)

1
θ

q (τ)
1
α

eδ(
1−α
α )(t−τ)

e
ρ
θ
τ

dτ

= K0

µ
q (t)

q (0)

¶ 1
α

e−
ρ
θ
t = q (t)

1
α
(ρ− (1− α) η)

e
ρ
θ
t (1− α)

1
α α

S0. (102)

Substituting (102) into R = ((1− α) /α) rKq−1 and the solution for q (0) we get

R =
1− α

α

r

q
K =

ρ− (1− α) η

α
S0e

(1−α)η−ρ
α

t. (103)


