THE ECONOMICS OF GRAIN PRODUCER CARTELS

by

James Gleckler & Luther Tweeten*

Working Paper # 94-1

The International Agricultural Trade Research Consortium is an informal association of University and Government economists interested in agricultural trade. Its purpose is to foster interaction, improve research capacity and to focus on relevant trade policy issues. It is financed by United States Department of Agriculture (ERS, FAS, and CSRS), Agriculture Canada and the participating institutions.

The IATRC Working Paper series provides members an opportunity to circulate their work at the advanced draft stage through limited distribution within the research and analysis community. The IATRC takes no political positions or responsibility for the accuracy of the data or validity of the conclusions presented by working paper authors. Further, policy recommendations and opinions expressed by the authors do not necessarily reflect those of the IATRC or its funding agencies.

This paper should not be quoted without the author(s) permission.

*Anderson Professor of Agricultural Marketing, Policy, and Trade, Department of Agricultural Economics and Rural Sociology, The Ohio State University, Columbus; and member of Agricultural Economics Faculty, Northeastern Oklahoma A&M College Miami. Paper presented to International Agricultural Trade Research Consortium annual meeting in San Diego, CA, Dec. 14, 1993.

Correspondence or requests for additional copies of this paper should be addressed to:

Dr. Luther Tweeten Department of Agricultural Economics & Rural Sociology Ohio State University 2120 Fyffe Rd Columbus, OH 43210-1099

January 1994

The Economics of Grain Producer Cartels

by James Gleckler and Luther Tweeten

Executive Summary

The objective of this study is to measure economic payoffs from a grain cartel. Two basic approaches to extract economic rents are considered: (i) Mandatory supply controls to restrict production and raise grain price, and (2) export price discrimination using export taxes or subsidies.

The economic impacts of different producer cartel scenarios were estimated using a long-term, nine-region world trade simulation model incorporating the assumptions of neoclassical trade theory. The SWOPSIM program was used to write the model equations. Economic Research Service trade data for 1989 were used to initialize the model. Results reflect long-run changes from 1989 conditions and are at 1989 general price levels.

The model simultaneously estimated outcomes in markets for nine commodities: beef, pork, poultry meat, wheat, corn, coarse grains (other than corn), oilseeds (soybeans, rapeseed, and sunflower seed), oilmeal, and sugar. Cross-effects among commodities and input-output relationships between field crop and livestock production are accounted for by substitution and complementary coefficients in behavioral equations. Countries and groups of countries included in the model are Australia, Canada, the European Community (EC), European Free Trade Association (EFTA), the United States (US), Japan, and the rest of the world (ROW).

The simulation results report the consequences of restricting only US grain production (wheat, corn, and other coarse grains) from 5 to 20% below the 1989 production level. Grain supply restrictions were presumed to be mandatory, hence taxpayers incurred no additional outlays over those in 1989. World price increases were modest for wheat, but greater for corn and other coarse grains in part because of differences in market share among grains. US consumers of grain and grain products buy less at higher prices and are worse off, as is the country as a whole. Consumer surplus falls nearly \$2 billion when grain supply is reduced 20%.

Higher grain prices and lower costs more than compensate producers for less output, despite lower receipts attending an elastic demand. According to simulation results, cartel-like action restricting US supplies by 15% would most benefit American grain producers.

Consumers in the US and the world lose more than producers gain from cartel action restricting production and lowering US exports of grain. Other competing exporters enjoy net benefits from higher world prices. However, because the rest of the world is a net consumer, net economic welfare of other countries is reduced. Also, overall world income is reduced by a cartel.

As additional global production comes under the control of the cartel, more producer surplus can be extracted from consumers. Results were simulated for grain producers in four developed countries or regions (Australia, Canada, EC, and US) forming a cartel and simultaneously restricting production from 5 to 20%. As expected, world prices rise more with the comprehensive grain cartel than with the US acting alone. The more comprehensive international cartel helps producers extract greater rents from consumers.

It is notable that none of the supply restriction schemes would benefit the US as a nation. Rest-of-the-world and total world welfare losses mount when supply restrictions are tightened from 5 to 20% of market output. When the US alone tightly restricts grain production, it loses more than ROW. When the US, Canada, Australia, and the EC jointly restrict production, ROW incurs greater welfare losses than the US.

Turning next to support subsidies without supply controls, we estimated that net benefits to producers are greatest with export subsidies, expanding exports by 30% and with an attendant increase in domestic prices. The cartel can subsidize exports with collections from producers, leaving its members with some net gain. Results are even more favorable for producers if taxpayers pay the export subsidy as under the current Export Enhancement Program (EEP). However, because national welfare is reduced, a government truly representative of the nation's economic welfare would not rationally choose to subsidize exports.

Overall US welfare is modestly increased when domestic price is lowered with an export tariff and exports decline. In contrast, the rest of the world as a net importer benefits from plans increasing US exports and lowering the world price of grains. But, any form of market distortion lowers overall global welfare.

Total numbers are smaller but patterns are similar when only US corn producers attempt the optimal subsidy or tariff strategy. A US corn-only producer cartel would choose an export subsidy because the producers' benefits are positive even if they pay the export subsidy.

Outcomes were simulated in which percentage increases in US exports were matched by equal percentage increases in exports of other major competitors (Canada, the European Community, and Australia). Retaliation causes the average cost of subsidizing US exports to nearly double to achieve any given percentage increase in exports. Retaliation by competing exporters removes much of the attractiveness of US export subsidies. If producers pay for export subsidies, their net gains are sharply eroded with retaliation. Welfare losses to the US as a nation and to the world enlarge with retaliation to subsidies. Thus the US and the world have a stake in successful multilateral negotiation reducing subsidies and attendant retaliation.

It is conceivable that an effort by producers to form a cartel would so alienate the public that Congress would terminate current commodity programs, including export assistance on grain. Net benefits to producers from cartel activity never approached the \$7 billion in rents they collect from current programs. It seems unlikely that a producer group would risk gains of this size for the prospect of cartel rents a sixth the size or less from international markets.

Gains to US producers are less for a wheat cartel than for either the feed grain cartel or for the wheat-feed grain cartel included herein. The unfavorable outcomes originate from the export demand for US wheat made highly elastic by opportunities to substitute feed grain for wheat in production and consumption especially in the long run. That is, a high wheat price and controlled production of wheat encourages importers to produce wheat, cut back feed grain production, and import low-cost feed grains.

The Economics of Grain Producer Cartels

by

James Gleckler and Luther Tweeten*

The nation and agriculture producers continue to search for means to capture more of the potential gains from trade. Various farm group periodically call for some form of grain cartel featuring supply control, subsidies, or tariffs to gain from trade.

The objective of this study is to measure economic payoffs from a grain cartel. This study differs from previous studies by including more recent data from a larger number of countries and commodities in an international trade model using long-term behavioral coefficients.

By emphasizing impacts on consumers and the public at large as well as producers, this study presents a more comprehensive but less attractive outcome of a cartel compared to many previous studies. Market distortions reducing economic welfare of consumers and the public at large diminish the attractiveness of a cartel, even with the assumptions made here of a perfectly organized cartel operated by perfectly disciplined members at no cost for administration (see Donsimoni *et al.*; Osborne).

Background

Under a 1933 wheat agreement, the United States, Australia, Canada, and Argentina attempted a cartel arrangement that committed member countries to cut acreage 15% to boost wheat prices (see Tweeten 1989, p. 325). Only Australia honored the agreement. After Argentina exceeded its export quota, the agreement collapsed in 1934.

Subsequent international wheat agreements made modest attempts to stabilize prices but a more serious effort was mounted with the International Grains Arrangement (IGA) -- a product of the Kennedy Round of multilateral trade negotiations (Tweeten 1992, p. 214). Wheat exporting countries agreed not to sell below a world price of \$1.73 per bushel of wheat, Gulf port basis. The arrangement seemed feasible when it was negotiated during the 1966 wheat shortage. Only the United States attempted to honor the agreement in the subsequent excess supply situation. It held wheat off the export market for six months. Other countries in the IGA continued to sell and the arrangement collapsed in 1967. Since that year, no serious attempt has been made to revive its supply management and price features. However, the National Farmers Union, the National Farmers Organization, and American Agriculture Movement continue to press for supply controls to raise grain prices in domestic and international markets (see Ray and Plaxico).

Scope and Framework

Two basic approaches to extract economic rents are considered: (i) Mandatory supply controls to restrict production and raise grain price, and (2) export price discrimination using export taxes or subsidies.

Figure 1 shows a world market where a producer cartel of all exporting countries controls the world supply ES. To maximize economic rent with one price, the cartel facing domestic plus foreign demand (ED) restricts supplies to Q, where supply (ES) equals marginal revenue (MR). The world price

^{*}Anderson Professor of Agricultural Marketing, Policy, and Trade, Department of Agricultural Economics and Rural Sociology, The Ohio State University, Columbus; and member of Agricultural Economics Faculty, Northeastern Oklahoma A&M College, Miami. Paper presented to International Agricultural Trade Research Consortium annual meeting in San Diego, CA, Dec. 14, 1993.

 P_w is the same in domestic and export markets. This option could be operationalized with mandatory supply control as used for American wheat prior to 1964.

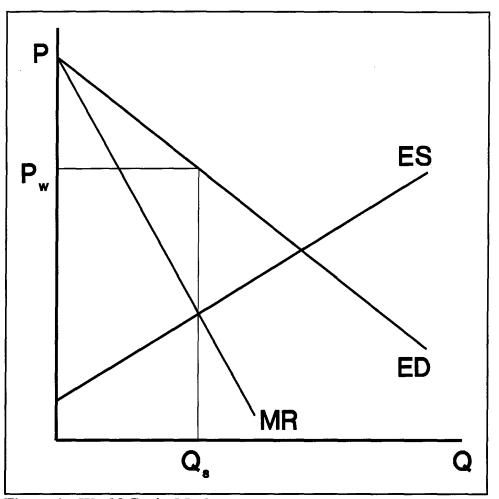


Figure 1. World Grain Market.

The larger the proportion of world production and exports controlled, the more inelastic the export demand and hence the greater the opportunity for collecting economic rent. As shown in Table 1, the US does not control a majority of production in any of the major grains, although over 40% of world corn was produced in the US in 1989. Even US grain producers teamed with export competitors Australia, Canada, and the EC would not supply a majority of grains globally.

An alternative not requiring supply control would be for producers to collect rents from an optimal tariff or subsidy with price discrimination among markets. Producers facing an inelastic export demand and free market equilibrium price P_w^0 in Figure 2 could impose tariff $P'_w P_d$. Tariff revenue c+e collected on the difference between the new world price P'_w and the domestic price P_d would need to offset producer losses (a+b+c+d). This would require the value in area e to exceed the value in area a+b+d. If the demand were so elastic that area e does not exist, a producer cartel would not use a tariff to extract economic rent. A government cartel could collect rent c+e which would be a positive value c collected from producers even if demand were so elastic that e is zero.

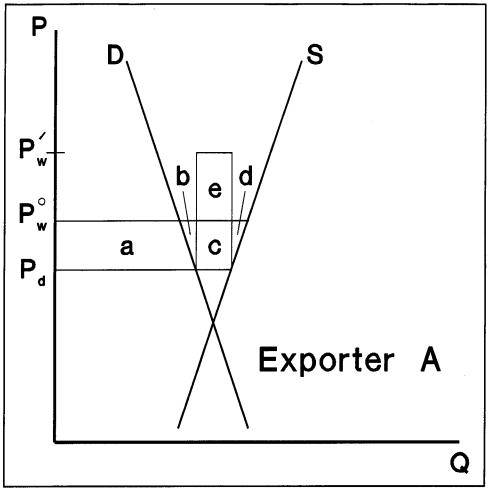


Figure 2. Collect Tariff with Lowered Domestic Price.

	Wheat	Corn	Coarse Grain
US	10.4	41.2	8.9
Canada	4.5	1.2	5.0
Australia	2.3	0.1	1.8
EC	14.9	5.4	16.1
All 4 Regions	32.2	47.9	31.9

Table 1.	Percent of	of	World	Grain	Production,	1989.
----------	------------	----	-------	-------	-------------	-------

If export demand is elastic, producers might utilize an export subsidy rather than a tariff to extract a cartel rent. Beginning with world equilibrium price P_w^o in Figure 3, producers could provide an export subsidy P_d -P'_w per unit or b+c+d+e+f in total. If the world price decline (P_w^o to P'_w) were small enough, this subsidy might be less than producers' gain of a+b+c so that the net gain to producers a-d-e-f would be positive.

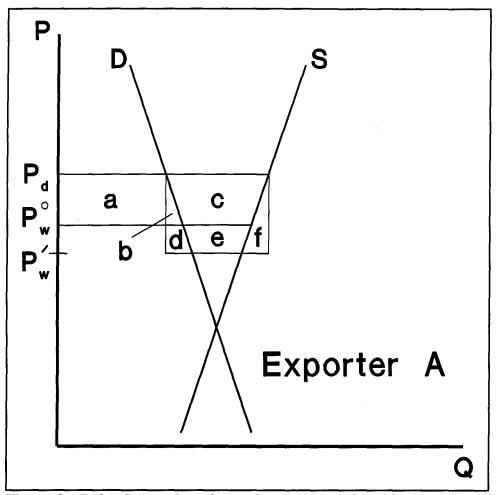


Figure 3. Raise Domestic Price and Pay Export Subsidy.

Long-term behavioral coefficients can be used to make some preliminary estimates of cartel arrangements. The optimal cartel strategy depends heavily on export demand elasticities which in turn depend on domestic supply and demand elasticities and on world price transmission elasticities. The more inelastic the export demand, the more success a cartel is likely to have in restricting output to raise income.

With export demand elasticities for any one country depending on domestic supply and demand elasticities and price transmission elasticities in all other countries, the US export demand elasticity E_x for quantity X of a commodity can be calculated using the equation:

$$E_{x} = \sum_{i=1}^{n} \left[E_{di} E_{pdi} (Q_{di}/X) - E_{si} E_{ps_{i}} (Q_{si}/X) \right]$$
(1)

where E_{di} and E_{si} are price elasticities of domestic demand and supply respectively in foreign country i, Q_{di} and Q_{si} are demand and supply quantities respectively, and E_{pdi} and E_{psi} are price transmission elasticities for demand and supply price respectively (Tweeten 1992, p. 33; Dixit and Gardiner). The long-term domestic demand and supply elasticities were derived from estimates by Tyers and Anderson and the IIASA model (see Seeley). Price transmission elasticities are from Sullivan (Table 2).

Table 3 reports the calculated US export demand elasticities for grains implicit in the trade model employed in subsequent analysis. Results indicate that US producers face an elastic export demand in the long run. The high (absolute value) elasticities indicate that the ability of a US producer cartel to extract rents from the world markets by supply control or an export tariff is limited, at least in the long run. Of course, the overall impacts of alternatives are impossible to determine without a more comprehensive quantitative assessment in a model accommodating major world grain markets.

The economic impacts of different producer cartel scenarios were estimated using a nine-region world trade simulation model incorporating the assumptions of neoclassical trade theory (Roningen *et al.*, March 1991; September 1991.). The SWOPSIM program was used to write the model equations. The previously described long-term coefficients are used in the model's behavioral equations. Economic Research Service trade data for 1989 were used to initialize the model. Results reflect long-run changes from 1989 conditions and are at 1989 general price levels.

The model simultaneously estimates outcomes in markets for nine commodities: beef, pork, poultry meat, wheat, corn, coarse grains (other than corn), oilseeds (soybeans, rapeseed, and sunflower seed), oilmeal, and sugar. Cross-effects among commodities and input-output relationships between field crop and livestock production are accounted for by substitution and complementary coefficients in behavioral equations.

Countries and groups of countries included in the model are Australia, Canada, the European Community (EC), European Free Trade Association (EFTA), the United States (US), Japan, and the rest of the world (ROW).

Country	Average Transmission Elasticity
Australia	0.90
Canada	0.80
EC	0.25
Japan	0.70
EFTA	0.70
US	0.80
ROW	0.65

Table 2.	World Price	Transmission	Elasticities f	or Agricu	ltural (Commodities.
----------	-------------	--------------	----------------	-----------	----------	--------------

Source: See Sullivan

Table 3. US Export Demand Elasticities from Equation 1.

Commodity	Long Term	Medium Term
Wheat	-9.7	-5.9
Corn	-6.2	-3.3
Coarse Grain	-7.8	-4.8

Simulation Results

We first address implications of a cartel strategy of mandatory supply control before considering price discrimination strategies of export subsidies and tariffs. Outcomes are predicted for the US acting alone and for the US acting in concert with other major developed country exporters. Estimates are made for a cartel of all grain producers and for corn producers alone.

A perfectly cooperative USDA (e.g. taxpayers) is assumed, which allows all cartel measures to be superimposed on top of existing 1989 commodity support measures. Supply reductions in this study are in addition to the approximate 5% reduction (accounting for slippage) from the 10% set aside in 1989.

Grain farmers are assumed to behave according to the market price while being rewarded at the target price. The calculated producer welfare change in these simulations does not differentiate between producer and taxpayer gains and losses.

Supply Control. The simulation results reported in Table 4 are the consequences of restricting US grain production (wheat, corn, and other coarse grains) from 5% to a high of 20% below the 1989 production level. US commodity programs for non-grains were not changed from 1989 levels. Grain supply restrictions were presumed to be mandatory, hence taxpayers incurred no additional outlays over those in 1989. The Conservation Reserve Program was assumed to continue at its 1989 level. World price increases were modest for wheat, but greater for corn and other coarse grains in part because of differences in market share among grains. US consumers of grain and grain products buy less at higher prices and are worse off, as is the country as a whole. Consumer surplus falls nearly \$2 billion when grain supply is reduced 20%.

Higher grain prices and lower costs more than compensate producers for less output, despite lower receipts attending an elastic demand. According to simulation results, cartel-like action restricting US supplies by 15% would most benefit American grain producers. If acreage controls rather than marketing quotas were used to reduce supplies, much more than 15% of acres would need to be diverted due to program slippage.

Consumers in the US and the world lose more than producers gain from cartel action restricting production and lowering US exports of grain. Other competing exporters enjoy net benefits from higher world prices. However, because the rest of the world is a net consumer, net economic welfare of other countries is reduced. Also, overall world income is reduced by a cartel.

Results from a simulation restricting production for US corn alone are reported in Table 5. The impacts are very similar to those in Table 4 because corn is such a large component of US grain production. Welfare losses in the rest of the world (ROW) are greater when all US grain production is restricted (Table 4) than when only corn is restricted (Table 5).

Benefits to corn producers peak with supply restricted about 15% (Table 5). This outcome is similar to that for all grains shown in Table 4. Of the developed country competitors, only Australia exports corn and would benefit from the higher world prices apparent in Table 5.

As additional global production comes under the control of the cartel, more surplus can be extracted from consumers. Table 6 reports results of a simulation where grain producers in four developed countries or regions (Australia, Canada, EC, and US) form a cartel and simultaneously restrict production from 5 to 20%. Obviously, a given percentage cut in output is a much greater absolute reduction in tonnage in the more comprehensive cartel. As expected, world prices rise more with the comprehensive grain cartel (Table 6) than with the US acting alone (Table 4). The more comprehensive international cartel helps producers extract greater rents from consumers. Hence, consumer losses are greater in the comprehensive grain cartel shown in Table 6.

From a narrow American perspective, one might hope that economic rent extracted from ROW would raise the producer surplus enough to offset consumer losses, leaving the US better off. That is not the case, however. American welfare losses increase with more stringent supply control in Tables 4, 5, and 6. US losses are not much less when acting in concert with other grain exporters (Table 6) than when acting alone (Table 4). It is notable that none of the supply restriction schemes in Tables 4, 5, or 6 would benefit the US as a nation. Rest-of-the-world and total world welfare losses mount when supply restrictions are tightened from 5 to 20% of market output. When the US alone tightly restricts grain production, it losses more than ROW.

		Welf	are Impact	s			
US Grain Supply Reduction		US					in World rice
	Producers	Consumers	Total	ROW Total	World Total	Wheat	Corn & Coarse Grain
(Percent)	-	(\$ M	illion)			(Per	rcent)
5	395	-439	-44	-313	-357	1	3
10	616	-882	-266	-592	-858	2	6
15	663	-1,330	-667	-837	-1,504	3	9
20	534	-1,782	-1,248	-1,047	-2,295	4	13

Table 4. Impacts of Restricting US Grain Production.

Table 5. Impacts of Restricting US Corn Production.

US Corn Supply Reduction		US				Increase in World Price
	Producers	Consumers	Total	ROW Total	World Total	Corn
(Percent)		(\$ N	fillion)			(Percent)
5	375	-460	-85	-226	-311	5
10	624	-928	-303	-427	-730	9
15	746	-1,404	-657	-602	-1,259	14
20	738	-1,887	-1,149	-750	-1,899	19

When the US, Canada, Australia, and the EC jointly restrict production, ROW incurs greater welfare losses than the US.

Price Discrimination. Mandatory production controls assumed in the foregoing scenarios potentially can benefit producers without discrimination between foreign and domestic markets. But controls are difficult to administer and are unsuccessful in raising US national income. An alternative is to forsake controls but to use export tariffs and subsidies to discriminate pricing between domestic and foreign markets.

Price discrimination scenarios conforming to the strategy presented in Figures 2 and 3 were simulated with results presented in Table 7. Domestic grain prices for wheat, corn, and other coarse grains were adjusted proportionally to bring changes in US exports as indicated in the first column of Table 7.

		Welfa	are Impa	cts			
Grain Supply Reduction for Each		US		_			in World rice
Cartel Member	Producers	Consumers	Total	ROW Total	World Total	Wheat	Corn & Coarse Grain
(Percent)		(\$ M	illion)			(Per	cent)
5	632	-633	-5	-249	-254	3	5
10	1,084	-1,272	-187	-565	-753	7	10
15	1,339	-1,918	-578	- 9 47	-1,526	10	15
20	1,399	-2,570	-1,171	-1,394	-2,565	14	20

Table 6. Restricting Grain Production - US, Canada, Australia, and EC.

Using export subsidies to fix the domestic price above the world price decreases domestic consumption but increases production and exports. Using export tariffs to fix the domestic price below the world price has the opposite effect. The border subsidies listed in the top three rows of Table 7 (4th column) corresponds to area b+c+d+e+f in Figure 3. The border levies (tariffs) listed in the lower three rows correspond to area c+e in Figure 2. Producer and consumer welfare impacts in Table 7 are changes from actual 1989 values.

A grain cartel of producers financing export subsidies (see negative numbers in bottom three rows) will earn economic rents if subsidies paid to export grain are less than the extra producer surplus accruing to producers from the higher domestic price, or if tariffs (see positive values in bottom three rows) collected by producers on exports are more than the losses to producers from the lower domestic price. Given the elastic export demand, producers gain from export subsidies and lose from export tariffs. The simulation model shows that export subsidy payments are less than the added producer surplus when domestic prices are raised and exports increased by export subsidies. The net gain to producers declines proportionally as export subsidies increase.

Net benefits to producers are greatest with export subsidies, expanding exports by 30% and with an attendant increase in domestic prices (top row of Table 7). The cartel can subsidize exports with collections from producers, leaving its members with some net gain. Results are even more favorable for producers if taxpayers pay the export subsidy as under the current Export Enhancement Program (EEP). However, because national welfare is reduced, a government truly representative of the nation's economic welfare would not rationally choose to subsidize exports.

Overall US welfare is modestly increased when domestic price is lowered with an export tariff and exports decline (bottom rows of Table 7). In contrast, the rest of the world as a net importer benefits from plans increasing US exports and lowering the world price of grains. As noted in the World Total column of Table 7, any form of market distortion lowers overall global welfare.

Compared to Table 7, total numbers are smaller but patterns are similar when only US corn producers attempt the optimal subsidy or tariff strategy (Table 8). A US corn-only producer cartel also would choose an export subsidy because the producers' benefits are positive even if they pay the export subsidy (top three rows in Table 8).

None of the above results consider retaliation by competitors. The US and most other developed countries currently subsidize grain exports. Each country justifies its subsidy as retaliation for predatory trade policies of competitors. A US grain producer cartel subsidizing exports to collect economic rents and lowering world prices in the process (see top three rows, Tables 7 and 8) would hurt competing exporters who might retaliate in kind.

			Welfare Im	pacts				_
Increase in US		US			-			in World rice
Export Quantity	Producers	Consumers	Border Payments	Total	ROW Total	World Total	Wheat	Corn & Coarse Grain
(Percent)	(\$ Million)						(Per	cent)
30	4,279	-2,355	-3,128	-1,204	671	-533	-3	-6
20	2,898	-1,643	-2,018	-754	458	-296	-2	-5
10	1,377	-793	-893	-309	213	-96	-1	-2
-10	-1,338	808	741	212	-220	-8	1	2
-20	-2,729	1,700	1,359	330	-415	-85	3	5
-30	-3,916	2,494	1,729	308	-582	-274	4	6

Table 7. Impact of US Export Subsidies and Tariffs on Grains.

Outcomes were simulated in which percentage increases in US exports were matched by equal percentage increases in exports of other major competitors (Canada, the European Community, and Australia). Because domestic prices are controlled by border measures, the results reported in Table 9 indicated no major impacts on US producers and consumers compared to no retaliation. But exports rise and world grain prices fall substantially as subsidies are more widely expanded to retaliate against action of competitors. Retaliation causes the average cost of subsidizing US exports to nearly double to achieve any given percentage increase in exports. Retaliation by competing exporters removes much of the attractiveness of US export subsidies. If producers pay for export subsidies, their net gains are sharply eroded with retaliation. Welfare losses to the US as a nation and to the world enlarge with retaliation to subsidies. Thus the US and the world have a stake in successful multilateral negotiation reducing subsidies and attendant retaliation.

Even if US grain producers form a cartel successful in accumulating net gains for its members, doing so might alienate US voters because consumers are hurt in every feasible scenario. It is conceivable that an effort by producers to form a cartel would so alienate the public that Congress would terminate current commodity programs, including export assistance on grain. The result of eliminating 1989 US government program support for grains was simulated and the results are reported in Table 10. Net benefits to producers from cartel activity never approaches the \$7 billion in rents they collect from current programs. It seems unlikely that a producer group would risk gains of this size for the prospect of cartel rents a sixth the size or less from international markets.

Identical cartel arrangements to those presented in this paper were simulated using intermediate-run rather than long-run behavioral coefficients. Producer, consumer, and taxpayer welfare as well as world price impacts generally were greater in the intermediate-run simulations than in the long-run simulations. However, the overall conclusions for the intermediate run were identical to those for the long run reported above.

			Welfare Im	pacts			
Increase in US Corn Export		Increase in World Price					
Quantity	Producers	Consumers	Border Payments	Total	ROW Total	World Total	Corn
(Percent)			(\$ Million)				(Percent)
30	2,274	-1,546	-1,991	-1,262	674	-588	-12
20	1,636	-1,131	-1,342	-837	473	-364	-9
10	806	-571	-597	-361	224	-137	-5
-10	-783	584	437	238	-249	-11	5
-20	-1,543	1,185	701	342	-365	-23	10
-30	-2,099	1,648	773	323	-469	-146	15

Table 8. US Export Subsidies and Tariffs on Corn Which Change Export Levels (US Corn Producer Cartel).

Table 9. US Export Subsidies and Tariffs on Grains With Like Retaliation in Subsidy and Tariff from Grain Exporters - Canada, EC, and Australia.

			Welfare Im	pacts				
T		US					Increase	in World Price
Increase in Exports by All Four Regions	Producers	Consumers	Border Payments	Total	ROW Total	World Total	Wheat	Corn & Coarse Grain
(Percent)			(\$ Million)				(Percent)
30	4,378	-2,466	-3,931	-2,018	262	-1,756	-9	-9
20	2,970	-1,714	-2,537	-1,281	284	-997	-6	-7
10	1,395	-825	-1,117	-574	183	-364	-3	-3

· .

•

.

Table 10. Welfare Impact of US Unilateral Grain S	Subsidy Liberalization, \$ Million.
---	-------------------------------------

Producers	Consumers	Taxpayers	Total US
-7,236	176	8,546	1,486

Conclusions

Various cartel arrangements offer possibilities to raise economic rent to grain producers. However, gains to producers from export market rents are small relative to gains from commodity programs. Faced with a choice between cartel exploitation of export markets versus current commodity programs, producers have reason to favor current programs to raise their incomes.

Restrictions on grain production and marketing raise producers' income while reducing the economic well-being of US consumers and the public at large. Most of the export cartel gains come to US corn producers who account for over 40% of the world supply. *Ceteris paribus*, greater market share raises cartel rents. An international cartel, where growers from several large exporting countries band together to restrict supply, accumulates greater rents than when any one exporter alone restricts supply. But the more effective the scheme is in raising rents to grain producers, the larger become the global distortions and net welfare losses to consumers and the world economy.

Subsidies increasing US grain exports to extract cartel rents encounter problems when competing exporters retaliate. Even in cases where a cartel of producers seems to have potential for generating rents, shortcomings such as the administrative burden and complexity of implementation need to be considered. Subsidies would require control of all grain shipments into the US. Export subsidies expanding market share are a violation of General Agreement on Tariffs and Trade provisions and run counter to current trends toward liberalizing trade apparent in farm policy reforms of the EC, Australia, New Zealand, Sweden, and selected other countries.

No account of cartel administrative costs was made in this study. The export subsidy scheme would be expensive to administer because of the necessary border controls. The simulation results unrealistically assume perfect cooperation among all cartel members. Cheating on production quotas or selling outside the cartel would reduce net benefits to producers.

In conclusion, our analysis shows that at least modest national welfare gains are possible from US grain export tariffs. Such tariffs would be applauded by our export competition but are domestically unacceptable for two reasons. The first is that American grain producers are made worse off. The second is that an export tax may be unconstitutional. In all other scenarios considered, the US economy loses from cartel action to subsidize exports or control production. In all scenarios considered, the world as a whole loses income from cartel intervention in markets. The modest net gains to producers from subsidies and supply restrictions balanced against large negatives listed above do not present a bright outlook for grain cartels.

Preliminary analysis indicated that gains to US producers are less for a wheat cartel than for either the feed grain cartel or for the wheat-feed grain cartel included herein. The unfavorable outcomes originate from the export demand for US wheat made highly elastic by opportunities to substitute feed grain for wheat in production and consumption especially in the long run. That is, a high wheat price and controlled production of wheat encourages importers to produce wheat, cut back feed grain production, and import low-cost feed grains. Because results were less favorable for wheat alone than for feed grains alone or for all grains, predicted outcomes of a wheat cartel were not included.

References

- Carter, Colin and Andrew Schmitz. August 1979. Import tariffs and price formation in the world wheat market. American Journal of Agricultural Economics. 61:517-522.
- Donsimoni, M.P., N.S. Economides, and H.M. Polemarchakis. 1986. Stable Cartels. International Economic Review. 27:317-327.
- Gardiner, Walter and Praveen Dixit. May 1986. Price Elasticity of Export Demand. Washington, DC: USDA-ERS-IED. Staff Report AGES 860408.
- Gardiner, Walter, Vernon Roningen, and Karen Liu. May 1989. Elasticities in the Trade Liberation Database. Staff Report AGES 89-20. Washington, DC: USDA ERS-ATAD.
- Osborne, D.K. 1976. Cartel Problems. American Economics Review. 66:835-844.
- Ray, Daryll E. and James S. Plaxico. 1988. The Economics Structure of Agriculture. Washington, DC: National Farmers Organization and National Farmers Union.
- Roningen, Vernon, Praveen Dixit, John Sullivan, and Trace Hart. March 1991. Overview of the Static World Policy Simulation Modeling Framework. Staff Report AGES 9114. Washington, DC: USDA-ERS.
- Roningen, Vernon, Praveen Dixit, and John Sullivan. September 1991. Documentation of the Static World Policy Simulation (SWOPSIM) Modeling Framework. Washington, DC: USDA-ERS.
- Schmitz, Andrew, Alex McCalla, D. Mitchell, and Colin Carter. 1980. Grain Export Cartels. Cambridge, MA: Ballinger.
- Seeley, Ralph. May 1985. Price Elasticities from IIASA World Agricultural Model. Staff Report AGES 850418. Washington, DC: USDA-ERS-IED.
- Sullivan, John. April 1990. Price Transmission Elasticities in the TLIB Database. Staff Report AGES 9034. Washington DC: USDA-ERS.

Tweeten, Luther. 1989. Farm Policy Analysis. Boulder, CO. Westview Press.

Tweeten, Luther. 1992. Agricultural Trade: Principles and Policies. Boulder, CO. Westview Press.

INTERNATIONAL AGRICULTURAL TRADE RESEARCH CONSORTIUM*

i servel

Working Papers Series

<u>Number</u>	Title	<u>Author(s)</u>	Send correspondence or requests for copies to:
85-1	Do Macroeconomic Variables Affect the Ag Trade Sector? An Elasticities Analysis	McCalla, Alex Pick, Daniel	Dr Alex McCalla Dept of Ag Econ U of California Davis, CA 95616
86-1	Basic Economics of an Export Bonus Scheme	Houck, James	Dr James Houck Dept of Ag Econ U of Minnesota St Paul, MN 55108
86-2	Risk Aversion in a Dynamic Trading Game	Karp, Larry	Dr Larry Karp Dept of Ag & Resource Econ/U of California Berkeley, CA 94720
86-3	An Econometric Model of the European Economic Community's Wheat Sector	de Gorter, Harry Meilke, Karl	Dr Karl Meilke Dept of Ag Econ U of Guelph Guelph, Ontario CANADA NIJ 1S1
86-4	Targeted Ag Export Subsidies and Social Welfare	Abbott, Philip Paarlberg, Philip Sharples, Jerry	Dr Philip Abbott Dept of Ag Econ Purdue University W Lafayette, IN 47907
86-5	Optimum Tariffs in a Distorted Economy: An Application to U.S. Agriculture	Karp, Larry Beghin, John	Dr Larry Karp Dept of Ag & Resource Econ/U of California Berkeley, CA 94720
87-1	Estimating Gains from Less Distorted Ag Trade	Sharples, Jerry	Dr Jerry Sharples USDA/ERS/IED/ETP 628f NYAVEBG 1301 New York Ave NW Washington, DC 20005-4788
87-2	Comparative Advantage, Competitive Advantage, and U.S. Agricultural Trade	White, Kelley	Dr Kelley White USDA/ERS/IED 732 NYAVEBG 1301 New York Ave NW Washington, DC 20005-4788

Number	Title		Send correspondence or requests for copies to:
87-3	International Negotiations on Farm Support Levels: The Role of PSEs	Tangermann, Stefan Josling, Tim Pearson, Scott	Dr Tim Josling Food Research Institute Stanford University Stanford, CA 94305
87-4	The Effect of Protection and Exchange Rate Policies on Agricultural Trade: Implications for Argentina, Brazil, and Mexico	Krissoff, Barry Ballenger, Nicole	Dr Barry Krissoff USDA/ERS/ATAD 624 NYAVEBG 1301 New York Ave NW Washington, DC 20005-4788
87-5	Deficits and Agriculture: An Alternative Parable	Just, Richard Chambers, Robert	Dr Robert Chambers Dept of Ag & Resource Economics Univ of Maryland College Park, MD 20742
87-6	An Analysis of Canadian Demand for Imported Tomatoes: One Market or Many?	Darko-Mensah, Kwame Prentice, Barry	Dr Barry Prentice Dept of Ag Econ & Farm Mgmt University of Manitoba Winnipeg, Manitoba CANADA R3T 2N2
87-7	Japanese Beef Policy and GATT Negotiations: An Analysis of Reducing Assistance to Beef Producers	Wahl, Thomas Hayes, Dermot Williams, Gary	Dr Dermot Hayes Dept of Economics Meat Export Research Center Iowa State University Ames, IA 50011
87-8	Grain Markets and the United States: Trade Wars, Export Subsidies, and Price Rivalry	Houck, James	Dr James Houck Dept of Ag Econ Univ of Minnesota St Paul, MN 55108
87-9	Agricultural Trade Liberalization in a Multi-Sector World Model	Krissoff, Barry Ballenger, Nicole	Dr Barry Krissoff USDA/ERS/ATAD 624 NYAVEBG 1301 New York Ave NW Washington, DC 20005-4788
88-1	Developing Country Agriculture in the Uruguay Round: What the North Might Miss	Ballenger, Nicole	Dr Nicole Ballenger USDA/ERS/ATAD 624 NYAVEBG 1301 New York Ave NW Washington, DC 20005-4788

19 C - C -

ŧ

24 - X

Number	Title	<u>Author(s)</u>	Send correspondence or requests for copies to:
88-2	Two-Stage Agricultural Import Demand Models Theory and Applications	Carter, Colin Green, Richard Pick, Daniel	Dr Colin Carter Dept of Ag Economics Univ of California Davis, CA 95616
88-3	Determinants of U.S. Wheat Producer Support Price: A Time Series Analysis	von Witzke, Harald	Dr Harald von Witzke Dept of Ag Economics Univ of Minnesota St Paul, MN 55108
88-4	Effect of Sugar Price Policy on U.S. Imports of Processed Sugar- containing Foods	Jabara, Cathy	DrCathy Jabara Office of Econ Policy U.S. Treasury Dept 15th & Pennsylvania Ave NW Washington, DC 20220
88-5	Market Effects of In-Kind Subsidies	Houck, James	Dr James Houck Dept of Ag Economics University of Minnesota St Paul, MN 55108
88-6	A Comparison of Tariffs and Quotas in a Strategic Setting	Karp, Larry	Dr Larry Karp Dept of Ag & Resource Econ/U of California Berkeley, CA 94720
88-7	Targeted and Global Export Subsidies and Welfare Impacts	Bohman, Mary Carter, Colin Dortman, Jeffrey	Dr Colin Carter Dept of Ag Economics U of California, Davis Davis, CA 95616
89-1	Who Determines Farm Programs? Agribusiness and the Making of Farm Policy	Alston, Julian Carter, Colin Wholgenant, M.	Dr Colin Carter Dept of Ag Economics U of California, Davis Davis, CA 95616
89-2	Report of ESCOP Subcom- mittee on Domestic and International Markets and Policy	Abbott, P.C. Johnson, D.G. Johnson, R.S. Meyers, W.H. Rossmiller, G.E. White, T.K. McCalla, A.F.	Dr Alex McCalla Dept of Ag Economics U of California-Davis Davis, CA 95616
89-3	Does Arbitraging Matter? Spatial Trade Models and Discriminatory Trade Policies	Anania, Giovanni McCalla, Alex	Dr Alex McCalla Dept of Ag Economics U of California-Davis Davis, CA 95616

Number	Title	<u>Author(s)</u>	Send correspondence or requests for copies to:
89-4	Export Supply and Import Demand Elasticities in the Japanese Textile Industry: A Production Theory Approach	Pick, Daniel Park, Timothy	Daniel Pick USDA/ERS/ATAD 1301 New York Ave. N.W. Washington, DC 20005-4788
89-5	The Welfare Effects of Imperfect Harmonization of Trade and Industrial Policy	Gatsios, K. Karp, Larry	Dr. Larry Karp Dept. of Ag & Resource Econ/U of California Berkeley, CA 94720
89-6	Report of the Task Force on Tariffication and Rebalancing	Josling, Tim Chair	Dr. Timothy Josling Food Research Institute Stanford University Stanford, CA 94305-6084
89 - 7	Report of the Task Force on Reinstrumentation of Agricultural Policies	Magiera, Stephen Chair	Stephen L. Magiera USDA/ERS/ATAD 1301 New York Ave., Rm 624 Washington, D.C. 20005-4788
89-8	Report of the Task Force on The Aggregate Measure of Support: Potential Use by GATT for Agriculture	Rossmiller, G.E. Chair	Dr. G. Edward Rossmiller Resources for the Future Nat'l Ctr for Food/Ag Policy 1616 P Street N.W. Washington, D.C. 20036
89-9	Agricultural Policy Adjustments in East Asia: The Korean Rice Economy	Kwon, Yong Dae Yamauchi, Hiroshi	Dr. Hiroshi Yamauchi Dept. of Ag & Res. Econ. University of Hawaii 3050 Maile Way Gilmore Hall Honolulu, Hawaii 96822
90-1	Background Papers for Report of the Task Force on The Aggregate Measure of Support: Potential Use by GATT for Agriculture	Rossmiller, G.E. Chair	Dr. G. Edward Rossmiller Resources for the Future Nat'l Ctr for Food/Ag Policy 1616 P Street N.W. Washington, D.C. 20036
90-2	Optimal Trade Policies for a Developing Country Under Uncertainty	Choi, E. Kwan Lapan, Harvey E.	Dr. E. Kwan Choi Dept. of Economics Iowa State University Ames, Iowa 50011
90-3	Report of the Task Force on The Comprehensive Proposals for Negotiations in Agriculture	Josling, Tim Chair	Dr. Timothy Josling Food Research Institute Stanford University Stanford, CA 94305-6084

•

.

Number	Title	<u>Author(s)</u>	Send correspondence or requests for copies to:
90-4	Uncertainty, Price Stabilization & Welfare	Choi, E. Ewan Johnson, Stanley	Dr. E. Kwan Choi Dept. of Economics Iowa State University Ames, IA 50011
90-5	Politically Acceptable Trade Compromises Between The EC and The US: A Game Theory Approach	Johnson, Martin Mahe, Louis Roe, Terry	Dr. Terry Roe Dept. of Ag & Applied Econ 1994 Buford Avenue University of Minnesota St. Paul, MN 55108
90-6	Agricultural Policies and the GATT: Reconciling Protection, Support and Distortion	de Gorter, Harry Harvey, David R.	Dr. Harry de Gorter Dept. of Ag Economics Cornell University Ithaca, NY 14853
91-1	Report of the Task Force on Reviving the GATT Negotiations in Agriculture	Trade Update Notes	Dr. Maury E. Bredahl Center for International Trade Expansion 200 Mumford Hall Missouri University Columbia, MO 65211
91-2	Economic Impacts of the U.S. Honey Support Program on the Canadian Honey Trade and Producer Prices	Prentice, Barry Darko, Kwame	Dr. Barry E. Prentice University of Manitoba Dept of Ag Economics & Farm Management Winnipeg, Manitoba R3T 2N2 CANADA
91-3	U.S. Export Subsidies in Wheat: Strategic Trade Policy or an Expensive Beggar-My-Neighbor Tatic?	Anania, Giovanni Bohman, Mary Colin, Carter A.	Dr. Colin Carter Dept of Ag Economics Univ. California-Davis Davis, CA 95616
91-4	The Impact of Real Exchange Rate Misalignment and Instability on Macroeconomic Performance in Sub-Saharan Africa	Ghura, Dhaneshwar Grennes, Thomas J.	Dr. Thomas J. Grennes Dept of Economics & Business North Carolina State Univ P.O. Box 8109 Raleigh, NC 27695-8109
91-5	Global Grain Stocks and World Market Stability Revisited	Martinez, Steve Sharples, Jerry	Steve Martinez USDA/ERS/ATAD 1301 New York Ave NW Room 624 Washington, DC 20005-4788

- - - E

Number	<u>Title</u>	<u>Author(s)</u>	Send correspondence or requests for copies to:
91-6	The Export Enhancement Program: Prospects Under the Food, Agriculture, Conservation, and Trade Act of 1990	Haley, Stephen L.	Dr. Stephen L. Haley Dept of Ag Economics & Agribusiness Louisiana State University 101 Ag Admin Bldg Baton Rouge, LA 70803-5604
91-7	European Economic Integration and the Consequences for U.S. Agriculture	Gleckler, James Koopman, Bob Tweeten, Luther	Luther Tweeten Dept of Ag Economics & Rural Sociology Ohio State University 2120 Fyffe Road Columbus, OH 43210-1099
91-8	Agricultural Policymaking in Germany: Implications for the German Position in Multilateral Trade Negotiations	Tangermann, Stefan Kelch, David	David Kelch ATAD/ERS/USDA 1301 New York Ave NW-624 Washington, DC 20005-4788
91-9	Partial Reform of World Rice Trade: Implications for the U.S. Rice Sector	Haley, Stephen	Stephen L. Haley Dept of Ag Economics & Agribusiness Louisiana State University 101 Ag Administration Bldg Baton Rouge, LA 70803
91-10	A Simple Measure for Agricultural Trade Distortion	Roningen, Vernon Dixit, Praveen M.	Vernon O. Roningen ATAD/ERS/USDA 1301 New York Ave NW-624 Washington, DC 20005-4788
92-1	Estimated Impacts of a Potential U.SMexico Preferential Trading Agreement for the Agricultural Sector	Krissoff, Barry Neff, Liana Sharples, Jerry	Barry Krissoff ATAD/ERS/USDA 1301 New York Ave NW-734 Washington, DC 20005-4788
92-2	Assessing Model Assumptions in Trade Liberalization Modeling: An Application to SWOMPSIM	Herlihy, Micheal Haley, Stephen L. Johnston, Brian	Stephen Haley Louisiana State University Dept AgEc & Agribusiness 101 Administration Bldg Baton Rouge, LA 70803
92-3	Whither European Community Common Agricultural Policy, MacSharried, or Dunkeled in the GATT?	Roningen, Vernon	Vernon O. Roningen ATAD/ERS/USDA 1301 New York Ave NW-624 Washington, DC 20005-4788

٠

•

.

Number	<u>Title</u>	<u>Author(s)</u>	Send correspondence or requests for copies to:
92-4	A Critique of Computable General Equilibrium Models for Trade Policy Analysis	Hazledine, Tim	Tim Hazledine Bureau of Competition Policy - 20th Floor Economic & Intl Affairs Place du Portage I 50 Victoria Street Hull, Quebec CANADA KIA OC9
92-5	Agricultural Trade Liberalization: Implications for Productive Factors in the U.S.	Liapis, Peter Shane, Mathew	Peter S. Liapis USDA/ERS/ATAD 1301 New York Ave NW-624 Washington, DC 20005-4788
92-6	Implementing a New Trade Paradigm: Opportunities for Agricultural Trade Regionalism in the Pacific Rim	Tweeten, Luther Lin, Chin-Zen Gleckler, James Rask, Norman	Luther Tweeten Ohio State University Dept of Ag Economics 2120 Fyffe Rd Columbus, OH 43210-1099
92-7	The Treatment of National Agricultural Policies in Free Trade Areas	Josling, Tim	Tim Josling Stanford University Food Research Institute Stanford, CA 94305
92-8	Shifts in Eastern German Production Structure Under Market Forces	Paarlberg, Philip	Philip L. Paarlberg Purdue University Dept of Ag Economics Krannert Bldg West Lafayette, IN 47907
92-9	The Evolving Farm Structure in Eastern Germany	Paarlberg, Philip	Philip L. Paarlberg Purdue University Dept of Ag Economics Krannert Bldg West Lafayette, IN 47907
92-10	MacSherry or Dunkel: Which Plan Reforms the CAP?	Josling, Tim Tangermann, Stefan	Tim Josling Stanford University Food Research Institute Stanford, CA 94305
93-1	Agricultural and Trade Deregulation in New Zealand: Lessons for Europe and the CAP	Gibson, Jim Hillman, Jimmye Josling, Timothy Lattimore, Ralph Stumme, Dorothy	Jimmye Hillman University of Arizona Dept of Ag Economics Tucson, AZ 85721
93-2	Testing Dynamic Specification for Import Demand Models: The Case of Cotton	Arnade, Carlos Pick, Daniel Vasavada, Utpal	Dr. Daniel Pick USDA/ERS/ATAD 1301 New York Ave NW-#734 Washington, DC 20005-4788

Number	Title	<u>Author(s)</u>	Send correspondence or requests for copies to:
93-3	Environmental & Agricultural Policy Linkages in the European Community: The Nitrate Problem and Cap Reform	. Haley, Stephen	Stephen L. Haley USDA/ERS/ATAD 1301 New York Ave NW-#740 Washington, DC 20005-4788
93-4	International Trade in Forest Products: An Overview	Puttock, G. David Sabourin, Marc Meilke, Karl D.	David Puttock Faculty of Forestry University of Toronto 33 Willcocks St Toronto, Ontario CANADA M5S 3B3
93-5	Measuring Protection in Agriculture: The Producer Subsidy Equivalent Revisited	Masters, William	William A. Masters Purdue University Dept of Ag Economics West Lafayette, IN 47907
93-6	Phasing In and Phasing Out Protectionism with Costly Adjustment of Labour	Karp, Larry Thierry, Paul	Larry Karp Univ of Calif-Berkeley Ag and Resource Economics Berkeley, CA 94720
93-7	Domestic and Trade Policy for Central and East European Agriculture	Karp, Larry Spiro, Stefanou	Larry Karp Univ of Calif-Berkeley Ag and Resource Economics Berkeley, CA 94720
93-8	Evaluation of External Market Effects & Government Intervention in Malaysia's Agricultural Sector: A Computable General Equilibrium Framework	Yeah, Kim Leng Yanagida, John Yamauchi, Hiroshi	Hiroshi Yamauchi University of Hawaii Dept of Ag & Resource Econ 3050 Maile Way-Gilmore 104 Honolulu, HI 96822
93-9	Wheat Cleaning & Its Effect on U.S. Wheat Exports	Haley, Stephen L. Leetmaa, Susan Webb, Alan	Stephen L. Haley USDA/ERS/ATAD 1301 New York Ave NW-#740 Washington, DC 20005-4788
94-1	The Economics of Grain Producer Cartels	Gleckler, James Tweeten, Luther	Luther Tweeten The Ohio State University Dept of AgEcon & Rural Soc 2120 Fyffe Rd Columbus, OH 43210-1099
94-2	Strategic Agricultural Trade Policy Interdependence and the Exchange Rate: A Game Theoretic Analysis	Kennedy, Lynn P. von Witzke, Harald Roe, Terry	Harald von Witzke University of Minnesota Dept of Ag & Applied Econ 1994 Buford Ave - 332h COB St. Paul, MN 55108-6040

*The International Agricultural Trade Research Consortium is an informal association of university and government economists interested in agricultural trade. Its purpose is to foster interaction, improve research capacity and to focus on relevant trade policy issues. It is financed by the USDA, ERS and FAS, Agriculture Canada and the participating institutions.

The IATRC Working Paper Series provides members an opportunity to circulate their work at the advanced draft stage through limited distribution within the research and analysis community. The IATRC takes no political positions or responsibility for the accuracy of the data or validity of the conclusions presented by working paper authors. Further, policy recommendations and opinions expressed by the authors do not necessarily reflect those of the IATRC.

Correspondence or requests for copies of working papers should be addressed to the authors at the addresses listed above.

A current list of IATRC publications is available from:

Laura Bipes, Administrative Director Department of Agricultural & Applied Economics University of Minnesota 231g Classroom Office Building 1994 Buford Ave St. Paul, MN 55108-6040 U.S.A.