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Testing the Viability of Area Yield Insurance for  
Cotton and Soybeans in the Southeast  

 
by 
 

Xiaohui Deng, Barry J. Barnett, and  Dmitry Vedenov  
 

Abstract: 

GRP is essentially a put option on the NASS estimate of the county average yield.  Purchasers of 

GRP are exposed to geographic basis risk. This study uses farm- and county-level yield data to 

examine the viability of area yield insurance for cotton and soybean farms in the southeastern U.S. 
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Testing the Viability of Area Yield Insurance for 
Cotton and Soybeans in the Southeast 

 
Background and objective 

Recent years have witnessed much discussion about innovative agricultural insurance designs.  

Traditional agricultural insurance designs are often plagued with problems of asymmetric information 

and systemic risks (Miranda and Glauber 1997). Among the innovations being widely discussed are 

weather derivatives and area-based index contracts. Traditional crop insurance protects against farm-

level yield or revenue losses.  Weather derivatives protect against specific weather events that are often 

associated with farm-level losses.  Area-based indexes contracts protect against yield or revenue losses 

measured, not at the farm level, but rather at an aggregate level such as the county. 

Farm level loss adjustment is not necessary with weather derivatives or area yield contracts 

(Turvey). These innovations are also not subject to the asymmetric information problems that exist 

with traditional farm level crop insurance products.  Indemnities are based on the realized value of 

transparent and objective indexes over which the policyholder has no control – weather events 

measured at a local weather station or aggregate area yields.  However substantial basis risk can exist 

with these new innovations. 

The Group Risk Plan (GRP) is an area yield insurance product being pilot tested within the 

Federal Crop Insurance Program.  Group Risk Income Protection (GRIP) is a similar area revenue 

insurance product. Agricultural applications of weather derivatives have received significant attention 

and pilot tests are underway in several countries, though currently not in the U.S. (Miranda; Skees, 

Black and Barnett; Skees, Hazell, and Miranda; Turvey; Skees et al; Barnett et al; Chambers and 

Quiggin; Smith, Chouinard, and Baquet). 

This study assesses the viability of GRP for cotton and soybean production in the southeast U.S. 

GRP performance is compared to that of traditional farm level Multiple Peril Crop Insurance (MPCI) 

for farms in Georgia and South Carolina.  MPCI provides protection against yield losses, from a 
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variety of natural sources, at the individual farm, or even sub-farm, level. GRP, on the contrary, 

provides protection against yield losses at the area (county) level.  GRP premiums are typically much 

less expensive than MPCI premiums.  GRP also is not subject to asymmetric information problems.  

GRP however is often criticized because of the potential for basis risk.  In this context, basis risk 

means that farmers may not receive a GRP indemnity even though they have experienced farm level 

yield losses.  This will occur if farm level yield losses are caused by a localized phenomenon that does 

not impact the overall county yield.  This study compares MPCI and GRP at both the state and Crop 

Reporting District (CRD) levels.  This is accomplished by utilizing both variance reduction and 

expected utility performance criteria. 

Data 

County level yield data are obtained from the National Agricultural Statistical Service (NASS).  

For Georgia and South Carolina these data were available over the 32 year period 1969-2000 for cotton 

and over the 27 year period 1974-2000 for soybeans.  Scatter plots showed that the cotton yield data 

display an obvious time trend but the soybean data do not. Thus the cotton data were detrended and the 

predicted 2002-trended yield is used as the county yield expectation. Since there is no time trend in the 

soybean data, the in-sample average is used as the county yield expectation. 

Individual farm level yields data are obtained from the Risk Management Agency (RMA).  These 

data are the 4 to 10 year yield histories used to establish actual production history (APH) yields for 

MPCI purchasers.  The data are for the 10-year period 1991-2000. Only farms which reported actual 

yields for the most recent consecutive 6-10 years were included in the study.  As with the actual MPCI 

product, farm level yield data were not detrended and the APH yield was calculated as a simple 

average of the annual yields over each individual’s sample period (6 to 10 consecutive years). 

Counties must meet two criteria to be included in the study:  (1) the county must have at least 20 

available farm observations which meet the conditions indicated above; and, (2) the county can not 

have more than 3 consecutive years of missing county yield data and the total number of missing years 
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of yield data could not exceed 6.  The third column of table 1 lists the number of counties that meet 

these criteria.  The fourth column lists the corresponding number of farms in those qualified counties 

within a specific state or CRD. 

Methodology 

 Let y~ be the realization of a stochastic yield on farm i, with .  Similarly, let be the 

realization of a stochastic yield in the county where farm i is located, with .  If is projected 

orthogonally on to  then 
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 If insurance is actuarially fair then 
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where is the per acre insurance premium and n is the per acre insurance indemnity.  Ignoring price 

risk, the insurance contract can be evaluated by its impact on the variance of net yield 
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Purchasing insurance reduces farm level yield variability by 
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If we define 
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For area yield insurance , , and are invariant across individuals.  Equation 11 demonstrates 

that  is positively related to the variance reduction from area yield insurance.  That is, ceteris paribus, 

the higher the correlation between a producer’s yield and the area-yield, the greater the yield risk 

reduction from area yield insurance.  Though perhaps less intuitive, Miranda also demonstrates 

that is positively related to the risk reduction that can be obtained from area yield insurance. 
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 If we assume that indemnities are paid in units of production per acre, the GRP indemnity is 

calculated as 
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where 

(13)  coverageyc ×= µ

and 70% ≤ coverage ≤ 90% in 5% increments and 90% ≤ scale ≤ 150%.   

The MPCI indemnity is calculated as  

(14)  ( )iic yyn ~,0max~ −=
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where 

(15)  coveragey iic ×= µ

and 50% ≤ coverage ≤ 85% in 5% increments.  For MPCI, is a rolling 4 to 10 year average of 

historical farm yields. 

iµ

Following Barnett, et al. we take the very conservative approach of assigning the same GRP 

coverage and scale value to all farmers in the same state or the same crop-reporting district (CRD).  

We then calculate the weighted average risk reduction across the group of farmers as 
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where  is the weighted average percentage reduction in net yield variance, wθ i is the ith farm’s most 

recent years planted acres, and n is the total number of farms in the state or CRD. 

 Mean-Variance Criterion 

Mean-Variance criterion, promoted by Markowitz, has been used in a wide range of financial 

decisions. Assume is a random variable with realizations when a decision-maker makes a decision. 

Then risk evaluation is captured by first two moments, expected return and the 
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however, is not universal. It could be negative, zero or positive depending on whether the individual is 

risk averse, risk neutral or risk loving.  Further, if we apply the concept of an indifference curve, the 

ratio of the two partial derivatives measures the marginal rate of substitution (MRS) between expected 

return and the variance given a constant V, that is, 

(20)
2

2
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)~(
2,

σ
σ σ f

f
wd

wdE
MRS E

f

f
E =−=  

MRS indicates how much expected return must increase to compensate the decision maker for an 

increase in variance if V remains constant. The sign of MRS shows that the indifference curve is 

upward-sloping, downward-sloping or horizontal depending on the sign of  or the risk attitude of 

the decision maker. 

2σ
f

In this study, we assume that all farmers are risk averse with negative  and upward-sloping 

indifference curve. That presumes that when facing two strategies resulting in the same expected return, 

farmers will choose the one with smaller variance. Initally, we construct both MPCI and GRP 

premiums to be actuarially-sound in sample.  Thus, we evaluate the performance of the insurance 

contracts by comparing how much they reduce the variance of the farm level net yield.  

2σ
f

Since the farm level yield data are available for only 6-10 years, we follow the conservative 

approach utilized by Barnett et al. in optimizing GRP coverage and scale at the state or CRD level 

rather than the individual farm level.  To find the optimal coverage and scale, Barnett et al first set 

scale at its optimal level by solving for β , where l indicates a given state or CRD. They then find the 

optimal coverage level by fixing the optimal scale and searching across all possible coverage levels for 

the one that generates the largest reduction in net yield risk.  In this study, however, we solve for 

optimal scale and coverage simultaneously using the BFGS algorithm.   The BFGS algorithm is a 

specific case of a Quasi-Newton method in solving finite-dimensional optimization. It is extremely 

effective among the most widely used gradient methods. It overcomes a potential problem in the 

l
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Newton method by replacing the inverse of the Hessian with its estimate, which is constructed 

symmetric and negative definite as must be true of the inverse Hessian at a local maximum. The 

negative definiteness of the Hessian estimate guarantees that the objective function value increases in 

the direction of the Newton step (Greene, Miranda and Fackler).  After solving for the optimal 

coverage and scale for each state or CRD, every farm in the state or CRD is assigned the region-wide 

optimal coverage and scale. 

Three MPCI scenarios and two GRP scenarios are modeled. MPCI is modeled at 65%, 75% and 

85% coverage levels. The first GRP scenario has coverage set at 90% and scale at 100%.  The second 

GRP scenario applies the optimal coverage and scale.  

Expected Utility Criteria 

Expected utility defined over the domain of ending wealth is 

(21) V  ff
w

ff wdwfwUw
f

~)~()~()~( ∫=

where  is ending wealth and U  ( the marginal utility of w ) is strictly positive. The 

certainty equivalent is that level of wealth which would yield a decision-maker with utility function U 

the same level of satisfaction as the random . If we donate the certainty equivalent by w  then its 

formal definition is: 

fw~ fwddU ~/=′

fw~

f
~

∗

(22)U  .~)~()~()( ff
w

f wdwfwUw
f

∫=∗

Taking advantage of the fact that the utility function, being monotonic, has an inverse function, w  

could be solved as 
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Following Arrow and Pratt, the coefficient of absolute risk aversion is defined as 
)('
)(''

CU
CUAa −= , 

and the coefficient of relative risk aversion is defined as 
)('
)(''
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CUCAr −= , where U is a utility function 

defined over wealth, C. Merton suggested that the assumption of constant relative risk aversion over 

wealth was more plausible than constant absolute risk aversion. In our study we assume the utility 

function reflects constant relative risk aversion and borrow a HARA-class utility function specified as 

r
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 when  and U when r = 1 (Hanna, Gutter and Fan). If we discretize (22) and 

assume that the ending wealth of each year is uniformly distributed, the expected utilities for different 
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where r is the coefficient of constant relative risk aversion and the subscript o refers to the insurance 

scenario (different coverage levels for MPCI and different coverage and scale levels for GRP). The 

corresponding certainty equivalent of ending wealth for the ith farm is denoted by: 
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The average certainty equivalent of ending wealth of all farmers in a given state or CRD is calculated 

as: 
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Then the average certainty equivalents are compared for each of the scenarios over various degrees of 

relative risk aversion.  

Results 

Mean-Variance Criteria 

For cotton, results for each of the GRP and MPCI scenarios described earlier are presented in 

Table 1. For each scenario the table presents the weighted average percentage of variance reduction 

together with the corresponding coverage and scale levels.  

For Georgia, all three coverage levels of MPCI generate more risk reduction than restricted GRP 

in every region expect for CRD 70, whose restricted GRP generates more risk reduction than 65% 

MPCI. When GRP is free to optimize coverage (70%-150%) and scale (70%-150%), it generates more 

risk reduction than 65% MPCI expect for the northern 6 counties of CRD 80. It also performs better 

than 75% MPCI for CRD 70 and CRD 50. MPCI with 85% coverage generates more risk reduction 

than any of the GRP scenario. 

For South Carolina, GRP performs better than in Georgia. Restricted GRP performs better than 

65% MPCI and the unrestricted GRP reduces risk more than 75% MPCI for every region studied.  AS 

with Georgia, 85% MPCI generates more risk reduction than any of the GRP scenario. 

For soybeans, table 2 is constructed similarly to table 1. Results show that GRP performs very 

poorly. Even the unrestricted GRP reduces net yield variance less than 65% MPCI. For CRD 30, the 

restricted GRP actually increases net yield risk.  

For the crops and regions examined here, GRP performance is poor compared to the study by 

Barnett et al. of corn production in the Midwest and Sugar Beet production in the Red River Valley. 

Since GRP works best in relatively homogeneous production regions, this result implies that Georgia 

and South Carolina cotton and soybean production may be too heterogeneous for GRP to provide 

adequate risk protection. 
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Interestingly, the poor GRP performance corresponds to a lower scale level but a higher coverage 

level. For all unrestricted GRP, when the optimal variance reductions are less than 25%, the optimal 

scale levels are less than 80% while the coverage levels are around 140% (except for CRD 70 Georgia). 

However previous results by Barnett et al. for more homogeneous production regions generate much 

higher (most above 40%) risk reduction with higher level of scale and lower level of coverage. 

Intuitively, one might conclude that in more heterogeneous production regions, optimal scale will be 

lower due to the low correlation between farm level yield and county level yield. Maximum risk 

reduction then requires higher levels of coverage to compensate for the relatively low levels of scale.  

Results from a Monte-Carlo simulation further support this conclusion.1 Table 5 shows that GRP 

works poorly even at very high coverage levels in more heterogeneous production regions. On the 

contrary, GRP performs well in more homogeneous production regions with much lower optimal 

coverage levels.  

Expected Utility Criteria 

Next, we switch to the results using the Expected Utility Criteria. Under constant risk aversion, 

monotonic transformation of the net yield (wealth) will not change farmers’ risk preferences. So 

considering the possibility of negative net yields, we take advantage of constant relative risk aversion 

and assign an initial wealth of 150 lbs in cotton and 20 bu in soybean to each individual. Table 3 and 

Table 4 provide certainty equivalents for each of the scenarios mentioned above over various degrees 

of relative risk aversion. At each risk aversion level, higher coverage levels are always associated with 

higher certainty equivalents for MPCI and optimal scale and coverage level always renders higher 

certainty equivalents for GRP. Comparing MPCI and GRP at each risk aversion level, even the lowest 

coverage 65% MPCI performs better than the optimal GRP, which is different from the results based 

on Mean-Variance criterion.  

                                                 
1 Simulation steps refer to Appendix. 
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The reason why the two criteria lead to different results in comparing 65% MPCI and optimal 

GRP lies in the different assumptions inherent in each criterion. The Mean-Variance criterion, 

although widely used, is technically applicable only if either the utility function is quadratic in its 

argument (wealth) or the argument is normally distributed (Barnett). In this study, the assumed utility 

function (
r

w r

−
=

−

1

1
U  when  and U when r=1) is a power function or a log function but 

not a quadratic function and the net yield (wealth) from different scenarios are somewhat skewed. So it 

is not surprising that the two criteria give slightly different results.  

1≠r )log(w=

Discussion 

The study compares the risk reducing performance of GRP and MPCI on cotton and soybeans in 

Georgia and South Carolina.  Compared to previous empirical analyses (e.g., Barnett et al), under both 

Mean-Variance and Expected Utility criteria, GRP performs poorly. This is likely due to more 

heterogeneity in the production regions being considered for this study.  Based on this, one might 

conclude that the potential demand for cotton and soybean GRP in Georgia and South Carolina is low.  

Further study will abandon the assumption of an actuarially-fair premium and instead use actual 

MPCI and GRP premiums.  For areas where GRP is not currently offered, premiums will be calculated 

using GRP rating procedures.  Expected utility analysis will be used to compare preferences for MPCI 

and GRP both with and without federal premium subsidies. In addition, further research could also 

extend to other crops and regions to determine how robust the findings, particularly those crops and 

regions that are not well served by the MPCI product. 
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Appendix 

    Monte-Carlo Simulation Steps: 

1. a series of 50 years county yield { is generated, normally distributed with . }~
cy )180,700(N

2. 500 series of 50 years individual yield { are generated at 3 different correlation levels with 

. The three correlations are 0.3, 0.5, 0.7, respectively. 

ρ}~
iy

{~y }c

3. At each correlation level, , θ  could be iteratively computed using Quasi-Newton optimization 

technique.  

ρ ρ
i

4. repeat procedures 1-3 50 times and average θ  within each correlation level and present ρ
i

ρθ . 

In order to avoid to hit the ceiling of coverage or scale level, both scale and coverage levels are free 

to move between 0%-300%.   
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Table 1. Corn Percentage Variance Reduction Under GRP and MPCI Scenarios by State and Crop Reporting Districts 
 

GRP  MPCI

Restricted 
Coverage 
& Scale 

Optimal Coverage & Scale 
( jsθ ) Optimal Coverage & Scale coverage St  

   

CRD No.of 
counties 

Total 
farmers 

C=90%, 
S=100% 

C (70%, 150%) 
S (70%, 150%) 
∈
∈

C (70%, 150%) 
S (70%, 150%) 
∈
∈ 65% 75% 85%

All         27 1516 16.81% 25.89% 140.80%, 87.41% 20.59% 30.08% 43.13%

80         13 935 13.23% 21.45% 138.76%, 78.71% 17.22% 27.10% 41.04%

Northern 80 (7) 6 421 8.54% 19.61% 140.08%, 77.66% 21.38% 30.58% 43.32% 

Southern 80 (7) 7 514 17.28% 23.05% 144.09%, 82.34% 13.64% 24.10% 39.07% 

70         3 160 18.56% 24.17% 127.39%, 74.51% 10.85% 19.87% 34.15%

60         7 275 26.86% 39.27% 137.48%, 117.21% 36.15% 45.32% 55.13%

GA 
 
 

50         4 146 12.16% 34.24% 150.00%, 87.67% 17.10% 25.40% 39.07%

All         7 237 17.46% 37.84% 148.08%, 100.13% 15.32% 26.43% 42.34%

50         3 110 15.44% 37.77% 139.75%, 100.77% 14.97% 24.61% 38.02%SC 

30         4 127 20.68% 37.97% 150.00%, 98.42% 15.54% 27.57% 45.06%

Table 2. Soybean Percentage Variance Reduction Under GRP and MPCI Scenarios by State and Crop Reporting Districts 
 

GRP  MPCI

Restricted 
Coverage 
& Scale 

Optimal Coverage & 
Scale ( jsθ ) 

Optimal Coverage & 
Scale coverage St  

   

CRD No.of 
counties 

Total 
farmers 

C=90%, 
S=100% 

C (70%, 150%) 
S (70%, 150%) 
∈
∈

C (70%, 150%) 
S (70%, 150%) 
∈
∈ 65% 75% 85%

All         7 268 2.09% 8.59% 145.12%, 70% 20.31% 29.67% 43.42%

50         3 123 4.58% 10.78% 144.10%, 77.16% 23.55% 32.30% 45.38%SC 

30         4 145 -0.35% 6.59% 150%, 70% 17.14% 27.08% 41.50%
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Table 4. Cotton Certainty Equivalence Under GRP and MPCI Scenarios by State and Crop Reporting Districts 

South Carolina C=0.9 S=1.0 
 

Optimal scale and coverage 
 

0.65   
   

     
     
     

    
     
     

     
     
     

     
     
     

     
     
     

     
     
     
     

     
     
     
     

     
     
     
     

     
     
     
     

0.75 0.85
all 
1 831.02063 835.50198 835.6779 839.09483 842.69478
2 804.59644 814.01459 816.9109 824.09277 831.35593
3 778.07206

 
792.56568

 
799.35734

 
810.43873

 
821.27736

 50 
1 810.01472 814.68679 813.12944 816.68317 820.42638
2 784.03181 793.51758 792.89717 800.24633 807.70014
3 758.50754 772.41315 774.5457 785.67951 796.63823
30 
1 849.21472 853.5408 855.20805 858.50651 861.98237
2 822.40832 831.86621 837.71019 844.74717 851.84519
3 795.0177 809.99308 820.84775 831.88372 842.61833
Georgia 
all 
1 791.67426 795.26489 799.27094 803.05814 806.9847
2 759.13429 765.78835 777.83053 785.58554 793.3988
3 728.30064 737.45238 758.59965 770.16945 781.60666
80 
1 808.45836 811.22509 814.73198 818.12088 821.78003
2 779.60878 784.68472 795.14524 802.12629 809.43327
3 752.08051 758.89123 777.35786 787.8742 798.63722
70 
1 877.97976 878.51309 880.91901 883.81405 886.9954
2 856.39758 857.34957 864.06213 870.10161 876.53125
3 835.58326 836.82967 848.29953 857.51441 867.10236
60 
1 717.02631 726.13832 729.97402 735.36361 740.2863
2 669.65332 689.02843 701.87532 712.93476 722.77258
3 624.36144 653.93869 676.88611 693.25024 707.59631
50 
1 730.20963 738.11577 741.3044 745.60187 750.18164
2 689.96642 704.92073 715.51113 723.87864 732.63711
3 654.21763 675.12777 694.08126 705.94782 718.25025
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Table 4. Soybean Certainty Equivalence Under GRP and MPCI Scenarios by State and Crop Reporting Districts 
 

South Carolina C=0.9 S=1.0 Optimal scale and 
coverage 0.65   

     
     
     

     
     

     
     
    

     
    
    
    

0.75 0.85

all 
1 43.122943 43.261922 43.600416 43.682816 43.767262
2 42.145433 42.41605 43.141286 43.310906 43.481274
3 41.1799 41.56871 42.700746 42.959299 43.214866

50 
1 43.938997 44.046923 44.403578 44.488778 44.575402
2 42.959813 43.166324 43.934269 44.110901 44.286669
3 41.991001 42.280114 43.478576 43.749459 44.014536

30 
1 42.430705 42.595323 42.919113 42.999138 43.081736
2 41.454614 41.778957 42.468618 42.63229 42.798077
3 40.491862 40.965444 42.040932 42.289025 42.536525
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Table 5. simulated variance reduction under GRP at different correlation levels 
 
correlation  

    

    

Variance reduction Optimal coverage Optimal scale 
0.3 0.0866253 2.7784623 0.7892088
0.5 0.243711 1.9966503 0.9625752   
0.7 0.4820727 1.6423642 1.1271478
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